JPH01141881A - Method for bonding porous ceramic to metal - Google Patents

Method for bonding porous ceramic to metal

Info

Publication number
JPH01141881A
JPH01141881A JP29623487A JP29623487A JPH01141881A JP H01141881 A JPH01141881 A JP H01141881A JP 29623487 A JP29623487 A JP 29623487A JP 29623487 A JP29623487 A JP 29623487A JP H01141881 A JPH01141881 A JP H01141881A
Authority
JP
Japan
Prior art keywords
ceramic
metal
porous
ceramics
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29623487A
Other languages
Japanese (ja)
Inventor
Tsuneo Enokido
榎戸 恒夫
Akira Okamoto
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29623487A priority Critical patent/JPH01141881A/en
Publication of JPH01141881A publication Critical patent/JPH01141881A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To firmly bond a porous ceramic to a metal without producing cracking, etc., by interposing a ceramic having about the same thermal expansion coefficient as the porous ceramic and higher strength between the bonding surfaces. CONSTITUTION:A ceramic 20 (e.g., high-strength alumina ceramics) having a thermal expansion coefficient equivalent or similar to that of a porous ceramic 1 (e.g., porous alumina ceramics) and higher strength than the ceramic 1 is interposed between the ceramic 1 and a metal 3 (e.g., copper sheet). In this case, the porous ceramic 1 is firstly bonded to the ceramic 20, and then the ceramic 20 is bonded to the metal 3. As a result, thermal stress is not developed between the porous ceramic 1 and the ceramic 20 during the bonding, and the thermal stress developed between the ceramic 20 and the metal 3 is absorbed by the high-strength ceramic 20.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックスと金属の接合法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for joining ceramics and metal.

[従来の技術] 多孔質セラミックスはその特性を利用しているいろの分
野で金属と接合して用いられることが多くなっている。
[Prior Art] Porous ceramics are often used in conjunction with metals in various fields that take advantage of their properties.

セラミックスと金属の接合に際しては1両者の熱膨脹率
の違いによって発生する熱応力をいろいろな方法によっ
て緩和することが特に重要である。一般にセラミックス
と金属の間に軟らかい金属を介装して、その変形によっ
て熱応力を緩衝することが行われているほか、特開昭6
0−246276号公報、特開昭60−231476号
公報等に示される技術が提案されている。
When joining ceramics and metals, it is particularly important to use various methods to relieve thermal stress caused by the difference in coefficient of thermal expansion between the two. In general, a soft metal is interposed between ceramics and metal to buffer thermal stress through its deformation.
Techniques disclosed in JP-A-0-246276, Japanese Patent Laid-Open No. 60-231476, etc. have been proposed.

これらの技術は、熱応力の緩衝方法を提案しているもの
で、その骨子は、セラミックスと金属の間に両者の中間
的な熱膨脹率の金属を介在させて熱応力を緩衝しようと
するものである。
These technologies propose methods for buffering thermal stress, and the gist of these technologies is to buffer thermal stress by interposing a metal with a coefficient of thermal expansion intermediate between ceramics and metal. be.

[発明が解決しようとする問題点] しかし一般に多孔質セラミックスは密度が低いため強度
が低い欠点があり、前述の接合時に発生する熱応力の緩
衝法を用いても実用に耐える接合強度を得ることが難し
い、さらに熱応力の緩和が十分に行われない場合、熱応
力によって多孔質セラミックスにクラックが発生し、接
合体が破壊することもある0本発明は以上の問題点を解
決する新しい多孔質セラミックスと金属の接合法を提供
しようとするものである。
[Problems to be solved by the invention] However, porous ceramics generally have a drawback of low strength due to their low density, and it is difficult to obtain a bonding strength that can be used in practical use even if the above-mentioned method of buffering the thermal stress generated during bonding is used. Furthermore, if the thermal stress is not sufficiently relaxed, cracks may occur in the porous ceramic due to the thermal stress, and the bonded body may be destroyed. The aim is to provide a method for joining ceramics and metal.

