JPS6211221A - Molecular-beam epitaxial growth method - Google Patents

Molecular-beam epitaxial growth method

Info

Publication number
JPS6211221A
JPS6211221A JP15192285A JP15192285A JPS6211221A JP S6211221 A JPS6211221 A JP S6211221A JP 15192285 A JP15192285 A JP 15192285A JP 15192285 A JP15192285 A JP 15192285A JP S6211221 A JPS6211221 A JP S6211221A
Authority
JP
Japan
Prior art keywords
substrate
gaas
growth
molecular beam
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15192285A
Other languages
Japanese (ja)
Other versions
JPH0360173B2 (en
Inventor
Toshiaki Kinosada
紀之定 俊明
Tatsuya Yamashita
山下 達哉
Koji Tomita
孝司 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15192285A priority Critical patent/JPS6211221A/en
Publication of JPS6211221A publication Critical patent/JPS6211221A/en
Publication of JPH0360173B2 publication Critical patent/JPH0360173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a GaAs epitaxial film having high quality by irradiating a substrate by As and In molecular beams in a substrate-surface purification process before growth, growing an InxGa1-xAs buffer layer and growing GaAs onto the In-doped GaAs substrate. CONSTITUTION:The upper section of an In-doped GaAs substrate 1 is irradiated by As molecular beams and In molecular beams in a substrate purification process to grow an InxGa1-xAs buffer layer 2. A value corresponding to the In concentration (x-0.002) of the substrate 1 is used on the starting of the growth of (x), (x) is reduced gradually with growth, (x) is brought to 0, and a GaAs layer 3 is grown. Accordingly, a GaAs epitaxial film having low dislocation density and of high quality is formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はIn ドープGaAs基板上にGaAsを分子
線エピタキシャル成長させる分子線エピタキシャル成長
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a molecular beam epitaxial growth method for growing GaAs on an In doped GaAs substrate by molecular beam epitaxial growth.

〈従来の技術〉 分子線エピタキシャル(以下MBEと称す)成長でGa
As基板上へG a A sを成長させる場合、従来は
次のように行なわれている。即ち、GaAs基板を化学
処理後成長チャンバー内に搬送する。次に高真空下でA
s分子線のみを基板に照射した状態で基板を600〜6
50℃に加熱することで基板表面の自然酸化膜や炭素な
どの付着物を除去し基板表面の清浄化を行なう(基板表
面熱清浄化過程)。その後Ga及びAs分子線を500
〜700℃に保たれた基板に照射することによシGaA
sの成長を行なう。
<Conventional technology> Ga is grown by molecular beam epitaxial growth (hereinafter referred to as MBE).
When growing GaAs on an As substrate, the conventional method is as follows. That is, the GaAs substrate is transported into a growth chamber after being chemically treated. Then under high vacuum
The substrate was irradiated with only the s molecular beam at 600~6
By heating to 50° C., the natural oxide film and deposits such as carbon on the substrate surface are removed and the substrate surface is cleaned (substrate surface thermal cleaning process). After that, Ga and As molecular beams were applied at 500
By irradiating the substrate kept at ~700°C, GaA
s growth.

ところで従来法で成長に用いられる基板はアンドープG
aAs基板あるいは蒸気圧の低いCrを添書n1−7+
(”!r  )−フ” G a A M Z 層力;主
〒あった。
By the way, the substrate used for growth in the conventional method is undoped G.
aAs substrate or Cr with low vapor pressure attached n1-7+
("!r)-fu" G a A M Z Layer Power; The Lord was there.

しかし、”In ドープGaAs基板が最近低転位密度
あるいは無転位結晶が得られるということで注目されて
おり、これをエピタキシャル成長基板として用いるなら
ば、低転位密度の良質なエピタキシャル膜が成長できる
と考えられる。
However, "In-doped GaAs substrates have recently attracted attention for their ability to obtain low dislocation density or dislocation-free crystals, and if this is used as an epitaxial growth substrate, it is thought that high-quality epitaxial films with low dislocation densities can be grown." .

〈発明が解決しようとする問題点〉 しかし、従来法によって、Inドー’7”G a A 
s基板上へGaAsを成長させた場合、次のような問題
が生ずる。
<Problem to be solved by the invention> However, according to the conventional method, Indo'7"G a
When GaAs is grown on an s-substrate, the following problems occur.

■ 基板温度が500℃以上では基板からAsのみなQ
ずInも選択的に蒸発するため基板表面熱清浄化過程に
おいてAs分子線のみを基板に照射する従来法ではIn
が基板から蒸発するため成長界面の表面モルフォロジを
悪くし、その上に成長されるGaAs膜の膜質を悪くす
る。
■ When the substrate temperature is over 500℃, only As is removed from the substrate.
Because In also selectively evaporates, the conventional method of irradiating the substrate with only As molecular beams during the substrate surface thermal cleaning process
evaporates from the substrate, which deteriorates the surface morphology of the growth interface and deteriorates the quality of the GaAs film grown thereon.

