JPS63156314A - Method of growing semiconductor crystal and apparatus therefor - Google Patents

Method of growing semiconductor crystal and apparatus therefor

Info

Publication number
JPS63156314A
JPS63156314A JP30287086A JP30287086A JPS63156314A JP S63156314 A JPS63156314 A JP S63156314A JP 30287086 A JP30287086 A JP 30287086A JP 30287086 A JP30287086 A JP 30287086A JP S63156314 A JPS63156314 A JP S63156314A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor crystal
molecular beam
gaas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30287086A
Other languages
Japanese (ja)
Other versions
JPH0779084B2 (en
Inventor
Junji Saito
淳二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61302870A priority Critical patent/JPH0779084B2/en
Publication of JPS63156314A publication Critical patent/JPS63156314A/en
Publication of JPH0779084B2 publication Critical patent/JPH0779084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To remove contaminants containing carbon or the like from a compound semiconductor crystal substrate without roughening the surface thereof, by heat-treating the substrate in a substrate preparing chamber at a temperature higher than a temperature at which a material that can be eliminated most hardly from among the components of the compound semiconductor crystal substrate is eliminated while irradiating the substrate with molecular beams of easily eliminable material and of hydrogen. CONSTITUTION:A substrate exchanging chamber 1 is evacuated to about 10<-7>-10<-8> torr. Then, a gate valve 12 is opened so that a GaAs substrate 10 is transferred into a substrate preparing chamber 2. The pressure in the chamber 2 is held at about 10<-9> torr and As molecular beams are emitted from an As molecular beam source 5 to the GaAs substrate 10 while H2 molecular beams are emitted by an H2 molecular beam source 16 to the substrate 10. The GaAs substrate 10 is heated to about 750 deg.C while it is irradiated with the As and H2 molecular beams. Then, the temperature is lowered spontaneously. The substrate is transferred to a deposition chamber 6, in which the GaAs substrate 10 is heated again to about 680 deg.C so that a semiconductor crystal layer of GaAs/AlGaAs is deposited on the substrate.

Description

【発明の詳細な説明】 〔概要〕 本発明は、半導体結晶成長方法及びその方法を実施する
装置に於いて、分子線エピタキシャル成長法の実施が可
能な半導体結晶成長装置に於ける基板準備室内に化合物
半導体結晶基板をセットし、次いで、前記化合物半導体
結晶基板を構成する材料の中で脱離し易い物質の分子線
及び水素の分子線を照射しつつ最も脱離し難い物質が脱
離する温度以上の温度にて加熱し、次いで、前記化合物
半導体結晶基板を成長室に移送して必要とされる半導体
結晶層を分子線エピタキシャル成長させるようにするこ
とに依り、また、そのような技法を実施する装置を提供
することに依り、化合物半導体基板表面から炭素を除去
し、且つ、スルー・プツトを高める為にバッファ層を薄
くしても、該バッファ層上には欠陥が少ない良質な結晶
を成長させることを可能としたものである。
[Detailed Description of the Invention] [Summary] The present invention provides a method for growing a semiconductor crystal and an apparatus for carrying out the method, in which a compound is grown in a substrate preparation chamber of a semiconductor crystal growth apparatus capable of carrying out a molecular beam epitaxial growth method. A semiconductor crystal substrate is set, and then a molecular beam of a substance that is easily desorbed among the materials constituting the compound semiconductor crystal substrate and a molecular beam of hydrogen are irradiated at a temperature higher than the temperature at which the substance that is most difficult to desorb is desorbed. and then transferring said compound semiconductor crystal substrate to a growth chamber for molecular beam epitaxial growth of the required semiconductor crystal layer, and also provides an apparatus for carrying out such a technique. By doing so, even if carbon is removed from the surface of the compound semiconductor substrate and the buffer layer is thinned to increase throughput, it is possible to grow high-quality crystals with few defects on the buffer layer. That is.

〔産業上の利用分野〕[Industrial application field]

本発明は、化合物半導体基板上にバッファ層を介して形
成された半導体層に半導体装置を作り込む場合に適用し
て好結果が得られる半導体結晶成長方法及びその方法を
実施する装置に関する。
The present invention relates to a semiconductor crystal growth method that can be applied to fabricate a semiconductor device in a semiconductor layer formed on a compound semiconductor substrate with a buffer layer interposed therebetween, and to obtain good results, and an apparatus for implementing the method.