[問題点を解決するための手段] 本発明は多孔質セラミックスと金属を接合するにあたり
、前記多孔質セラミックスと金属との接合面に、前記多
孔質セラミックスと同等、もしくはそれに近似した熱膨
張率を有し、かつ前記多孔質セラミックスより高強度の
セラミックスを介装し、接合することを特徴とする多孔
質セラミックスと金属の接合法により、上記問題点を解
決しようとするものである。
[Means for Solving the Problems] When joining porous ceramics and metal, the present invention provides a bonding surface between the porous ceramics and the metal with a coefficient of thermal expansion equal to or similar to that of the porous ceramics. The above-mentioned problems are to be solved by a method of joining porous ceramics and metal, which is characterized by interposing and joining ceramics having a higher strength than the porous ceramics.

[作用コ 本発明の具体的な構成、および作用を図に基づいて説明
する。
[Operations] The specific configuration and operations of the present invention will be explained based on the drawings.

第1図は本発明に基づく接合法を説明するための断面図
であって、1は多孔質セラミックス、2は後述する介在
層、3は金属をそれぞれ示すものである。介在層2は前
記多孔質セラミックス1と同等、もしくはそれと近似し
た熱膨張率を有し、しかも多孔質セラミックス1より高
強度の1例えば多孔質セラミックスと同一組成の緻密な
焼成セラミックスで構成されている。(この介在層を形
成するセラミックスを以下介装セラミックス20と言う
)。
FIG. 1 is a cross-sectional view for explaining the joining method based on the present invention, in which 1 represents porous ceramics, 2 represents an intervening layer to be described later, and 3 represents metal. The intervening layer 2 is made of a dense fired ceramic having the same composition as the porous ceramic 1, for example, having a coefficient of thermal expansion equal to or similar to that of the porous ceramic 1, and having a higher strength than the porous ceramic 1. . (The ceramic forming this intervening layer is hereinafter referred to as intervening ceramic 20).

而して金属3に多孔質セラミックス1を接合するに際し
ては、予め前記介装セラミックス20をプレス成形、焼
成セラミックスの加工等の手段で成形する。次いで、金
属3と前記介装セラミックス20を例えば活性金属ロウ
材、あるいはあらかじめ介装セラミックスの接合にメタ
ライジング(活性金属ペースト法、Mo−Mn法など)
したのち通常のロウ材等を用いて接合する。しがる後、
介装セラミックス20と多孔質セラミックス1を酸化物
ソルダー。
When joining the porous ceramic 1 to the metal 3, the intervening ceramic 20 is formed in advance by means such as press molding or processing of fired ceramics. Next, the metal 3 and the intervening ceramic 20 are bonded using, for example, an active metal brazing material, or by metallizing (active metal paste method, Mo-Mn method, etc.) to join the intervening ceramic in advance.
After that, they are joined using ordinary brazing material or the like. After holding,
Intermediate ceramic 20 and porous ceramic 1 are oxide soldered.

あるいは活性金属ロウ等を用いて接合することによって
金属3と多孔質セラミックス1との接合面に前記機能を
有する介在層を形成することができる。
Alternatively, an intervening layer having the above function can be formed on the bonding surface between the metal 3 and the porous ceramic 1 by bonding using active metal wax or the like.

なお、前述した金属3と介装セラミックス2oの接合、
介装セラミックス2oと多孔質セラミックス1の接合は
接合温度の高い順にすることが望ましいが、場合によっ
てはそれらを同時に実行しても良い。
Note that the joining of the metal 3 and the intervening ceramic 2o described above,
Although it is desirable that the intervening ceramic 2o and the porous ceramic 1 be bonded in descending order of bonding temperature, they may be bonded simultaneously in some cases.

第2図は本発明に基づく他の接合法を示す断面図である
FIG. 2 is a sectional view showing another joining method according to the present invention.

本例は前述した金属3と介装セラミックス2oとの接合
面に軟質金属である銅、あるいは介装セラミックスと金
属の中間的熱膨張率を有する金属等からなる熱応力緩衝
層4を介装せしめたものであり、多孔質セラミックス1
と金属3の膨張率の値が大きく違う場合に、特に有効で
ある。
In this example, a thermal stress buffering layer 4 made of copper, which is a soft metal, or a metal having a coefficient of thermal expansion intermediate between that of the intervening ceramic and the metal, is interposed on the bonding surface between the metal 3 and the intervening ceramic 2o. Porous ceramics 1
This is particularly effective when the expansion coefficients of the metal 3 and the metal 3 are significantly different.