■ InドープGaAs は実際には混晶I nxGa
 s −xAs(x−0,002)であるためアンドー
プやSt。
■ In-doped GaAs is actually a mixed crystal InxGa
Since it is s-xAs(x-0,002), it is undoped and St.

Sn ドープ(n型)あるいはBe、Mgドープ(P型
)GaAsに比べ格子定数が約0.02%大きい。従っ
てInドープGaAs基板にアンドープGaAs等を成
長した場合、格子不整合のだめその界面に内部応力が生
じ、それにより成長層に転位が発生したりするので良質
なエピタキシャル膜が得られない。
The lattice constant is approximately 0.02% larger than that of Sn-doped (n-type) or Be, Mg-doped (P-type) GaAs. Therefore, when undoped GaAs or the like is grown on an In-doped GaAs substrate, internal stress is generated at the interface due to lattice mismatch, which may cause dislocations in the grown layer, making it impossible to obtain a good quality epitaxial film.

本発明は、上記の点にかんがみて創案されたものであり
、In ドープ基板上への高品質のGaAsエピタキシ
ャル膜の形成を可能にする分子線エピタキシャル成長方
法を提供することを目的としている。
The present invention was devised in view of the above points, and an object of the present invention is to provide a molecular beam epitaxial growth method that makes it possible to form a high quality GaAs epitaxial film on an In doped substrate.

く問題点を解決するための手段〉 上記目的を達成するため、本発明のIn ドープGaA
s基板へのGaAs成長を行なう分子線エピタキシャル
成長方法は次のように構成している。
Means for Solving the Problems> In order to achieve the above object, the In-doped GaA of the present invention
The molecular beam epitaxial growth method for growing GaAs onto an s-substrate is constructed as follows.

■ 基板表面熱清浄化過程ではAs分子線のみならず例
えば10−10〜10−’torr  程度のIn分子
線も基板に照射し、jnの基板からの蒸発分をおぎなう
(2) In the substrate surface thermal cleaning process, the substrate is irradiated not only with As molecular beams but also with In molecular beams of, for example, about 10-10 to 10-'torr, to compensate for the evaporation of jn from the substrate.

■ 成長はGaAs成長に先だち、まずInxGa 、
 −XAsを例えば0.01〜5.i<m成長させる。
■ Growth is preceded by GaAs growth, first InxGa,
-XAs, for example, from 0.01 to 5. Grow i<m.

Xの値としては実施例として成長開始時はIn ドープ
GaAs基板のIn濃度に相当する値(X〜0.002
)をとシ、成長5とともにXをOにしてゆき、その後G
aAsを成長させる。
As an example, the value of X is a value corresponding to the In concentration of the In-doped GaAs substrate at the start of growth (X ~ 0.002
) and change X to O with growth 5, then G
Grow aAs.

く作用〉 上記■の構成によシ、高品質エピタキシャルに要求され
る清浄表面及び良好な表面モルフォロジが得られる。更
に上記■の構成によりIn ドープGaAs基板とその
上に成長されるGaAs膜の格子定数の間の格子定数値
をもつ混晶InxGa 、 −xAsをバッファ層とし
て成長させ、更に実施例としてこのXの値を連続的ある
いは段階的に変化させて、その格子定数を変えてゆくこ
とで基板とエピタキシャル成長層の間で生ずる格子不整
合を解消することができる。
Effects> The configuration (2) above provides a clean surface and good surface morphology required for high-quality epitaxial production. Further, according to the configuration (2) above, a mixed crystal InxGa, -xAs having a lattice constant value between that of the In doped GaAs substrate and the GaAs film grown thereon is grown as a buffer layer, and as an example, this By changing the lattice constant by changing the value continuously or stepwise, it is possible to eliminate the lattice mismatch that occurs between the substrate and the epitaxially grown layer.

〈実施例〉 以下本発明を実施例に基づき図を参照して詳細に説明す
る。
<Example> The present invention will be described in detail below based on an example with reference to the drawings.

第1図は、本発明にしたがって作製された半導体装置の
構造を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a semiconductor device manufactured according to the present invention.

同図において、1けInドープGaAs基板、2はI 
nxGa + −xA sバッファ層であシ、混晶比X
のプロファイルは基板lとの界面で基板lのIn濃度に
相当する値であり、バッファ層2の成長と共にOになる
ように構成されている。また3はGaAs層である。
In the figure, 1 is an In-doped GaAs substrate, 2 is an I
nxGa + -xA s buffer layer, mixed crystal ratio X
The profile is a value corresponding to the In concentration of the substrate 1 at the interface with the substrate 1, and is configured to become O as the buffer layer 2 grows. Further, 3 is a GaAs layer.