〔従来の技術〕[Conventional technology]

一般に、化合物半導体装置を製造する場合、化合物半導
体基板上にバッファ層を介して半導体層を成長させ、そ
の半導体層に素子を作り込むようにしている。
Generally, when manufacturing a compound semiconductor device, a semiconductor layer is grown on a compound semiconductor substrate with a buffer layer interposed therebetween, and elements are built into the semiconductor layer.

近年、そのような化合物半導体結晶層を成長するには、
分子線エピタキシャル成長(molecular  b
eam  epitaxy:MBE)法を通用すること
が多い。
In recent years, to grow such compound semiconductor crystal layers,
Molecular beam epitaxial growth
eam epitaxy (MBE) method is often used.

このMBE法を実施する装置に於いては、成長室の前室
として基板準備室が設けられていて、そこでは、実際の
結晶層を成長させるに先立ち、化合物半導体基板が例え
ばGaAsである場合、約300〜400(’C)程度
に加熱することに依り、大気中でGaAs基板表面に付
着した水分を除去するようにしている。
In an apparatus for carrying out this MBE method, a substrate preparation chamber is provided as a front chamber of the growth chamber, and in the case where the compound semiconductor substrate is, for example, GaAs, before growing an actual crystal layer, By heating to about 300 to 400°C ('C), moisture adhering to the surface of the GaAs substrate in the atmosphere is removed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しなから、前記のような程度の温度に依る加熱では、
炭化水素など炭素を含む分子は除去することはできない
。尚、高真空中でGaAs基板を600(’C)以上の
高温で加熱すると、蒸気圧が高いAsの脱離を生じ、表
面が荒れてしまう欠点がある。
However, in heating at the above-mentioned temperature,
Carbon-containing molecules such as hydrocarbons cannot be removed. It should be noted that when a GaAs substrate is heated in a high vacuum at a high temperature of 600 ('C) or more, As having a high vapor pressure is desorbed and the surface becomes rough.

また、GaAs基板表面に炭素原子などが付着した状態
で、その上に半導体結晶層をエピタキシャル成長させた
場合、その炭素原子がアクセプタとして働き、GaAs
基板とエピタキシャル成長半導体結晶層との界面準位を
形成するので、その影響を回避する為には、厚いバッフ
ァ層を形成することか必要となり、それには多(の時間
を要するのでスルー・プツトは上がらない。
Furthermore, when a semiconductor crystal layer is epitaxially grown on the surface of a GaAs substrate with carbon atoms attached to it, the carbon atoms act as acceptors and the GaAs
Since interface states are formed between the substrate and the epitaxially grown semiconductor crystal layer, in order to avoid this effect, it is necessary to form a thick buffer layer, which requires a lot of time, so the throughput does not increase. do not have.

本発明は、基板表面に付着している炭化水素や二酸化炭
素などの炭素を熱処理にて除去し、しかも、スルー・プ
ツトを高める為にバッファ層は薄くしても、その上に、
表面欠陥が少ない良質の半導体結晶層を容易に成長させ
ることができるようにし、特性良好な半導体装置を得る
ことが可能であるようにする。
The present invention removes carbon such as hydrocarbons and carbon dioxide adhering to the substrate surface by heat treatment, and even if the buffer layer is thinned to increase throughput,
To easily grow a high-quality semiconductor crystal layer with few surface defects and to obtain a semiconductor device with good characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明一実施例を解説する為の図である第1図を参照し
て説明する。
An embodiment of the present invention will be explained with reference to FIG. 1, which is a diagram for explaining one embodiment.