以上のように本発明は多孔質セラミックス1と金属3と
の接合面に介装セラミックス20からなる介在層2を形
成することにより、セラミックス1と介在層2の熱膨張
率が等しいかあるいはほぼ等しくなるので、多孔質セラ
ミックスlと介在層2の間には接合時熱応力を発生させ
ない、あるいは発生しても非常に弱い応力しか発生しな
いことになる。
As described above, the present invention forms the intervening layer 2 made of the intervening ceramic 20 on the joint surface between the porous ceramic 1 and the metal 3, so that the thermal expansion coefficients of the ceramic 1 and the intervening layer 2 are equal or almost equal. Therefore, no thermal stress is generated between the porous ceramic 1 and the intervening layer 2 during bonding, or even if thermal stress is generated, only a very weak stress is generated.

一方1本発明の構成では、介在層2と金属3の間には、
セラミックス1と金属3と積層して接合した場合に発生
する熱応力あるいは、セラミックス1と熱応力緩衝層4
と金属3を積層して接合した場合に発生する熱応力にほ
ぼ等しい熱応力が発生することになる。しかし、多孔質
セラミックス1を破壊する場合があるほどのこの熱応力
は多孔質セラミックス1より高強度の介在層2によって
吸収されるため、脆弱な多孔質セラミックスlにはほと
んど影響を与えない。その結果、実用に耐える強度をも
つ多孔質セラミックスと金属の接合体が得られることに
なる。
On the other hand, in the configuration of the present invention, between the intervening layer 2 and the metal 3,
Thermal stress that occurs when ceramics 1 and metal 3 are laminated and bonded, or ceramics 1 and thermal stress buffer layer 4
A thermal stress approximately equal to the thermal stress generated when the metal 3 and the metal 3 are laminated and bonded is generated. However, this thermal stress, which may destroy the porous ceramic 1, is absorbed by the intervening layer 2, which is stronger than the porous ceramic 1, and therefore has almost no effect on the brittle porous ceramic 1. As a result, a bonded body of porous ceramics and metal with strength suitable for practical use can be obtained.

勿論、本発明では第2図に構成を示す、熱応力緩衝層4
の使用は望ましいが、接合時に発生する熱応力を十分吸
収できる強度を有する介在層2を使用することができれ
ば必須の条件とはならない。
Of course, in the present invention, the thermal stress buffer layer 4 whose structure is shown in FIG.
Although it is desirable to use this, it is not an essential condition as long as the intervening layer 2 can be used that has sufficient strength to absorb the thermal stress generated during bonding.

[実施例1] 多孔質アルミナセラミックス(純度95%、気孔率27
%2曲げ強度4.23kgf/m@”、 20mmX2
0mmX5mat)とSUS 316(30mm X 
25mm X 12mmt)の接合を行った。多孔質ア
ルミナセラミックスと、この多孔質アルミナセラミック
スと同じ組成で非常に緻密な高強度アルミナセラミック
ス(純度95%、気孔率3%2曲げ強度31kgf/m
s” 、 20mm X 20mm X 2mmt)の
接合面にスクリーンオイルで混練した酸化物ソルダーを
塗布し、乾燥後両面を貼り合せ、900℃。
[Example 1] Porous alumina ceramics (purity 95%, porosity 27
%2 bending strength 4.23kgf/m@”, 20mmX2
0mm x 5mat) and SUS 316 (30mm
25mm x 12mmt) was joined. Porous alumina ceramics and very dense high strength alumina ceramics with the same composition as this porous alumina ceramics (purity 95%, porosity 3%2 bending strength 31kgf/m)
s'', 20mm x 20mm x 2mmt) was coated with oxide solder kneaded with screen oil, and after drying, both sides were bonded together and heated at 900°C.

10分間、加熱処理し、セラミックス同志を接合した。Heat treatment was performed for 10 minutes to bond the ceramics together.

