JPS6315330B2 - - Google Patents
Info
- Publication number
- JPS6315330B2 JPS6315330B2 JP4144184A JP4144184A JPS6315330B2 JP S6315330 B2 JPS6315330 B2 JP S6315330B2 JP 4144184 A JP4144184 A JP 4144184A JP 4144184 A JP4144184 A JP 4144184A JP S6315330 B2 JPS6315330 B2 JP S6315330B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- heat
- amount
- molten salt
- water level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 74
- 230000002159 abnormal effect Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 7
- 239000003507 refrigerant Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 description 39
- 229910000831 Steel Inorganic materials 0.000 description 17
- 239000010959 steel Substances 0.000 description 17
- 238000001816 cooling Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 7
- 230000001052 transient effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/44—Methods of heating in heat-treatment baths
- C21D1/46—Salt baths
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/63—Quenching devices for bath quenching
- C21D1/64—Quenching devices for bath quenching with circulating liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、熱交換器の給水量を操作して、異常
水位を防止しながら熱交換器の抜熱量を制御する
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of controlling the amount of heat removed from a heat exchanger while preventing abnormal water levels by manipulating the amount of water supplied to the heat exchanger.
(従来技術)
溶融塩などの冷媒(以下冷媒として溶融塩を例
にとつて説明する)を冷却する抜熱装置として、
冷媒を高温流体とし、水を低温流体とする熱交換
器を使用することが、特願昭57―228496号として
既に提案されている。(Prior art) As a heat removal device for cooling a refrigerant such as molten salt (hereinafter, molten salt will be explained as an example of refrigerant),
The use of a heat exchanger in which the refrigerant is a high-temperature fluid and water is a low-temperature fluid has already been proposed in Japanese Patent Application No. 57-228496.
これは溶融塩によつて、鋼材を冷却する直接熱
処理設備において、鋼材によつて持ち込まれる非
常に大きな熱量により生じる溶融塩の温度上昇を
防止するために、水などと熱交換することによつ
て、溶融塩の冷却を行うものである。 This is done in direct heat treatment equipment that cools steel materials using molten salt, by exchanging heat with water etc. in order to prevent the temperature of the molten salt from rising due to the extremely large amount of heat brought in by the steel material. , which cools the molten salt.
第3図は上述した鋼材の直接熱処理設備を示す
ものである。第3図において、1は熱間圧延後の
約800℃の鋼材であり、冷却槽2に浸漬され、冷
却槽に貯留した溶融塩3によつて、所定の温度、
例えば約500℃まで冷却される。一方溶融塩3は、
鋼材1によつて加熱されるので、ポンプ4によつ
て冷却槽2と熱交換器5間を循環させ、熱交換器
5において、水6と熱交換させて冷却している。 FIG. 3 shows the above-mentioned direct heat treatment equipment for steel materials. In Fig. 3, 1 is a hot-rolled steel material heated to approximately 800°C, which is immersed in a cooling tank 2, and is heated to a predetermined temperature by the molten salt 3 stored in the cooling tank.
For example, it is cooled to about 500°C. On the other hand, molten salt 3 is
Since it is heated by the steel material 1, it is circulated between the cooling tank 2 and the heat exchanger 5 by the pump 4, and is cooled by exchanging heat with water 6 in the heat exchanger 5.