本発明に於いては、分子線エピタキシャル成長法の実施
が可能な半導体結晶成長装置に於ける基板準備室2内に
GaAs基板10をセットし、前記GaAs基板10を
構成する材料の中で脱離し易い物質であるAsの分子線
及びH2の分子線を照射しつつ、最も脱離し難い物質で
あるGaが脱離する温度(例えば750(’j:))以
上の温度で所要時間(例えばl 〔分〕間)の加熱を行
い、その後、前記GaAs基板10を成長室6に移送し
て必要な半導体結晶層、例えば、G a A s / 
A lGaAs系結晶層を分子線エピタキシャル成長さ
せるようにしている。
In the present invention, a GaAs substrate 10 is set in a substrate preparation chamber 2 of a semiconductor crystal growth apparatus capable of implementing the molecular beam epitaxial growth method, and a GaAs substrate 10 is set in a substrate preparation chamber 2 of a semiconductor crystal growth apparatus capable of implementing the molecular beam epitaxial growth method. While irradiating the molecular beams of As and H2, which are substances, at a temperature higher than the temperature at which Ga, which is the substance that is most difficult to desorb, desorbs (e.g. 750 ('j:)) or higher for the required time (e.g. l [min. ), and then the GaAs substrate 10 is transferred to the growth chamber 6 to form a necessary semiconductor crystal layer, for example, GaAs/
The AlGaAs crystal layer is grown by molecular beam epitaxial growth.

〔作用〕[Effect]

前記手段を採ると、GaAs基板10上に付着した炭素
系及びその他の汚染物は確実に除去されるので、スルー
・プツトを高める為にGaAsバッファ層を薄くしても
、その上に形成される各半導体結晶層は欠陥が少ない良
質のものとなる。
By adopting the above method, carbon-based and other contaminants deposited on the GaAs substrate 10 are reliably removed, so even if the GaAs buffer layer is made thinner in order to increase throughput, the GaAs buffer layer formed on the GaAs substrate 10 can be removed. Each semiconductor crystal layer is of good quality with few defects.

〔実施例〕〔Example〕

第1図は本発明一実施例を解説する為の半導体結晶成長
装置の要部説明図を表している。
FIG. 1 shows an explanatory view of the main parts of a semiconductor crystal growth apparatus for explaining one embodiment of the present invention.

図に於いて、1は基板交換室、2は基板準備室、3は基
板移送環、4は基板ホルダ、5はAs分子線源、6は成
長室、7は基板ホルダ、8はAs分子線源、9はGa分
子線源、10はGaAs基板、1)はIn半田、12及
び13はゲート・バルブ、14及び15はカット・パル
プ、16はH2分子線源、17はH2純化器、18はH
2ボンベをそれぞれ示している。尚、本実施例に於ける
成長室6には、As分子線源8及びGa分子線源9の外
にA1分子線源及びSi分子線源も設けられているが、
各分子線源は成長室6の中心軸に対して回転対称に設け
られている為、縦断面的な図である第1図には現れてい
ない。
In the figure, 1 is a substrate exchange room, 2 is a substrate preparation room, 3 is a substrate transfer ring, 4 is a substrate holder, 5 is an As molecular beam source, 6 is a growth chamber, 7 is a substrate holder, and 8 is an As molecular beam. 9 is a Ga molecular beam source, 10 is a GaAs substrate, 1) is In solder, 12 and 13 are gate valves, 14 and 15 are cut pulp, 16 is a H2 molecular beam source, 17 is an H2 purifier, 18 is H
Two cylinders are shown. Incidentally, in addition to the As molecular beam source 8 and the Ga molecular beam source 9, an A1 molecular beam source and a Si molecular beam source are also provided in the growth chamber 6 in this embodiment.
Since each molecular beam source is provided rotationally symmetrically with respect to the central axis of the growth chamber 6, it does not appear in FIG. 1, which is a longitudinal cross-sectional view.

ここで、GaAs基板10上にGaAs層及びA I 
G a A s層或いはn型AlGaAs層を成長させ
る場合について説明する。
Here, a GaAs layer and an A I
The case of growing a GaAs layer or an n-type AlGaAs layer will be described.

GaAs基板10は、大気中に於いて基板マウント用の
モリブデン(MO)・ブロックにIn半田を用いて貼着
し、それを基板交換室1に導入する。
The GaAs substrate 10 is attached to a molybdenum (MO) block for substrate mounting in the atmosphere using In solder, and then introduced into the substrate exchange chamber 1.