ついでセラミックスの接合体の緻密アルミナセラミック
スの表面にA g−Cu−T i系のペーストを塗布し
、乾燥後、850℃の真空炉中で30分間メタライジン
グ処理を行った。このセラミックスのメタライズ面に、
 B Ag−8(JIS 2.3261−76)板ロウ
材と熱応力緩衝層として20am X 20mm X 
O、5m+ntの銅板を配し、この銅板と5US316
材との間に同じくBAg−8,板ロウ材を装入して積層
させ、840℃。
Next, an Ag-Cu-Ti based paste was applied to the surface of the dense alumina ceramics of the ceramic bonded body, and after drying, a metallizing treatment was performed for 30 minutes in a vacuum furnace at 850°C. On the metallized surface of this ceramic,
B Ag-8 (JIS 2.3261-76) plate brazing material and thermal stress buffer layer 20am x 20mm x
O, a 5m+nt copper plate is arranged, and this copper plate and 5US316
Similarly, BAg-8 and plate brazing material were charged and laminated at 840°C.

Ar雰囲気中で10分間、ロウ付した。併行して行った
緻密アルミナセラミックスを介装しない構成の接合体は
ロウ付後、多孔質セラミックスにクラックが発生し、多
孔質セラミックスより破壊して接合出来なかったが1本
発明よりなる多孔質アルミナセラミックス、緻密高強度
アルミナセラミックス、銅板、SO3316材から構成
される多孔質アルミナセラミックスと金属の接合体はク
ラックの発生もなく、強固に接合され、実用に十分耐え
る強度をもつ接合体が得られた。
Brazing was performed in an Ar atmosphere for 10 minutes. In the case of a bonded body without intervening dense alumina ceramic, which was carried out in parallel, cracks occurred in the porous ceramic after brazing, and the porous ceramic was more broken than the porous ceramic and could not be bonded. The bonded body of porous alumina ceramics and metal, which is composed of ceramics, dense high-strength alumina ceramics, copper plate, and SO3316 material, was firmly bonded without any cracks, and a bonded body with sufficient strength for practical use was obtained. .

[実施例2] 微細な気孔をもつ多孔質アルミナセラミックス円筒(純
度92%、気孔率28%2曲げ強度3.29kgf/m
m” 、外径30mmφ、内径24mmφ)の一方の端
面に多孔質アルミナセラミックスと同じ92% Al1
゜03純度で同じ口径の厚さ3+amの緻密なアルミナ
セラミックス(気孔率3%9曲げ強度26kgf/ma
+” )ついで5US316円盤(35mn+φ、厚み
5mn+)を配置し、それぞれの間隙に、1%のTiを
含むBAg−8組成のワッシャーロウ材を挿入し、真空
炉中で860℃。
[Example 2] Porous alumina ceramic cylinder with fine pores (purity 92%, porosity 28%2 bending strength 3.29 kgf/m
92% Al1, the same as porous alumina ceramics, on one end surface of the
Dense alumina ceramics with ゜03 purity and same diameter thickness 3+am (porosity 3%9 bending strength 26kgf/ma)
+'') Next, 5US316 disks (35 mm+φ, thickness 5 mm+) were placed, a washer brazing material of BAg-8 composition containing 1% Ti was inserted into each gap, and the mixture was heated at 860°C in a vacuum furnace.

10分間ロウ付を行った。多孔質アルミナセラミックス
は緻密質アルミナセラミックスリングを介してSO53
16円盤に完全に接合され、十分実用に耐える強度をも
つ接合体が得られた。
Brazing was performed for 10 minutes. Porous alumina ceramics is connected to SO53 through a dense alumina ceramic ring.
A bonded body was obtained which was completely bonded to the No. 16 disc and had sufficient strength for practical use.

[発明の効果コ アルミナだけでなく、窒化珪素や他のセラミックスで作
られた多孔質セラミックスが、固液混合物や固気混合物
の分離用材、あるいは断熱材、センサー用材等いろいろ
の分野での利用がますます増えていくものと考えられる
。その利用方法も、より高温、高圧下で使用することが
要求されており、多孔質セラミックスと金属接合体の接
合強度への要求も一段と厳しいものとなっている。
[Effects of the invention Porous ceramics made from not only core alumina but also silicon nitride and other ceramics can be used in various fields such as separation materials for solid-liquid and solid-gas mixtures, insulation materials, and sensor materials. It is thought that this number will continue to increase. As for how to use it, it is required to use it under higher temperature and pressure, and the requirements for the bonding strength between porous ceramics and metal bonded bodies are becoming even more severe.