次に、第1図に示した構造の半導体装置の本発明の一実
施例としての作製方法を説明する。
Next, a method for manufacturing a semiconductor device having the structure shown in FIG. 1 as an embodiment of the present invention will be described.

用いた基板1は市販の転位密度3000 am−2以下
、比抵抗107Ω備 程度のIn ドープ半絶縁性(1
00)基板(厚さ400.gm)の2″り  ウェハで
、In濃度は約lXl0  個 (工” 0.004 GaO,996As相当)である
。成長はInフリー・サセプタを用いて直接加熱法で行
なった。
The substrate 1 used was a commercially available In-doped semi-insulating (1
00) A 2" wafer of a substrate (thickness: 400 gm) has an In concentration of about 1X10 (equivalent to 0.004 GaO, 996 As). Growth was performed by direct heating using an In-free susceptor.

表面清浄化は基板温度620℃でAs分子線2 X I
 F’ torr 、 In分子線I X 10−9t
orrを基板1に照射して行なった。約30分後成長チ
ャンバー備見つけのRHEED(反射高速電子回折)装
置によシ、表面清浄化を確認した後、第1図に示した成
長を行なった。
Surface cleaning was performed using As molecular beam 2 x I at a substrate temperature of 620°C.
F'torr, In molecular beam I X 10-9t
The test was carried out by irradiating the substrate 1 with orr. After about 30 minutes, surface cleaning was confirmed using a RHEED (reflection high energy electron diffraction) device in the growth chamber, and then the growth shown in FIG. 1 was carried out.

成長条件は基板温度580℃、成長レート0.7μm/
hで行なった。まず第1図に示すバッファ層であるIn
xGa1 、As層2を成長させるため、Ga分子線強
度を3.2 X 10−’torr 、 As分子線強
度をI X 10  torrに一定にし、In分子線
強度をバッファ層2の成長開始時7 X I F”to
rr に設定し、以後2.5X10−’torr/hで
減じてゆき、混晶比Xが0.004からOに連続的に変
化している混晶比プロファイルをもつバッファ層Inx
Ga、XAs を0.2)1m成長させた。この後Si
  ドープn型GaAs層3.(キャリア濃度lXl0
 3  ) を17m成長させた。
The growth conditions were a substrate temperature of 580°C and a growth rate of 0.7 μm/
I did it with h. First, the buffer layer shown in FIG.
In order to grow xGa1 and As layer 2, the Ga molecular beam intensity was kept constant at 3.2 x 10-' torr, the As molecular beam intensity was kept constant at I x 10 torr, and the In molecular beam intensity was set at 7 at the start of growth of buffer layer 2. X I F"to
The buffer layer Inx has a mixed crystal ratio profile in which the mixed crystal ratio X continuously changes from 0.004 to O by setting the ratio to
Ga and XAs were grown to a thickness of 0.2)1 m. After this, Si
Doped n-type GaAs layer 3. (Carrier concentration lXl0
3) was grown to 17 m.

この結果、低転位密度の基板1を反映してGaAs層3
の転位密度は1ooo−−3程度であった。またキャリ
ア濃度1015cR−3で易動度も8000シバr”s
eQ  と良好な値が得られた。
As a result, the GaAs layer 3 reflects the low dislocation density of the substrate 1.
The dislocation density was about 1ooo--3. In addition, the carrier concentration is 1015 cR-3 and the mobility is 8000 r”s.
A good value of eQ was obtained.

〈発明の効果〉 以上のように本発明によ、!17、InドープGaAs
基板の有する低転位密度という特性を生かした低転位密
度の高品質GaAsエピタキシャル膜の形成が可能とな
り、これを0EICやHBT用のエピタキシャル膜とし
て用いることにより高性能高信頼性のIC及びトランジ
スタの製造が可能となる。
<Effects of the Invention> As described above, according to the present invention! 17. In-doped GaAs
It is now possible to form a high-quality GaAs epitaxial film with a low dislocation density by taking advantage of the low dislocation density characteristic of the substrate, and by using this as an epitaxial film for 0EIC and HBT, it is possible to manufacture high-performance and highly reliable ICs and transistors. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にしたがって作製された半導体装置の構
造を示す断面図である。 1 ・= I nドープGaAs基板、  2−= I
nxGa 、 −xAsバッファ層、 3・・・GaA
s層。 代理人 弁理士 福 士 愛 彦(他2名)第1ffi −3−5層 、21nzGa1.zAs穀yy)@ −/ InF−y°GaA泗1ヒ ■
FIG. 1 is a sectional view showing the structure of a semiconductor device manufactured according to the present invention. 1.=I n-doped GaAs substrate, 2-=I
nxGa, -xAs buffer layer, 3...GaA
s layer. Agent Patent attorney Aihiko Fuku (2 others) 1st FFI -3-5 layer, 21nzGa1. zAs grainyy) @ −/ InF-y°GaA溗1hi ■