基板交換室1内を10″″7(To r r) 〜I 
Q−e(’l”orr)程度に排気してからゲート・パ
ルプ12を開いて基板準備室2に移送する。
Inside the board exchange room 1 10''''7 (To r r) ~I
After exhausting to about Qe ('l''orr), the gate pulp 12 is opened and transferred to the substrate preparation chamber 2.

基板準備室2内は10−9(To r r)程度に維持
されていて、As分子線源5からGaAs基板10に向
かってA3分子線を、また、H2分子線源16からは8
2分子線を放射できるようになっている。As分子線及
び82分子線が放射されると基板準備室2内の真空度は
10−3〜10−’(Torr)程度に低下する。この
場合の排気は、ターボ分子ポンプ(turbo−mo 
1ecular  pump:TMP)或いは油拡散ポ
ンプ(Oif  diffusion  pump:D
P)で行われる。
The inside of the substrate preparation chamber 2 is maintained at about 10-9 Torr, and an A3 molecular beam is emitted from the As molecular beam source 5 toward the GaAs substrate 10, and an 8 Torr is emitted from the H2 molecular beam source 16.
It is capable of emitting bimolecular beams. When the As molecular beam and the 82 molecular beam are radiated, the degree of vacuum in the substrate preparation chamber 2 decreases to about 10-3 to 10-' (Torr). The exhaust in this case is a turbo-molecular pump (turbo-mo
1ecular pump: TMP) or oil diffusion pump: D
P).

GaAs基板10は、As分子線と82分子線の照射を
受けながら加熱可能な基板ホルダ4に依って約750(
’C)程度に加熱され、その状態を例えば1 〔分〕間
持続した後、自然降温を行い、約300(”C)程度に
なった際に成長室6に移送する。
The GaAs substrate 10 is heated to a temperature of about 750 (
After being heated to about 'C) and maintaining that state for, for example, 1 minute, the temperature is naturally lowered, and when the temperature reaches about 300 ('C), it is transferred to the growth chamber 6.

成長室6に於いて、GaAs基Fi、lOを再び加熱す
ることに依り温度を約680〔℃〕程度として、G a
 A s / A It G a A s系の半導体結
晶層を成長させる。
In the growth chamber 6, the GaAs bases Fi, 1O are heated again to a temperature of about 680 [°C], and the GaAs-based
A semiconductor crystal layer of As/A It Ga As system is grown.

第2図は前記説明した工程で製造された半導体結晶層を
有するウェハの要部切断側面図を表している。
FIG. 2 shows a cutaway side view of a main part of a wafer having a semiconductor crystal layer manufactured by the process described above.

図に於いて、21は半絶縁性GaAs基板、22はGa
Asバッファ層、23はA l 、 G’a +−*A
sスペーサ層、24はn型A’X Gar−x As電
子供給層、25はn型GaAs電橿コンタクト層をそれ
ぞれ示している。尚、GaAsパ・ンファ層22はチャ
ネル層も兼ねている。
In the figure, 21 is a semi-insulating GaAs substrate, 22 is a GaAs substrate, and 22 is a GaAs substrate.
As buffer layer, 23 is Al, G'a +-*A
s spacer layer, 24 an n-type A'X Gar-x As electron supply layer, and 25 an n-type GaAs electron contact layer. Note that the GaAs buffer layer 22 also serves as a channel layer.

図示のウェハに於ける各半導体層をデータを例示すると
次の通りである。
Examples of data for each semiconductor layer in the illustrated wafer are as follows.