本発明はこうした産業上の要求に十分応えられる多孔質
セラミックスと金属の接合方法を提供するもので、実用
上非常に有効である。
The present invention provides a method for joining porous ceramics and metal that fully meets these industrial demands, and is very effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の接合体の代表的断面構成を示
したものである6 1、多孔質セラミックス、2.介在層、3.金属4、熱
応力緩衝層 特許出願人  新日本製鐵株式会社
FIGS. 1 and 2 show typical cross-sectional structures of the joined body of the present invention. 6 1. Porous ceramics, 2. Intervening layer, 3. Metal 4, thermal stress buffer layer patent applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims]  多孔質セラミックスと金属を接合するにあたり、前記
多孔質セラミックスと金属との接合面に、前記多孔質セ
ラミックスと同等もしくはそれと近似した熱膨脹率を有
し、且つ前記多孔質セラミックスより高強度のセラミッ
クスを介装し接合することを特徴とする、多孔質セラミ
ックスと金属との接合法
When joining porous ceramics and metal, a ceramic having a coefficient of thermal expansion equal to or similar to that of the porous ceramic and having a higher strength than the porous ceramic is interposed on the joining surface of the porous ceramic and the metal. A method for joining porous ceramics and metal, which is characterized by mounting and joining.
JP29623487A 1987-11-26 1987-11-26 Method for bonding porous ceramic to metal Pending JPH01141881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29623487A JPH01141881A (en) 1987-11-26 1987-11-26 Method for bonding porous ceramic to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29623487A JPH01141881A (en) 1987-11-26 1987-11-26 Method for bonding porous ceramic to metal

Publications (1)

Publication Number Publication Date
JPH01141881A true JPH01141881A (en) 1989-06-02

Family

ID=17830915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29623487A Pending JPH01141881A (en) 1987-11-26 1987-11-26 Method for bonding porous ceramic to metal

Country Status (1)

Country Link
JP (1) JPH01141881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172836A (en) * 2008-03-11 2008-07-24 Canon Inc Imaging apparatus
US8144217B2 (en) 2002-09-19 2012-03-27 Canon Kabushiki Kaisha Image sensing apparatus
JP2015086109A (en) * 2013-10-31 2015-05-07 京セラ株式会社 Joint body of ceramic body to metal body, and production method of the joint body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144217B2 (en) 2002-09-19 2012-03-27 Canon Kabushiki Kaisha Image sensing apparatus
JP2008172836A (en) * 2008-03-11 2008-07-24 Canon Inc Imaging apparatus
JP4533440B2 (en) * 2008-03-11 2010-09-01 キヤノン株式会社 Imaging device
JP2015086109A (en) * 2013-10-31 2015-05-07 京セラ株式会社 Joint body of ceramic body to metal body, and production method of the joint body

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
JPH0247428B2 (en)
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPH0788262B2 (en) Method for joining silicon nitride and metal
JPH01141881A (en) Method for bonding porous ceramic to metal
JPS5918184A (en) Ceramic metallization
JPH0930870A (en) Bonded material of ceramic metal and accelerating duct
JPH06131934A (en) Insulator
JPS6197174A (en) Diffusion bonding method for ceramics and metals
JPH0328391B2 (en)
JPH0234912B2 (en) SERAMITSUKUSUTOKINZOKUTAITONOSETSUGOHOHO
JPS59217682A (en) Diffusion bonding process
JPS63206365A (en) Joined body of ceramic and metal
JPH0469594B2 (en)
JPS61117171A (en) Heat stress alleviator
JPH0292873A (en) Bonded material of member having different coefficient of thermal expansion
JPS60145972A (en) Ceramic-metal bonded body
JPS5935074A (en) Ceramic sheet
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH0317793B2 (en)
JPS61136969A (en) Method of bonding sialon and metal
JPS61286273A (en) Method of joining ceramic to metal
JPS63179733A (en) Joining structure of ceramics and metal and manufacture thereof
JPH0433758B2 (en)
JPH059396B2 (en)