JPS61222217A - Molecular beam epitaxial growth - Google Patents

Molecular beam epitaxial growth

Info

Publication number
JPS61222217A
JPS61222217A JP6432885A JP6432885A JPS61222217A JP S61222217 A JPS61222217 A JP S61222217A JP 6432885 A JP6432885 A JP 6432885A JP 6432885 A JP6432885 A JP 6432885A JP S61222217 A JPS61222217 A JP S61222217A
Authority
JP
Japan
Prior art keywords
cells
growth
molecular beam
cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6432885A
Other languages
Japanese (ja)
Inventor
Katsuhiro Akimoto
秋本 克洋
Masashi Dousen
動仙 政志
Michio Arai
道夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6432885A priority Critical patent/JPS61222217A/en
Publication of JPS61222217A publication Critical patent/JPS61222217A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To execute growth at a low cell temperature without reducing the growing speed, by employing a plural of cells for a molecular beam of at least one of elements constituting compound semiconductor. CONSTITUTION:A plural of cells are employed for a molecular beam of at least one of elements constituting compound semiconductor. For example, an MBE apparatus which has several Ga cells 2 and several As cells 3 in a growth chamber evacuated into very high vacuum ( -10<10> Torr) and which has an introducing inlet 4 for H2 gas, is employed. Under a condition in which H2 gas with about (2-5)X10<-7> Torr is being introduced preliminarily in the growth chamber 1, heating every cell 2, 3 results in Ga and As molecular beams, which are bumped to a substrate 5 being heated preliminarily to a given temperature, thus to epitaxial-grow GaAs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分子線エピタキシャル成長法に関するものであ
って、GaAs等の各種化合物半導体をエピタキシャル
成長させるのに用いて最適なものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molecular beam epitaxial growth method, which is most suitable for use in epitaxially growing various compound semiconductors such as GaAs.

、〔発明の概要〕 本発明は、分子線エピタキシャル成長法において、成長
させるべき化合物半導体の構成元素のうちの少なくとも
1つの元素の分子線を複数のセルを用いて得ることによ
り、表面欠陥の極めて少ない化合物半導体を成長させる
ことができるようにしたものである。
, [Summary of the Invention] The present invention uses a plurality of cells to obtain a molecular beam of at least one of the constituent elements of a compound semiconductor to be grown in a molecular beam epitaxial growth method, thereby producing a compound semiconductor with extremely few surface defects. This makes it possible to grow compound semiconductors.

〔従来の技術〕[Conventional technology]

従来、GaAs結晶を分子線エピタキシャル成長法(M
BE法)により成長させる場合には、Ga及びAsの分
子線源としてそれぞれ1本のクヌードセンセル(以下セ
ルと略称する)を用いていた。
Conventionally, GaAs crystals have been grown using the molecular beam epitaxial growth method (M
When growing by BE method), one Knudsen cell (hereinafter abbreviated as cell) was used as a molecular beam source for Ga and As.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この場合、表面欠陥の少ないGaAs結晶層を得るため
には、Ga及びAsのセルの温度を共に低くする方が好
ましいが、セルの温度を低くし過ぎると結晶の成長速度
が極度に小さくなったり、はなはだしい場合には結晶成
長が不可能となったりするという欠点があった。
In this case, in order to obtain a GaAs crystal layer with few surface defects, it is preferable to lower the temperature of both the Ga and As cells, but if the cell temperature is too low, the crystal growth rate may become extremely low. However, in severe cases, crystal growth may become impossible.

本発明は、上述の問題にかんがみ、従来の分子線エピタ
キシャル成長法が有する上述のような欠点を是正した分
子線エピタキシャル成長法を提供することを目的とする
In view of the above-mentioned problems, it is an object of the present invention to provide a molecular beam epitaxial growth method that corrects the above-mentioned drawbacks of conventional molecular beam epitaxial growth methods.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る分子線エピタキシャル成長法は、分子線を
用いて化合物半導体(例えばGaAs)をエピタキシャ
ル成長させるに際し、上記化合物半導体の構成元素のう
ちの少なくとも1つの元素(例えばGa)の上記分子線
を複数のセル(例えば3本のセル2)を用いて得るよう
にしている。
In the molecular beam epitaxial growth method according to the present invention, when a compound semiconductor (e.g., GaAs) is epitaxially grown using a molecular beam, a plurality of molecular beams of at least one element (e.g., Ga) among the constituent elements of the compound semiconductor are grown. It is obtained by using cells (for example, three cells 2).