(1)GaAsバッファ層22 厚さ70.2Cμm〕 (2)  A I X G a l−X A Sスペー
サ層23厚さ:60 〔人〕 X値:0.3 (3)n型A (l g G a I−x A s電子
供給層24厚さ:900 〔人〕 X値:0.3 不純物濃度: I X 10I8(cffi−’)(4
)n型GaAs電極コンタクト層25厚さ:200  
C人〕 不純物濃度: I X 1018(cm−’)このウェ
ハ及び従来技術に依って製造されたウェハ、即ち、基板
準備室2内に於いて、〜400(℃)、10(分〕の熱
処理を受けただけのウェハをホール測定し、ヘテロ界面
に於ける2次元電子ガス層に於ける電子移動度及び電子
濃度を比較した。尚、従来技術に依るウェハのGaAs
バッファ層の厚さは0.6〔μm〕である。
(1) GaAs buffer layer 22 thickness: 70.2 Cμm] (2) A I g G a I-x A s Electron supply layer 24 thickness: 900 [people] X value: 0.3 Impurity concentration: I X 10I8 (cffi-') (4
) N-type GaAs electrode contact layer 25 thickness: 200
Person C] Impurity concentration: I x 1018 (cm-') This wafer and wafers manufactured by the conventional technology, that is, heat treated in the substrate preparation chamber 2 at ~400 (°C) for 10 (minutes). The electron mobility and electron concentration in the two-dimensional electron gas layer at the hetero-interface were compared by Hall measurements on wafers that had just been exposed to GaAs.
The thickness of the buffer layer is 0.6 [μm].

第3図はバッファ層の厚さ対2次元電子ガス層に於ける
電子移動度及び電子濃度の関係を表す線図である。
FIG. 3 is a diagram showing the relationship between the thickness of the buffer layer and the electron mobility and electron concentration in the two-dimensional electron gas layer.

図では、横軸にバッファ層の厚さを、左縦軸に電子移動
度を、右縦軸に電子濃度をそれぞれ採ってあり、口印は
本発明一実施例に於ける電子移動度〔c1)2/■・s
層及び電子濃度(cm−”)を表し、○印は従来例に於
けるそれを表している。
In the figure, the thickness of the buffer layer is plotted on the horizontal axis, the electron mobility is plotted on the left vertical axis, and the electron concentration is plotted on the right vertical axis. )2/■・s
The layers and electron concentrations (cm-'') are shown, and the ◯ marks represent those in the conventional example.

本実施例では、GaAsバッファ層22を0゜2〔μm
〕とした場合、電子移動度は90,000 (cm” 
/V −s) 、電子濃度は5.0X10’1〔o4〕
であり、厚さo、6 (μm)のGaAsバッファ層を
有する従来技術に依るものと比較して遜色ない特性が得
られ、また、エピタキシャル成長半導体結晶層全体が薄
くなされたことから、表面欠陥密度も従来の厚さのもの
と比較すると約2に低減される。
In this embodiment, the GaAs buffer layer 22 has a thickness of 0°2 [μm].
], the electron mobility is 90,000 (cm”
/V -s), the electron concentration is 5.0X10'1 [o4]
As a result, characteristics comparable to those of the conventional technology having a GaAs buffer layer with a thickness of 6 (μm) were obtained, and since the entire epitaxially grown semiconductor crystal layer was made thinner, the surface defect density was reduced. The thickness is also reduced to about 2 when compared with the conventional thickness.

因に、GaAsバッファ層の厚さを本発明と同様に0.
2〔μm〕とし、熱処理を前記従来例と同様にした場合
、半絶縁性GaAs基板とエピタキシャル成長半導体結
晶層との界面に於ける電子トラップの影響が現れ、電子
移動度は60.000cc+12/■・S〕、電子濃度
は3.8X10”Ccm −” )なる値しか得られな
かった。
Incidentally, the thickness of the GaAs buffer layer is set to 0.0 mm as in the present invention.
2 [μm] and the heat treatment is the same as in the conventional example, the effect of electron traps at the interface between the semi-insulating GaAs substrate and the epitaxially grown semiconductor crystal layer appears, and the electron mobility is 60.000cc+12/■. S], and the electron concentration was only 3.8×10"Ccm -").

〔発明の効果〕〔Effect of the invention〕

本発明に依れば、化合物半導体結晶基板に化合物半導体
結晶層をエピタキシャル成長させるに際し、基板準備室
に於いて、化合物半導体結晶基板を構成する材料の中で
離脱し易い物質の分子線及び水素の分子線を浴びせなが
ら最も離脱し難い物質が離脱する温度以上の温度で熱処
理するようにしている。
According to the present invention, when epitaxially growing a compound semiconductor crystal layer on a compound semiconductor crystal substrate, in the substrate preparation room, molecular beams of substances that are easily separated from materials constituting the compound semiconductor crystal substrate and hydrogen molecules are used. Heat treatment is performed at a temperature higher than the temperature at which the substance that is most difficult to release leaves while being exposed to radiation.