この抜熱量を制御する方法として、第3図に示
すような構成の制御装置が、前記発明にて提案さ
れている。すなわち第3図の温度制御装置は、所
定の熱処理を実施するために、冷却槽2内の溶融
塩3の温度が一定となるように、鋼材1の持ち込
む熱量と、熱交換器5の抜熱量を基本とする熱収
支が、平衡するような冷却槽入側溶融塩温度T2
を演算によつて求め、冷却槽入側溶融塩温度すな
わち熱交換器出口溶融塩温度が、温度目標値T1
となるように給水弁11を操作する制御装置であ
る。 As a method for controlling the amount of heat removed, a control device having a configuration as shown in FIG. 3 is proposed in the above invention. In other words, the temperature control device shown in FIG. 3 controls the amount of heat brought in by the steel material 1 and the amount of heat removed by the heat exchanger 5 so that the temperature of the molten salt 3 in the cooling tank 2 is constant in order to carry out a predetermined heat treatment. The temperature of the molten salt at the entrance of the cooling tank, T 2 , is such that the heat balance based on
The temperature of the molten salt at the entrance of the cooling tank, that is, the temperature of the molten salt at the outlet of the heat exchanger, is calculated as the temperature target value T 1
This is a control device that operates the water supply valve 11 so that
具体的には式(1)で与えられる冷却槽熱収支式に
よつて、温度目標値T3を演算器12によつて求
め、これを熱交換器出口溶融塩温度制御装置7に
設定値として与える。熱交換器出口溶融塩温度制
御装置7は、出口溶融塩温度計8によつて検出し
た溶隔塩温度が、温度目標値T3に一致するよう
に、熱交換器5の給水流量制御装置9の給水流量
設定値を調節する。この給水流量制御装置9は、
給水流量計10によつて検出した流量が、給水流
量設定値に一致するように給水弁11の操作を行
う。 Specifically, the temperature target value T 3 is determined by the calculator 12 using the cooling tank heat balance equation given by equation (1), and this is set as a set value in the heat exchanger outlet molten salt temperature control device 7. give. The heat exchanger outlet molten salt temperature control device 7 controls the feed water flow rate control device 9 of the heat exchanger 5 so that the solvation salt temperature detected by the outlet molten salt thermometer 8 matches the temperature target value T3 . Adjust the water supply flow rate setting. This water supply flow rate control device 9 is
The water supply valve 11 is operated so that the flow rate detected by the water supply flow meter 10 matches the water supply flow rate set value.
C1W1(O1−O2)=C2W2(T1−T2)+QL ……(1)
C1:鋼材の比熱
C2:溶融塩の比熱
W1:鋼材熱処理量
W2:溶融塩循環量
O1:冷却槽入側線材温度
O2:冷却槽出側線材温度
T1:冷却槽内溶融塩温度
T2:冷却槽入側溶融塩温度
QL:槽放散熱他
Q2=C2W2Δt=C2W2(T1−T2) ……(2)
Q2=熱交換器における必要抜熱量
本抜熱量制御方法は、鋼材直接熱処理設備の基
幹をなすものであり、鋼材熱処理が順調に実施さ
れ、熱交換器の運転が定常状態にあるときはほと
んど問題はない。 C 1 W 1 (O 1 - O 2 ) = C 2 W 2 (T 1 - T 2 ) + Q L ...(1) C 1 : Specific heat of steel C 2 : Specific heat of molten salt W 1 : Steel heat treatment amount W 2 : Molten salt circulation amount O 1 : Cooling tank inlet wire temperature O 2 : Cooling tank outlet wire temperature T 1 : Molten salt temperature in the cooling tank T 2 : Molten salt temperature in the cooling tank inlet Q L : Tank radiation heat, etc. Q 2 = C 2 W 2 Δt = C 2 W 2 (T 1 − T 2 ) ……(2) Q 2 = Required amount of heat removal in the heat exchanger This method of controlling the amount of heat removed forms the backbone of steel direct heat treatment equipment. Therefore, there are almost no problems when the steel heat treatment is carried out smoothly and the heat exchanger is operating in a steady state.
問題は定常状態に達するまでの起動後の過渡状
態とか、圧延インターバル変更に基づく鋼材熱処
理量変化時のように、現状の定常状態から次の定
常状態に到るまでの過渡状態である。こうした過
渡状態においては、式(1)の熱収支式は成立しな
い。 The problem is the transient state after startup until the steady state is reached, or the transient state from the current steady state to the next steady state, such as when the steel heat treatment amount changes due to a change in the rolling interval. In such a transient state, the heat balance equation (1) does not hold.
たとえば熱交換器起動直後では、熱交換器に水
が供給されていないので、抜熱量が所定量まで達
しない状態、すなわち出口溶融塩温度が、目標値
より高い状態にある。一方鋼材熱処理は、一定圧
延インターバルで実施されるので、起動後の熱収
支不平衡は、冷却槽溶融塩温度の上昇をもたら
す。これは直接熱交換器入口溶融塩温度の上昇に
つながり、ひいては出口溶融塩温度の上昇につな
がる。 For example, immediately after the heat exchanger is started, water is not being supplied to the heat exchanger, so the amount of heat removed does not reach a predetermined amount, that is, the outlet molten salt temperature is higher than the target value. On the other hand, since steel heat treatment is carried out at constant rolling intervals, heat balance imbalance after startup causes an increase in the cooling tank molten salt temperature. This directly leads to an increase in the heat exchanger inlet molten salt temperature, which in turn leads to an increase in the outlet molten salt temperature.
すなわち給水量を増加させたにもかかわらず、
熱交換器出口溶融塩温度が上昇するという状態が
過渡的に生じうる。したがつて本制御系は、自己
の制御結果がその制御性の外乱になるというきわ
めて不安定な系であるといえる。 In other words, despite increasing the amount of water supplied,
A state in which the temperature of the molten salt at the outlet of the heat exchanger increases may occur transiently. Therefore, this control system can be said to be an extremely unstable system in which the result of its own control becomes a disturbance to its controllability.
さらにこうした過渡状態において、早く熱交換
器出口溶融塩温度を低下させようとして、急激に
給水量を増加させると、熱交換器水位の異常上昇
を招くことになる。逆に鋼材熱処理量が減少する
ときのように、出口溶融塩温度が目標値より低い
場合のように、それを上昇させようとするとき
は、目標値より高い場合と同様にして、極めて危
険な水位の異常低下を招くこともある。 Furthermore, in such a transient state, if the amount of water supply is suddenly increased in an attempt to quickly lower the molten salt temperature at the outlet of the heat exchanger, this will lead to an abnormal rise in the water level of the heat exchanger. On the other hand, when the amount of steel heat treatment decreases and the exit molten salt temperature is lower than the target value, when trying to raise it, it is extremely dangerous to raise it in the same way as when it is higher than the target value. This may lead to an abnormal drop in the water level.
(発明の目的)
本発明の目的は、高温流体の熱交換器入出口温
度差に着眼し、熱交換器の異常水位を防止しなが
ら、熱交換器給水量を操作することによつて、良
好な温度制御動作を行う熱交換器の抜熱量制御方
法を提供することにある。(Objective of the Invention) The object of the present invention is to focus on the temperature difference between the inlet and outlet of a heat exchanger of high-temperature fluid, and to prevent abnormal water levels in the heat exchanger while controlling the amount of water supplied to the heat exchanger. An object of the present invention is to provide a method for controlling the amount of heat removed from a heat exchanger that performs a temperature control operation.
(発明の構成、作用)
本発明は冷媒を高温流体とし、水を低温流体と
する熱交換器への給水量を調節する制御方法にお
いて、熱交換器の入出口温度差が、所定の値とな
るように熱交換器の水位設定値を調節して、その
水位設定値に熱交換器の水位測定値が一致するよ
うに、熱交換器への給水設定値を調節することに
よつて、熱交換器の異常水位を防止しながら、良
好な温度制御動作を行うことを特徴とする熱交換
器の抜熱量制御方法である。(Structure and operation of the invention) The present invention provides a control method for adjusting the amount of water supplied to a heat exchanger using a refrigerant as a high-temperature fluid and water as a low-temperature fluid, in which the temperature difference between the inlet and the outlet of the heat exchanger is set to a predetermined value. By adjusting the water level setpoint of the heat exchanger so that the water level setting value of the heat exchanger is This is a method for controlling the amount of heat removed from a heat exchanger, which is characterized by performing a good temperature control operation while preventing abnormal water levels in the exchanger.
前述したように、熱交換器における必要抜熱量
は式(2)で与えられるが、これはまた次のようにも
表わされる。 As mentioned above, the required heat removal amount in the heat exchanger is given by equation (2), which can also be expressed as follows.
Q2=C2W2(t1−t2) ……(3)
t1:熱交換器入口溶融塩温度
t2:熱交換器出口溶融塩温度
すなわち熱交換器の入出口溶融塩温度差を測定
すれば、その抜熱量を算出することができるので
ある。したがつて、入出口温度差に着眼して、温
度制御動作を遂行すれば、過渡的な冷却槽熱収支
不平衡に基づく、制御性不安定を避けることがで
きる。 Q 2 = C 2 W 2 (t 1 − t 2 ) ……(3) t 1 : Heat exchanger inlet molten salt temperature t 2 : Heat exchanger outlet molten salt temperature, i.e., molten salt temperature difference between the input and outlet of the heat exchanger By measuring this, the amount of heat removed can be calculated. Therefore, if the temperature control operation is performed by paying attention to the temperature difference between the inlet and the outlet, it is possible to avoid unstable controllability due to the transient heat balance imbalance of the cooling tank.
また本抜熱量は、熱交換器水位と密接な関係が
あり、直接熱交換器給水量を調節して抜熱量を制
御するよりも、抜熱量の制御のためには、熱交換
器水位の調節を行うことにし、その水位の調節の
ために、熱交換器給水量を調節するようにした方
が、優れた制御特性を実現することができる。更
に制御方式として、熱交換器水位調節機能を組み
込むことにより、これに上下限制限機能を追加す
ることができ、前述した熱交換器の異常水位防止
を、容易に実現することができる。 In addition, the amount of heat removed is closely related to the water level of the heat exchanger.In order to control the amount of heat removed, it is better to adjust the water level of the heat exchanger than to control the amount of heat removed by directly adjusting the amount of water supplied to the heat exchanger. In order to adjust the water level, better control characteristics can be achieved by adjusting the amount of water supplied to the heat exchanger. Furthermore, by incorporating a heat exchanger water level adjustment function as a control system, an upper and lower limit limiting function can be added to this, and the aforementioned abnormal water level prevention of the heat exchanger can be easily realized.
以上が本発明の骨子であるが、これを以下図面
に基づいて詳しく説明する。 The gist of the present invention has been described above, and will be explained in detail below based on the drawings.
第1図は、本発明を実現するための制御装置で
あるが、第3図と重複するものは、同じ番号で示
してある。まず演算器17は、式(1)で与えられる
冷却槽熱収支式によつて、式(2)の温度差目標値
Δtを求め、これを入出口温度差制御装置16に
設定値として与える。入出口温度差制御装置16
は、入口溶融塩温度計13と、出口溶融塩温度計
8によつて検出した各温度の差t1−t2を算出し、
これが設定値Δtに一致するように、熱交換器5
の水位制御装置15の水位設定値を調節する。 FIG. 1 shows a control device for implementing the present invention, and parts that are the same as those in FIG. 3 are indicated by the same numbers. First, the computing unit 17 calculates the temperature difference target value Δt of equation (2) using the cooling tank heat balance equation given by equation (1), and provides this to the input/outlet temperature difference control device 16 as a set value. Inlet/outlet temperature difference control device 16
calculates the difference t 1 - t 2 between the temperatures detected by the inlet molten salt thermometer 13 and the outlet molten salt thermometer 8,
Heat exchanger 5 so that this matches the set value Δt
The water level setting value of the water level control device 15 is adjusted.
そしてこの水位制御装置15は、水位計14に
よつて検出した水位が、水位設定値に一致するよ
うに、給水流量制御装置9の給水流量設定値を調
節する。以降は第3図と同じように、この給水流
量制御装置15は、給水流量計10によつて検出
した流量が、給水流量設定値に一致するように、
給水弁11の操作を行う。 The water level control device 15 then adjusts the water supply flow rate setting value of the water supply flow rate control device 9 so that the water level detected by the water level meter 14 matches the water level setting value. Thereafter, as in FIG. 3, this water supply flow rate control device 15 controls the flow rate detected by the water supply flow meter 10 to match the water supply flow rate set value.
Operate the water supply valve 11.
入出口温度差制御装置16の機能を、ブロツク
図にて表わしたものが第2図である。入出口温度
差制御装置16は、演算器17からの温度差目標
値に対して、入口溶融塩温度計13と、出口溶融
塩温度計8によつて検出した温度t1,t2を入力
し、減算部18によつてその差を算出する。そし
て算出した入出口温度差と、その目標値との偏差
を算出し、PIDフイードバツク演算を実行するの
が、偏差演算部19とPID演算部20である。 FIG. 2 is a block diagram showing the functions of the inlet/outlet temperature difference control device 16. The inlet/outlet temperature difference control device 16 inputs the temperatures t 1 and t 2 detected by the inlet molten salt thermometer 13 and the outlet molten salt thermometer 8 with respect to the temperature difference target value from the calculator 17 . , the difference is calculated by the subtraction unit 18. The deviation calculation section 19 and the PID calculation section 20 calculate the deviation between the calculated entrance and exit temperature difference and its target value, and execute PID feedback calculation.
次にPID演算によつて求めた操作量は、水位/
入出口温度差特性曲線21によつて、水位設定値
に変換される。一般に水位/入出口温度差は、第
2図に示すような非線形な特性をもつており、こ
れを線形PID演算を基本としたフイードバツクル
ープにて制御を実行することは、負荷範囲によつ
て制御定数が異なるといつたいくつかの難点が生
じるが、この特性曲線21による線形化によつ
て、これを解決することができる。 Next, the manipulated variable obtained by PID calculation is water level /
This is converted into a water level set value by the inlet/outlet temperature difference characteristic curve 21. In general, the water level/inlet/outlet temperature difference has nonlinear characteristics as shown in Figure 2, and controlling this with a feedback loop based on linear PID calculations is difficult depending on the load range. However, this problem can be solved by linearization using the characteristic curve 21.
更に線形化された水位設定値は、上下限曲限部
22によつてその変化範囲が制限される。これは
いうまでもなく、前述した抜熱量制御によつて生
じる過渡的な水位異常を防止するためのものであ
る。そのため、この上下限制限部22は、熱交換
器の水位上昇または低下に対する異常点よりも、
若干余裕をもたせた警報点を、それぞれの上限値
または下限値として採用する。 Furthermore, the range of variation of the linearized water level set value is limited by the upper and lower curved limit portions 22. Needless to say, this is to prevent transient water level abnormalities caused by the above-mentioned heat extraction control. Therefore, this upper and lower limit limiting section 22 is configured to
The alarm points with a slight margin are adopted as the respective upper or lower limit values.
たとえば入出口温度差を、目標値に追従させる
ために、水位を低くしなければならないとき、こ
の上下限制限部22がない場合、異常点よりも低
い水位設定値を、下位の水位制御装置15に与え
る可能性があり、その結果、異常点以下まで水位
が低下すると、熱交換器の安全保護のため、ポン
プ4の停止をはじめとする異常処置がとられ、熱
交換器の機能が停止してしまう。 For example, when the water level must be lowered in order to make the inlet and outlet temperature difference follow the target value, if this upper and lower limit limiter 22 is not provided, the water level setting value lower than the abnormal point is set by the lower water level control device 15. As a result, if the water level drops below the abnormal point, abnormal measures such as stopping pump 4 will be taken to protect the safety of the heat exchanger, and the heat exchanger will stop functioning. I end up.
こうした異常状態を避けるため、下位の水位制
御装置15に与える水位設定値の範囲に、上下限
の制限をもたせるのが、この上下限制限部22で
ある。こうした対策は、抜熱量制御の観点から
は、制御の応答性を低下させる原因をつくること
になるのであるが、熱交換器本体の安全保護には
代えられない。 In order to avoid such abnormal conditions, the upper and lower limit limiting section 22 imposes upper and lower limits on the range of water level setting values given to the lower water level control device 15. From the perspective of controlling the amount of heat removed, these measures will cause a decrease in control responsiveness, but they cannot replace the safety protection of the heat exchanger body.
水位制御装置15に、水位設定値を与えてか
ら、給水弁11を操作するまでの本制御方法の動
作については、公知のPID演算フイードバツクル
ープを、カスケード結合しているだけであり、従
来技術を適用することにより、容易に実現するこ
とができる。 The operation of this control method, from giving the water level set value to the water level control device 15 to operating the water supply valve 11, is simply a cascade connection of a known PID calculation feedback loop, and is not conventional. This can be easily achieved by applying technology.
(実施例) 本発明を実施した例を以下に述べる。(Example) An example of implementing the present invention will be described below.
熱交換器:竪置シエル&バヨネツトチユーブ式
抜熱量 :max3×106kcal
溶融塩循環量:max100t/h
溶融塩入口温度:300〜500℃
給水量 :max5t/h
入出口温度差:max100℃
水位:常用200〜1500mm
異常上昇点1700mm
異常低下点 100mm
(発明の効果)
以上述べてきたように、本発明によると鋼材熱
処理設備に適用するような鋼材熱処理量に応じ
て、抜熱量を変化させなければならない熱交換器
について、給水量を操作することによつて、異常
水位を防止しながら、良好な温度制御動作を行う
ことによつて、抜熱量を制御することができるよ
うになつた。 Heat exchanger: Vertical shell & bayonet tube type Heat extraction: max 3× 106 kcal Molten salt circulation amount: max 100 t/h Molten salt inlet temperature: 300 to 500°C Water supply amount: max 5 t/h Inlet/outlet temperature difference: max 100°C Water level: Normal use 200-1500 mm Abnormal rise point 1700 mm Abnormal fall point 100 mm (Effects of the invention) As described above, according to the present invention, the amount of heat removed can be changed according to the amount of steel heat treatment applied to steel heat treatment equipment. It has become possible to control the amount of heat removed by controlling the amount of water supplied to the heat exchanger, which prevents abnormal water levels, and performs good temperature control.
第1図は本発明による抜熱量制御装置の構成
図、第2図は制御方法のブロツク図、第3図は鋼
材直接熱処理設備の基本的構成図を示す。
1……鋼材、2……冷却槽、3……溶融塩(冷
媒)、4……ポンプ、5……熱交換器、6……水、
7……出口溶融塩温度制御装置、8……出口溶融
塩温度計、9……給水流量制御装置、10……給
水流量計、11……給水弁、12……演算器、1
3……入口溶融塩温度計、14……水位計、15
……水位制御装置、16……入出口温度差制御装
置、17……入出口温度差用演算器、18……減
算部、19……偏差演算部、20……PID演算
部、21……水位/入出口温度差特性曲線、22
……上下限制限部。
FIG. 1 is a block diagram of a heat removal amount control device according to the present invention, FIG. 2 is a block diagram of a control method, and FIG. 3 is a basic block diagram of a steel direct heat treatment facility. 1... Steel material, 2... Cooling tank, 3... Molten salt (refrigerant), 4... Pump, 5... Heat exchanger, 6... Water,
7... Outlet molten salt temperature control device, 8... Outlet molten salt thermometer, 9... Water supply flow rate control device, 10... Water supply flow meter, 11... Water supply valve, 12... Arithmetic unit, 1
3...Inlet molten salt thermometer, 14...Water level gauge, 15
. . . Water level control device, 16 . Water level/inlet/outlet temperature difference characteristic curve, 22
...Upper and lower limit limit section.
Claims (1)
交換器への給水量を調節する冷媒温度制御方法に
おいて、熱交換器の冷媒入出口温度差が所定の値
となるように、熱交換器の水位設定値を調節し
て、その水位設定値に、熱交換器の水位測定値が
一致するように、熱交換器への給水設定値を調節
することによつて、熱交換器の異常水位を防止し
ながら温度制御動作を行うことを特徴とする熱交
換器の抜熱量制御方法。1. In a refrigerant temperature control method that adjusts the amount of water supplied to a heat exchanger in which the refrigerant is a high-temperature fluid and water is a low-temperature fluid, the heat exchanger is The abnormal water level in the heat exchanger can be corrected by adjusting the water level setpoint to the heat exchanger so that the measured water level in the heat exchanger matches the water level setpoint. A method for controlling the amount of heat removed from a heat exchanger, characterized by performing a temperature control operation while preventing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4144184A JPS60187619A (en) | 1984-03-06 | 1984-03-06 | Method for controlling quantity of heat extraction of heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4144184A JPS60187619A (en) | 1984-03-06 | 1984-03-06 | Method for controlling quantity of heat extraction of heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60187619A JPS60187619A (en) | 1985-09-25 |
JPS6315330B2 true JPS6315330B2 (en) | 1988-04-04 |
Family
ID=12608455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4144184A Granted JPS60187619A (en) | 1984-03-06 | 1984-03-06 | Method for controlling quantity of heat extraction of heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60187619A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110513947A (en) * | 2019-08-30 | 2019-11-29 | 常州博瑞电力自动化设备有限公司 | A kind of liquid level controlling method for water cooling system surge tank |
-
1984
- 1984-03-06 JP JP4144184A patent/JPS60187619A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60187619A (en) | 1985-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3231601B2 (en) | Electric furnace temperature control method and apparatus | |
JPS6315330B2 (en) | ||
EP0226215B1 (en) | Electric spark machining apparatus | |
RU2039332C1 (en) | Method of controlling cooling of metallurgic furnace water jacket | |
JPH0564687B2 (en) | ||
JPH10115405A (en) | Control method for water supply amount of boiler drum | |
SU478670A1 (en) | The method of regulating the thermal regime of a continuously operating induction furnace | |
JP2512519B2 (en) | Extruder cylinder temperature control method | |
JPS6246608B2 (en) | ||
JPS57121814A (en) | Temperature controlling method in rolling of wire rod or bar | |
JPH04305715A (en) | Temperature control device for heating equipment | |
JPS6256931B2 (en) | ||
JPS6216256B2 (en) | ||
JPS638917A (en) | Sodium temperature controller for air cooler | |
JPH01288332A (en) | Method for controlling temperature in vessel or reactor | |
JPS62117602A (en) | Method for controlling centrifugal thin film dryer | |
JPS63176605A (en) | Warming controller | |
JPS5846403A (en) | Feed-forward controller | |
JPS5946844A (en) | Controlling system of plugging meter | |
SU884845A1 (en) | Method of controlling continuous casting mould heat condition | |
SU1038702A1 (en) | Method of controlling heat treatment deaerator | |
JPH0335922Y2 (en) | ||
JPH0229732B2 (en) | RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO | |
JPH04314835A (en) | Melt temperature controlling device for aluminum melting furnace | |
JPS625210B2 (en) |