〔作用〕[Effect]

このようにすることによって、成長速度を低下させるこ
となくセル温度を低くして成長を行うことが可能となる
By doing so, it becomes possible to perform growth at a lower cell temperature without reducing the growth rate.

〔実施例〕〔Example〕

以下本発明の一実施例につき図面を参照しながら説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図に示すように、本実施例においては、超高真空(
〜10 ”Torr)に排気された成長室lにGaのセ
ル2及びAsのセル3がそれぞれ数本ずつ(第1図にお
いてはそれぞれ2本ずつ示す)設けられ、さらにH2ガ
スの導入口4が設けられたMBE装置を用い、導入口4
から成長室1内に予め(例えば成長の2〜3時間前)H
2ガスを(2〜5 ) X 10−7Torr程度導入
した状態で各セル2゜3を加熱することによりGa及び
Asの分子線を得、これらの分子線を予め所定温度に加
熱されている基板5に当てることによってGaAsをエ
ピタキシャル成長させる。なおAsの分子線の強度は、
Gaの分子線の強度の例えば約10倍にして成長を行う
As shown in Fig. 1, in this example, ultra-high vacuum (
Several Ga cells 2 and several As cells 3 (two of each are shown in FIG. 1) are provided in a growth chamber l which is evacuated to ~10" Torr, and an H2 gas inlet 4 is provided. Using the provided MBE device, inlet 4
H in advance (e.g. 2 to 3 hours before growth)
Molecular beams of Ga and As are obtained by heating each cell 2°3 while introducing two gases at approximately (2 to 5) 5 to epitaxially grow GaAs. The intensity of the molecular beam of As is
Growth is performed at, for example, about 10 times the intensity of the Ga molecular beam.

このようなGaAsのエピタキシャル成長をGaのセル
2及びAsのセル3の温度、従ってGa及びAsの蒸気
圧を種々に変えて行い、得られたGaAs結晶層に存在
する表面欠陥密度を光学顕微鏡観察により調べた所、第
2図及び第3図に示すような結果が得られた。なお第2
図及び第3図においては、1本のGaまたはAsのセル
を用いて成長を行った場合の結果も比較のため併せて示
した。
Such epitaxial growth of GaAs was performed while varying the temperatures of Ga cell 2 and As cell 3, and therefore the vapor pressures of Ga and As, and the surface defect density existing in the resulting GaAs crystal layer was observed by optical microscopy. Upon investigation, the results shown in Figures 2 and 3 were obtained. Furthermore, the second
In the figure and FIG. 3, the results obtained when growth was performed using one Ga or As cell are also shown for comparison.

第2図から明らかなように、1本のGaセル2を用いた
場合も3本のGaセル2を用いた場合もGaの蒸気圧が
低い程、すなわちセル2の温度が低い程GaAs結晶層
中の欠陥密度が低いが、3本のGaセル2を用いた場合
には1本のGaセル2を用いた場合に比べて、実用上充
分な大きさの成長速度(1μm/時以上)を得るのに要
す゛る蒸気圧lXl0−’Torr程度以上でも欠陥密
度が極めて小さいことがわかる。これは、同一の値のG
a蒸気圧を得る場合、3本のGaセル2を用いた方が1
本のGaセル2を用いた場合に比べてセル温度を低温に
することができるためである。なお第2図より活性化エ
ネルギーΔE 〜0.79 e Vが得られる。
As is clear from FIG. 2, whether one Ga cell 2 is used or three Ga cells 2 are used, the lower the vapor pressure of Ga, that is, the lower the temperature of the cell 2, the more the GaAs crystal layer Although the defect density inside is low, when three Ga cells 2 are used, a practically sufficient growth rate (1 μm/hour or more) can be achieved compared to when one Ga cell 2 is used. It can be seen that the defect density is extremely small even at a vapor pressure of about 1X10-'Torr or more required to obtain the same. This is the same value of G
a When obtaining the vapor pressure, it is better to use three Ga cells 2.
This is because the cell temperature can be lowered compared to the case where the actual Ga cell 2 is used. Note that from FIG. 2, the activation energy ΔE ~0.79 eV is obtained.

また第3図から明らかなように、1本のAsセル3を用
いた場合には蒸気圧を高くすると欠陥密度が増加するが
、3本のAsセル3を用いた場合には欠陥密度を低い値
に維持したままAs蒸気圧を高(することができる。
Furthermore, as is clear from Fig. 3, when one As cell 3 is used, the defect density increases as the vapor pressure increases, but when three As cells 3 are used, the defect density decreases. It is possible to increase the As vapor pressure while maintaining the same value.