この構成を採ることに依り、化合物半導体結晶基板の表
面荒れを発生させることなく炭素系その他の汚染物を除
去し、その結果、薄いバッファ層を用いながら良質の半
導体結晶層を高いスルー・プツトで成長させることを可
能にしている。
By adopting this configuration, carbon-based and other contaminants can be removed without causing surface roughness of the compound semiconductor crystal substrate, and as a result, a high-quality semiconductor crystal layer can be formed with high throughput while using a thin buffer layer. making it possible to grow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の要部説明図、第2図は本発明
一実施例に依って製造されたウェハの要部切断側面図、
第3図はバッファ層の厚さ対2次元電子ガス層の電子移
動度及び電子濃度の関係を説明する線図をそれぞれ表し
ている。 図に於いて、1は基板交換室、2は基板準備室、3は基
板移送枠、4は基板ホルダ、5はAs分子線源、6は′
成長室、7は基板ホルダ、8はAs分子線源、9はGa
分子線源、10はGaAs基板、1)はIn半田、12
及び13はゲート・バルブ、14及び15はカット・パ
ルプ、16はH2分子線源、17はH2純化器、18は
H2ボンベをそれぞれ示している。 本発明に依るウェハの要部切断側面図 第2図
FIG. 1 is an explanatory diagram of a main part of an embodiment of the present invention, FIG. 2 is a cutaway side view of a main part of a wafer manufactured according to an embodiment of the present invention,
FIG. 3 shows diagrams illustrating the relationship between the thickness of the buffer layer and the electron mobility and electron concentration of the two-dimensional electron gas layer. In the figure, 1 is a substrate exchange room, 2 is a substrate preparation room, 3 is a substrate transfer frame, 4 is a substrate holder, 5 is an As molecular beam source, and 6 is '
Growth chamber, 7 is a substrate holder, 8 is an As molecular beam source, 9 is a Ga
Molecular beam source, 10 is GaAs substrate, 1) is In solder, 12
and 13 are gate valves, 14 and 15 are cut pulp, 16 is an H2 molecular beam source, 17 is an H2 purifier, and 18 is an H2 cylinder, respectively. FIG. 2 is a cutaway side view of essential parts of a wafer according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)分子線エピタキシャル成長法の実施が可能な半導
体結晶成長装置に於ける基板準備室内に化合物半導体結
晶基板をセットする工程と、 次いで、前記化合物半導体結晶基板を構成する材料の中
で脱離し易い物質の分子線及び水素の分子線を照射しつ
つ最も脱離し難い物質が脱離する温度以上の温度に加熱
する工程と、 次いで、前記化合物半導体結晶基板を成長室に移送して
必要とされる半導体結晶層を分子線エピタキシャル成長
させる工程と が含まれてなることを特徴とする半導体結晶成長方法。
(1) A step of setting a compound semiconductor crystal substrate in a substrate preparation chamber of a semiconductor crystal growth apparatus capable of implementing the molecular beam epitaxial growth method; a step of heating to a temperature higher than the temperature at which the substance that is most difficult to desorb desorbs while irradiating it with a molecular beam of a substance and a molecular beam of hydrogen; and then transferring the compound semiconductor crystal substrate to a growth chamber to perform the necessary A method for growing a semiconductor crystal, comprising the step of growing a semiconductor crystal layer by molecular beam epitaxial growth.
(2)化合物半導体結晶基板を保持し且つ該化合物半導
体結晶基板を構成する材料の中で最も脱離し難い物質が
脱離する温度以上の温度に加熱することができるホルダ
及び脱離し易い物質を分子線として該化合物半導体結晶
基板に照射することができる分子線源及び該化合物半導
体結晶基板に水素を分子線として照射することができる
分子線源が配設されてなる基板準備室と、該基板準備室
に連なり半導体結晶層を分子線エピタキシャル成長させ
る成長室と を備えてなることを特徴とする半導体結晶成長装置。
(2) A holder capable of holding a compound semiconductor crystal substrate and heating it to a temperature higher than the temperature at which the substance that is most difficult to desorb among the materials constituting the compound semiconductor crystal substrate, and a holder that can hold a substance that is easy to desorb as a molecule. a substrate preparation room equipped with a molecular beam source capable of irradiating the compound semiconductor crystal substrate with hydrogen as a molecular beam; and a molecular beam source capable of irradiating the compound semiconductor crystal substrate with hydrogen as a molecular beam; 1. A semiconductor crystal growth apparatus comprising a growth chamber connected to the chamber and for growing a semiconductor crystal layer by molecular beam epitaxial growth.
JP61302870A 1986-12-20 1986-12-20 Semiconductor crystal growth method and apparatus for implementing the same Expired - Fee Related JPH0779084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302870A JPH0779084B2 (en) 1986-12-20 1986-12-20 Semiconductor crystal growth method and apparatus for implementing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302870A JPH0779084B2 (en) 1986-12-20 1986-12-20 Semiconductor crystal growth method and apparatus for implementing the same