Claims (1)

【特許請求の範囲】 1、InドープGaAs基板上へのGaAsの分子線エ
ピタキシャル成長において、 成長前の基板表面熱清浄化過程でAs分子線及びIn分
子線を上記基板に照射し、 次にGaAs成長に先だち混晶In_xGa_1_−_
xAsをバッファ層として成長させ、 次にGaAsを成長させてInドープGaAs基板上へ
のGaAs成長を行なうことを特徴とする分子線エピタ
キシャル成長方法。 2、前記バッファ層として形成されるIn_xGa_1
_−_xAsは基板界面では混晶比xは基板のIn濃度
に相当する値を有し、成長とともにxが小さくなり最終
的にx=0となる混晶比プロファイルをもつことを特徴
とする特許請求の範囲第1項記載の分子線エピタキシャ
ル成長方法。
[Claims] 1. In the molecular beam epitaxial growth of GaAs on an In-doped GaAs substrate, the substrate is irradiated with an As molecular beam and an In molecular beam in the substrate surface thermal cleaning process before growth, and then the GaAs is grown. mixed crystal In_xGa_1_-_
A molecular beam epitaxial growth method characterized by growing xAs as a buffer layer and then growing GaAs on an In-doped GaAs substrate. 2. In_xGa_1 formed as the buffer layer
_-_xAs is a patent characterized in that at the substrate interface, the mixed crystal ratio x has a value corresponding to the In concentration of the substrate, and as it grows, x decreases and finally has a mixed crystal ratio profile where x = 0. The molecular beam epitaxial growth method according to claim 1.
JP15192285A 1985-07-08 1985-07-08 Molecular-beam epitaxial growth method Granted JPS6211221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15192285A JPS6211221A (en) 1985-07-08 1985-07-08 Molecular-beam epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15192285A JPS6211221A (en) 1985-07-08 1985-07-08 Molecular-beam epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS6211221A true JPS6211221A (en) 1987-01-20
JPH0360173B2 JPH0360173B2 (en) 1991-09-12

Family

ID=15529129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15192285A Granted JPS6211221A (en) 1985-07-08 1985-07-08 Molecular-beam epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS6211221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125918A (en) * 1987-11-11 1989-05-18 Sony Corp Semiconductor substrate
US5459331A (en) * 1993-05-10 1995-10-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, heterojunction bipolar transistor, and high electron mobility transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125918A (en) * 1987-11-11 1989-05-18 Sony Corp Semiconductor substrate
US5459331A (en) * 1993-05-10 1995-10-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, heterojunction bipolar transistor, and high electron mobility transistor

Also Published As

Publication number Publication date
JPH0360173B2 (en) 1991-09-12

Similar Documents

Publication Publication Date Title
JP3875821B2 (en) GaN film manufacturing method
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
JPS62119196A (en) Method for growing compound semiconductor
JPH01289108A (en) Heteroepitaxy
JPH0562911A (en) Manufacture of semiconductor superlattice
JP2005032823A (en) Method for manufacturing epitaxial wafer for field-effect transistor
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
Chong et al. Growth of high quality GaAs layers directly on Si substrate by molecular‐beam epitaxy
TW202323576A (en) Method for producing heteroepitaxial wafer
JPS6211221A (en) Molecular-beam epitaxial growth method
JP2004307253A (en) Method for manufacturing semiconductor substrate
CN111081834B (en) Novel method for growing GaN epitaxial layer on sapphire and GaN epitaxial layer
JP2845464B2 (en) Compound semiconductor growth method
JPH0754806B2 (en) Method for growing compound semiconductor single crystal film
WO2019225112A1 (en) Group iii nitride semiconductor substrate and method of producing same
JP2677221B2 (en) Method for growing nitride-based III-V compound semiconductor crystal
JPS6212119A (en) Molecular beam epitaxial growth method
JP3962101B2 (en) Method for heteroepitaxial growth of nitride semiconductor
KR20000056002A (en) Method for growing GaN crystalline using lateral epitaxy growth
JP3078927B2 (en) Method for growing compound semiconductor thin film
WO2024057698A1 (en) Single crystal silicon substrate equipped with nitride semiconductor layer, and method for manufacturing single crystal silicon substrate equipped with nitride semiconductor layer
JP2743351B2 (en) Vapor phase epitaxy growth method
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPH0645249A (en) Growth method of gaas layer