次にMBE装置の成長室1内にH2ガスを導入して成長
を行った場合とH2ガスを導入しないで成長を行った場
合とについて、得られたGaAs結晶層中の欠陥密度を
測定した所、第4図に示すような結果が得られた。
Next, we measured the defect density in the GaAs crystal layer obtained when growth was performed by introducing H2 gas into the growth chamber 1 of the MBE apparatus and when growth was performed without introducing H2 gas. , the results shown in FIG. 4 were obtained.

第4図から明らかなように、成長室1内にH2ガスを導
入して成長を行った場合には、H2ガスを導入しないで
成長を行った場合に比べて、得られるGaAs結晶層中
の欠陥密度がほぼ半減している。
As is clear from FIG. 4, when the growth is performed by introducing H2 gas into the growth chamber 1, the resulting GaAs crystal layer is smaller than when the growth is performed without introducing the H2 gas. Defect density has been reduced by almost half.

これは次のような理由による。すなわち、成長室l内に
導入されたH2ガスによってセル2,3の近傍に還元性
雰囲気が形成されるこめ、成長室1内に残留する。zo
 、 C0分子等とセル2,3中のGa。
This is due to the following reasons. That is, the H2 gas introduced into the growth chamber 1 forms a reducing atmosphere near the cells 2 and 3, and therefore remains in the growth chamber 1. zo
, C0 molecules, etc. and Ga in cells 2 and 3.

Asとの酸化反応による酸化物(例えばGa、O)の生
成が防止され、この結果この酸化物が成長中にGaAs
中に混入することがなくなるためと考えられる。なおこ
のことから容易に分かるように、実際にはGaセル2及
びAsセル3の近傍にのみH2ガスを導入すれば十分で
ある。
The formation of oxides (e.g. Ga, O) due to oxidation reactions with As is prevented, and as a result, these oxides are mixed with GaAs during growth.
This is thought to be due to the fact that there is no possibility of contamination. As can be easily seen from this, it is actually sufficient to introduce H2 gas only in the vicinity of the Ga cell 2 and As cell 3.

このように、上述の実施例によれば、Gaのセル2及び
Asのセル3をそれぞれ数本ずつ用いてGaAsのエピ
タキシャル成長を行っているので、成長速度を低減する
ことなく表面欠陥密度の極めて低いGaAs結晶層を得
ることができる。また成長室1内に予めH2ガスを導入
した状態で成長を行っているので、これによっても欠陥
密度を低減することができる。
In this way, according to the above embodiment, GaAs is epitaxially grown using several Ga cells 2 and several As cells 3, so that the surface defect density can be extremely low without reducing the growth rate. A GaAs crystal layer can be obtained. Furthermore, since the growth is performed with H2 gas introduced into the growth chamber 1 in advance, the defect density can also be reduced by this.

以上本発明の実施例につき説明ビたが、本発明は上述の
実施例に限定されるものではなく、本発明の技術的思想
に基づく種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention.

例えば、Gaのセル2及びAsのセル3の本数は必要に
応じて変更することができ、また成長室1内に導入する
Htガスの圧力も必要に応じて上述の実施例とは異なる
値を用いることががきる。また必要に応じて大口径のセ
ル2.3を用いることができ、このようにすればセル温
度をさらに低くすることができる。さらに上述の実施例
においては本発明をGaAsの成長に適用した場合につ
き説明したが、AJXGa、−、As等の各種化合物半
導体にも本発明を適用することが可能である。
For example, the number of Ga cells 2 and As cells 3 can be changed as necessary, and the pressure of Ht gas introduced into the growth chamber 1 can also be changed to a value different from that in the above embodiment as necessary. It can be used. Furthermore, a large diameter cell 2.3 can be used if necessary, and in this way the cell temperature can be further lowered. Further, in the above-mentioned embodiments, the case where the present invention was applied to the growth of GaAs was explained, but the present invention can also be applied to various compound semiconductors such as AJXGa, -, and As.

〔発明の効果〕〔Effect of the invention〕

本発明に係る分子線エピタキシャル成長法によれば、成
長させるべき化合物半導体の構成元素のうちの少なくと
も1つの元素の分子線を複数のセルを用いて得るように
しているので、成長速度を低下させることなく低いセル
温度で成長を行うことができ、このため欠陥密度の極め
て低い化合物半導体を成長させることができる。
According to the molecular beam epitaxial growth method according to the present invention, since a plurality of cells are used to obtain a molecular beam of at least one of the constituent elements of the compound semiconductor to be grown, the growth rate cannot be reduced. The growth can be performed at a low cell temperature, and therefore a compound semiconductor with an extremely low defect density can be grown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いるMBE装置の概略的な
構成図、第2図及び第3図はそれぞれGa及びAsの蒸
気圧と得られるGaAs結晶層中の欠陥密度との関係を
示すグラフ、第4図はMBE装置の成長室内にH2ガス
を導入して成長を行った場合とH2ガスを導入しないで
成長を行った場合とについてGaの蒸気圧とGaAs結
晶層中の欠陥密度との関係を示すグラフである。 なお図面に用いた符号において、 1−−−−−−−−−−−−−−−−−・成長室2 、
 3−−−−−−−−−−−−セル5・・・−−−−−
−−−−−−−〜−・基板である。
FIG. 1 is a schematic diagram of the MBE apparatus used in the examples of the present invention, and FIGS. 2 and 3 show the relationship between the vapor pressure of Ga and As and the defect density in the obtained GaAs crystal layer, respectively. The graph, Figure 4, shows the relationship between the vapor pressure of Ga and the defect density in the GaAs crystal layer when the growth was performed with H2 gas introduced into the growth chamber of the MBE apparatus and when the growth was performed without introducing H2 gas. It is a graph showing the relationship. In addition, in the symbols used in the drawings, 1----------------Growth chamber 2,
3------------Cell 5------
------------ It is a substrate.

Claims (1)

【特許請求の範囲】 分子線を用いて化合物半導体をエピタキシャル成長させ
るに際し、 上記化合物半導体の構成元素のうちの少なくとも1つの
元素の上記分子線を複数のセルを用いて得るようにした
ことを特徴とする分子線エピタキシャル成長法。
[Claims] When a compound semiconductor is epitaxially grown using a molecular beam, the molecular beam of at least one of the constituent elements of the compound semiconductor is obtained using a plurality of cells. Molecular beam epitaxial growth method.
JP6432885A 1985-03-28 1985-03-28 Molecular beam epitaxial growth Pending JPS61222217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6432885A JPS61222217A (en) 1985-03-28 1985-03-28 Molecular beam epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6432885A JPS61222217A (en) 1985-03-28 1985-03-28 Molecular beam epitaxial growth

Publications (1)

Publication Number Publication Date
JPS61222217A true JPS61222217A (en) 1986-10-02

Family

ID=13255059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6432885A Pending JPS61222217A (en) 1985-03-28 1985-03-28 Molecular beam epitaxial growth

Country Status (1)

Country Link
JP (1) JPS61222217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156314A (en) * 1986-12-20 1988-06-29 Fujitsu Ltd Method of growing semiconductor crystal and apparatus therefor
JPH02196087A (en) * 1989-01-23 1990-08-02 Anelva Corp Method for growing thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156314A (en) * 1986-12-20 1988-06-29 Fujitsu Ltd Method of growing semiconductor crystal and apparatus therefor
JPH02196087A (en) * 1989-01-23 1990-08-02 Anelva Corp Method for growing thin film

Similar Documents

Publication Publication Date Title
US4840921A (en) Process for the growth of III-V group compound semiconductor crystal on a Si substrate
US6676751B2 (en) Epitaxial film produced by sequential hydride vapor phase epitaxy
Yoshinobu et al. Heteroepitaxial growth of single crystalline 3C‐SiC on Si substrates by gas source molecular beam epitaxy
JPH10509943A (en) Method for reducing the formation of micropipes in silicon carbide epitaxy growth and in the resulting silicon carbide structure
JPH03160714A (en) Semiconductor device and manufacture thereof
KR100450781B1 (en) Method for manufacturing GaN single crystal
US6376900B1 (en) Single crystal SiC
JPH04198095A (en) Method for growing thin film of compound semiconductor
JPS61222217A (en) Molecular beam epitaxial growth
US4622083A (en) Molecular beam epitaxial process
Beale et al. A study of silicon MBE on porous silicon substrates
Postigo et al. Electrical and optical properties of undoped InP grown at low temperature by atomic layer molecular beam epitaxy
JP2000012467A (en) Method for forming gaas layer
JPH02180796A (en) Production of silicon carbide single crystal
Leroux et al. Evidence of isovalent impurities in GaAs grown by molecular‐beam epitaxy
JPH0645249A (en) Growth method of gaas layer
JPS63192227A (en) Epitaxial growth method of compound semiconductor
JPS62132312A (en) Manufacture of semiconductor thin film
Inoue TriPyramid Growth of Epitaxial Silicon
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPH0786159A (en) Growing method of compound semiconductor
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
Brown et al. Assessment of semiconductor epitaxial growth by transmission electron microscopy
JPH03103390A (en) Production of algaas epitaxial wafer for red led