Publications (2)

Publication Number Publication Date
JPS63156314A true JPS63156314A (en) 1988-06-29
JPH0779084B2 JPH0779084B2 (en) 1995-08-23

Family

ID=17914092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302870A Expired - Fee Related JPH0779084B2 (en) 1986-12-20 1986-12-20 Semiconductor crystal growth method and apparatus for implementing the same

Country Status (1)

Country Link
JP (1) JPH0779084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302515A (en) * 1993-04-15 1994-10-28 Nec Corp Manufacture of semiconductor on fluorine compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168592A (en) * 1985-01-18 1986-07-30 Sumitomo Electric Ind Ltd Method of crystal growth by molecular beam
JPS61222217A (en) * 1985-03-28 1986-10-02 Sony Corp Molecular beam epitaxial growth
JPS61225817A (en) * 1985-03-29 1986-10-07 Sharp Corp Apparatus for molecular beam epitaxial growth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168592A (en) * 1985-01-18 1986-07-30 Sumitomo Electric Ind Ltd Method of crystal growth by molecular beam
JPS61222217A (en) * 1985-03-28 1986-10-02 Sony Corp Molecular beam epitaxial growth
JPS61225817A (en) * 1985-03-29 1986-10-07 Sharp Corp Apparatus for molecular beam epitaxial growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302515A (en) * 1993-04-15 1994-10-28 Nec Corp Manufacture of semiconductor on fluorine compound

Also Published As

Publication number Publication date
JPH0779084B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
Fronius et al. Elimination of GaAs oval defects and high-throughput fabrication of selectively doped AlxGa1− xAs/GaAs heterostructures by MBE
JPS63156314A (en) Method of growing semiconductor crystal and apparatus therefor
JPS6246994A (en) Method and apparatus for growing thin film
JP2520617B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JPS6230317A (en) Method and apparatus for growing semiconductor crystal
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JPS63228714A (en) Manufacture of semiconductor crystal film
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH01245512A (en) Formation of iii-v compound semiconductor by epitaxial growth
JP2671089B2 (en) Quantum structure fabrication method
JPH0243720A (en) Molecular beam epitaxial growth method
JPH01214017A (en) Method and apparatus for molecular beam epitaxial growth
JPH022285B2 (en)
JPH01223721A (en) Method and device for crystal growth
JPH0864530A (en) Selective growing method
JPS62115831A (en) Manufacture of semiconductor device
JPH0226892A (en) Method and device for molecular beam epitaxial growth
JPH05243158A (en) Manufacture of semiconductor device
JPH01223722A (en) Method and device for crystal growth
JPH0773097B2 (en) Molecular beam crystal growth method
JPH0443631A (en) Growth method of compound semiconductor crystal and equipment therefor
JPH05136056A (en) Molecular beam epitaxial growth method
JPH0194662A (en) Manufacture of mis type semiconductor using gallium arsenide
JPS6211221A (en) Molecular-beam epitaxial growth method
JPH01160899A (en) Method for growing compound semiconductor crystal and apparatus therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees