JP2512519B2 - Extruder cylinder temperature control method - Google Patents

Extruder cylinder temperature control method

Info

Publication number
JP2512519B2
JP2512519B2 JP63056607A JP5660788A JP2512519B2 JP 2512519 B2 JP2512519 B2 JP 2512519B2 JP 63056607 A JP63056607 A JP 63056607A JP 5660788 A JP5660788 A JP 5660788A JP 2512519 B2 JP2512519 B2 JP 2512519B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
control
extruder
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63056607A
Other languages
Japanese (ja)
Other versions
JPH01229611A (en
Inventor
靖彦 長倉
勝啓 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP63056607A priority Critical patent/JP2512519B2/en
Publication of JPH01229611A publication Critical patent/JPH01229611A/en
Application granted granted Critical
Publication of JP2512519B2 publication Critical patent/JP2512519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は加熱制御と冷却制御により押出機のシリンダ
温度を制御する押出機のシリンダ温度制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a cylinder temperature control method for an extruder, which controls the cylinder temperature of the extruder by heating control and cooling control.

(従来の技術) 押出機に投入されたプラスチック材料はスクリュによ
って、前方に移送されながらシリンダ外部からの加熱と
スクリュの剪断作用により生ずる内部発熱により溶融さ
れる。このとき自然放冷により冷却しきれない発熱量
は、強制的に気体や液体で冷却する温度制御方法が採ら
れている。このように加熱制御と冷却制御をおこなうた
めに、加熱出力と冷却出力を有するデュアルタイプのPI
D調節計が用いられている。
(Prior Art) A plastic material charged into an extruder is melted by a screw while being transferred to the front by heating from the outside of the cylinder and internal heat generated by the shearing action of the screw. At this time, the amount of heat that cannot be completely cooled by natural cooling is adopted by a temperature control method in which the gas or liquid is forcibly cooled. In order to perform heating control and cooling control in this way, a dual type PI with heating output and cooling output
D controller is used.

従来の押出機のシリンダ温度制御方法を第7図を用い
て説明する。温度設定部1からの設定温度とプロセス5
における制御点温度との偏差温度e(t)(℃)を比較
器3により求め、PID調節計4に入力する。PID調節計4
は次の(1)式で示されるような操作出力m(t)を算
出し、制御対象であるプロセス5に出力し、加熱制御又
は冷却制御するようになっている。m(t)が正であれ
ば加熱制御が行われ、負であれば冷却制御が行われる。
A conventional cylinder temperature control method for an extruder will be described with reference to FIG. Set temperature from temperature setting unit 1 and process 5
The deviation temperature e (t) (° C.) from the control point temperature at is obtained by the comparator 3 and input to the PID controller 4. PID controller 4
Calculates an operation output m (t) as expressed by the following equation (1) and outputs the operation output m (t) to the process 5, which is a control target, for heating control or cooling control. If m (t) is positive, heating control is performed, and if m (t) is negative, cooling control is performed.

(ただし、PB:比例帯(℃)、Ti:積分時間(sec)、T
d:微分時間(sec)) これらPB、Ti、TdはPID定数と呼ばれ、運転状態に応
じて適宣設定する。このPID定数を不適切に設定すると
良い制御ができなくなる。一般に定数PBが大きければ大
きいほどm(t)は小さくなり、定常状態での安定性は
増すが、設定温度や外乱に対してのe(t)の変化に対
して設定温度に達するのに時間がかかるという傾向にあ
る。
(However, PB: proportional band (℃), Ti: integration time (sec), T
d: Derivative time (sec)) These PB, Ti, and Td are called PID constants, and are set appropriately according to operating conditions. If this PID constant is set inappropriately, good control will not be possible. Generally, the larger the constant PB is, the smaller m (t) is, and the stability in the steady state is increased, but it takes time to reach the set temperature with respect to the change of e (t) with respect to the set temperature and disturbance. It tends to take a lot of money.

また押出機のシリンダは前述のように加熱制御と冷却
制御があり、加熱制御ではヒータを使用していてPID調
節計からの操作出力がプロセスに与える影響がほぼ線形
となり適正なPID定数を決定することができるが、冷却
制御では冷却媒体である水の液体と気体間の相変化のた
め操作出力がプロセスに与える影響が非線形になり、適
正なPID定数を決定することができなかった。
Also, the cylinder of the extruder has heating control and cooling control as described above, and in the heating control, the heater is used and the influence of the operation output from the PID controller on the process becomes almost linear and the appropriate PID constant is determined. However, in the cooling control, the influence of the operation output on the process became non-linear because of the phase change between the liquid water and the gas, which was the cooling medium, and the proper PID constant could not be determined.

押出機の温度制御系でPID調節計からの操作出力方法
としていわゆる時間比例の考え方が採用されている。例
えば冷却の場合は第8図に示すようにある一定の冷却制
御周期Tに従って冷却水量を電磁弁のON、OFF時間によ
って操作するものである。(1)式のm(t)と電磁弁
のON時間の関係は(2)式によって示される。
In the temperature control system of the extruder, the so-called time proportional concept is adopted as the operation output method from the PID controller. For example, in the case of cooling, the amount of cooling water is controlled by the ON / OFF time of the solenoid valve according to a certain cooling control period T as shown in FIG. The relationship between m (t) in equation (1) and the ON time of the solenoid valve is shown by equation (2).

ON時間=T・m(t)/100 ……(2) 例えば、水冷パイプ付アルミ鋳込ヒータを用いてヒー
タ温度を150℃に保ち冷却制御周期Tが30秒のときの冷
却水を通す電磁弁のON率(操作出力m(t))と静的冷
却能力との関係である静的冷却特性を第9図に示す。こ
の第9図に示されているように、通常押出機が運転され
る100〜300℃の温度では、冷却水量が少ないときは冷却
パイプ内のほとんど全ての水が気化するので冷却効果が
よい。しかし、冷却水量が多くなるにしたがって奪取熱
量は増加し冷却パイプ内壁温度が十分に回復しない内に
新たな冷却水が注入されるため、水温と冷却パイプ内壁
との温度差が小さくなり、冷却水に与えるヒータ熱量の
低下により気化する割合が減少し冷却効果が低下する。
さらに冷却水量が多くなるとほとんど気化しなくなり、
さらに冷却効果が低下する。
ON time = Tm (t) / 100 (2) For example, an electromagnetic wave that passes cooling water when the cooling control cycle T is 30 seconds by using an aluminum casting heater with a water cooling pipe to keep the heater temperature at 150 ° C. FIG. 9 shows the static cooling characteristics, which is the relationship between the valve ON rate (operation output m (t)) and the static cooling capacity. As shown in FIG. 9, at a temperature of 100 to 300 ° C. at which the extruder is usually operated, when the amount of cooling water is small, almost all the water in the cooling pipe is vaporized, so that the cooling effect is good. However, as the amount of cooling water increases, the amount of heat taken increases and new cooling water is injected before the temperature of the inner wall of the cooling pipe recovers sufficiently, so the temperature difference between the water temperature and the inner wall of the cooling pipe becomes small, and the cooling water The rate of vaporization decreases due to the decrease in the heat quantity of the heater given to the element, and the cooling effect decreases.
Furthermore, when the amount of cooling water increases, it hardly vaporizes,
Further, the cooling effect is reduced.

更に詳細に説明すると、スクリュ速度が低速の場合、
すなわち発熱量が低く電磁弁のON率が低いときはヒータ
内の冷却パイプにおける冷却水の量は少なく冷却水ほ容
易に気化し、電磁弁ON時間当りの冷却熱量、即ち冷却ゲ
インは大きくなる。一方、スクリュの回転が高速に場合
は発熱量も多く電磁弁のON率が高く、供給量が多くなる
結果、冷却効果の低下により冷却ゲインは減少する。
More specifically, when the screw speed is low,
That is, when the heat generation amount is low and the ON rate of the solenoid valve is low, the amount of cooling water in the cooling pipe in the heater is small and the cooling water is easily vaporized, and the cooling heat amount per solenoid valve ON time, that is, the cooling gain becomes large. On the other hand, when the screw rotates at a high speed, a large amount of heat is generated, the ON rate of the solenoid valve is high, and the supply amount is large.

(発明が解決しようとする課題) このように非線形である静的冷却特性は、押出機のサ
イズや冷却系により異なり、また設定温度によっても異
なる。さらに、スクリュ回転数やシリンダの場所によっ
ても発熱量が異なり、静的冷却性に影響がある。このた
め、このような多くのファクタを考慮したPID定数を決
定することは極めて困難であった。
(Problems to be Solved by the Invention) As described above, the non-linear static cooling characteristics differ depending on the size of the extruder and the cooling system, and also differ depending on the set temperature. Further, the calorific value varies depending on the screw rotation speed and the location of the cylinder, which affects the static cooling performance. Therefore, it is extremely difficult to determine the PID constant in consideration of such many factors.

本発明は上記事情を考慮してなされたもので、設定温
度や発熱量が変化しても最適な制御定数で制御すること
ができる押出機のシリンダ温度制御方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cylinder temperature control method for an extruder that can perform control with an optimum control constant even when the set temperature or the amount of heat generation changes.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 上記目的は、シリンダ設定温度と測定温度との偏差温
度をなくすように、少なくとも比例動作と積分動作を行
って操作出力を演算する調節計により冷却制御又は加熱
制御を行う押出機のシリンダ温度制御方法において、前
記偏差温度及び前記操作出力の状態に基づいて前記調節
計の比例動作の定数を変更することを特徴とする押出機
のシリンダ温度制御方法によって達成される。
(Means for Solving the Problem) The above-mentioned object is to perform cooling control or heating control by a controller that performs at least proportional operation and integral operation to calculate an operation output so as to eliminate the deviation temperature between the cylinder set temperature and the measured temperature. In the method of controlling the cylinder temperature of the extruder, the constant of proportional operation of the controller is changed based on the deviation temperature and the state of the operation output. .

(作 用) 本発明の押出機のシリンダ温度制御方法によれば、設
定温度と測定温度の偏差温度及び調節計の操作出力の状
態の変化に応じて比例定数を変更して、非線形の冷却特
性に応じた最適な制御をするようにしている。
(Operation) According to the method for controlling the cylinder temperature of the extruder of the present invention, the proportional constant is changed according to the deviation temperature between the set temperature and the measured temperature and the change in the operation output state of the controller to change the nonlinear cooling characteristic. The optimum control is made according to the above.

(実施例) 以下本発明を図示の一実施例に基づいて説明する。(Example) Hereinafter, the present invention will be described based on an illustrated example.

本発明の一実施例による押出機のシリンダ温度制御方
法を第1図を用いて説明する。従来の押出機のシリンダ
温度制御方法と同様に、温度設定部1からの設定温度と
プロセス5における制御点温度との偏差温度e(t)
(℃)を比較器3により求め、PD調節計4に入力する。
PID調節計4は前述の(1)式で示されるような操作出
力m(t)を算出し、制御対象であるプロセス5に出力
し、加熱制御又は冷却制御する。
A cylinder temperature control method for an extruder according to an embodiment of the present invention will be described with reference to FIG. Similar to the conventional cylinder temperature control method for an extruder, the deviation temperature e (t) between the set temperature from the temperature setting unit 1 and the control point temperature in the process 5
(° C) is calculated by the comparator 3 and input to the PD controller 4.
The PID controller 4 calculates an operation output m (t) as expressed by the above-mentioned equation (1) and outputs it to the process 5 which is a control target to control heating or cooling.

本実施例の特徴はさらに記憶演算器6が設けられてい
る点である。記憶演算器6には予め冷却水量により決定
される最大と最小の冷却比例帯を含むこの間の膨数の冷
却比例帯PB1、PB2、……、PBn(PB1<PB2<……<PBn)
を記憶しておく。記憶演算器6は、比較器3からの偏差
温度e(t)とPID調節計4からの操作出力m(t)を
演算し、偏差温度e(t)から測定温度が設定温度より
大きすぎないか否か、操作出力ほ安定しているか否かを
判断し、この判断結果に基づいて最適な冷却比例帯PBを
PID調節計4に指令する。
The feature of this embodiment is that a storage arithmetic unit 6 is further provided. The memory computing unit 6 includes the maximum and minimum cooling proportional bands previously determined by the amount of cooling water, and the expansion proportional cooling bands PB1, PB2, ..., PBn (PB1 <PB2 <... <PBn)
Remember. The memory calculator 6 calculates the deviation temperature e (t) from the comparator 3 and the operation output m (t) from the PID controller 4, and the measured temperature is not too large from the set temperature from the deviation temperature e (t). Whether the operation output is stable or not is determined, and the optimum cooling proportional band PB is determined based on this determination result.
Command the PID controller 4.

この制御において基本となるPID定数は加熱制御のPID
定数で、例えば、Ziegler−Nicholsによる過渡応答法
や、限界限度法や、測定温度の応答波形を用いるエキス
パート法や、PID調節計からの操作出力に同定用信号を
のせて求める方法等により予め求めておく。
The basic PID constant in this control is the heating control PID.
A constant, for example, the transient response method by Ziegler-Nichols, the limit limit method, the expert method that uses the response waveform of the measured temperature, or the method for obtaining the identification signal on the operation output from the PID controller, etc. Keep it.

次に最大と最小の冷却比例帯を冷却水量から決定する
方法について第2図を用いて説明する。第9図の静的冷
却特性を近似したのが第2の特性である。冷却ON率によ
り3つの領域I〜IIIに分けている。領域Iでは冷却水
がほとんど全て気化し、領域IIでは冷却水の一部が気化
し、領域IIIでは冷却水はほとんど気化しない。あらか
じめ任意のバルブ開度での冷却水量F(kg/hour)を測
定しておくと、冷却ON率から冷却水の流量がわかるの
で、第2図の横軸の冷却ON率Aを次の(3)式により冷
却水量F1(kg/hour)に換算することができる。
Next, a method of determining the maximum and minimum cooling proportional bands from the amount of cooling water will be described with reference to FIG. The second characteristic is an approximation of the static cooling characteristic of FIG. It is divided into three regions I to III according to the cooling ON rate. Almost all the cooling water is vaporized in the region I, a part of the cooling water is vaporized in the region II, and the cooling water is hardly vaporized in the region III. If the cooling water amount F (kg / hour) at any valve opening is measured in advance, the cooling water flow rate can be known from the cooling ON rate. Therefore, the cooling ON rate A on the horizontal axis in Fig. 2 can be calculated as The amount of cooling water F1 (kg / hour) can be converted by the formula 3).

F1=0.01・F・A ……(3) 領域Iで冷却水が全て気化するとすれば、流量F1での
冷却能力H1(kw)は次の(4)式で求めることができ
る。
F1 = 0.01 · F · A (3) If all the cooling water is vaporized in the region I, the cooling capacity H1 (kw) at the flow rate F1 can be calculated by the following equation (4).

H1=(F1/860)×(540+T2−T1) ……(4) ここで540は気化熱、T1(℃)は冷却水の入口温度、T
2(℃)は冷却水の出口温度、860はkcal/hourをkwに変
換するための定数である。T2(℃)ほ冷却水が気化する
ので100℃と考えてよい。また冷却水の出口温度は100℃
となるけれど全然気化しない場合の冷却能力H2(kw)は
次の(5)式で求めることができる。
H1 = (F1 / 860) x (540 + T2-T1) (4) where 540 is the heat of vaporization, T1 (° C) is the inlet temperature of the cooling water, and T
2 (℃) is the outlet temperature of the cooling water, and 860 is a constant for converting kcal / hour to kw. Since T2 (° C) evaporates cooling water, it may be considered as 100 ° C. The outlet temperature of the cooling water is 100 ℃
However, the cooling capacity H2 (kw) when it is not vaporized at all can be obtained by the following equation (5).

H2=(F1/860)×(100−T1) ……(5) このように冷却バルブ開度が決定されると、冷却ON率
から冷却水が特定の状態での冷却能力を理論的に求める
ことができる。
H2 = (F1 / 860) x (100-T1) (5) When the cooling valve opening is determined in this way, the cooling capacity of the cooling water in a specific state is theoretically obtained from the cooling ON rate. be able to.

また、第2図の縦軸の冷却能力(kw)は、押出機の最
大ヒータ出力がわかれば加熱ON率(%)にすることがで
きる。
The cooling capacity (kw) on the vertical axis in FIG. 2 can be set to the heating ON rate (%) if the maximum heater output of the extruder is known.

したがって、第2図は任意のON率でのヒータによる加
熱能力と冷却水による冷却能力との関係を表すことにな
る。最も大きい加熱能力と冷却能力との比は、(4)式
と最大出力から直線11の傾きで示され、その次に大きい
加熱能力と冷却能力との比は、(5)式と最大出力から
直線12の傾きで示される。この直線11と加熱比例帯との
積を最大の冷却比例帯とし、直線12の傾きと加熱比例帯
との積を最小の冷却比例帯とする。
Therefore, FIG. 2 shows the relationship between the heating capacity of the heater and the cooling capacity of the cooling water at any ON rate. The ratio of the largest heating capacity and cooling capacity is shown by the slope of the straight line 11 from the formula (4) and the maximum output, and the ratio of the next largest heating capacity and cooling capacity is the formula (5) and the maximum output. It is shown by the slope of line 12. The product of this straight line 11 and the heating proportional band is the maximum cooling proportional band, and the product of the slope of the straight line 12 and the heating proportional band is the minimum cooling proportional band.

次に本実施例による押出機のシリンダ温度制御方法を
第3図のフローチャートを用いて説明する。第3図は記
憶演算器6における動作を示すものであり、全体の制御
フローの一部をなすものである。第3図の動作は一定時
間ごとに行われる。また、最初に冷却比例帯を最小の冷
却比例帯PB1に設定しておく。
Next, the cylinder temperature control method of the extruder according to this embodiment will be described with reference to the flowchart of FIG. FIG. 3 shows the operation of the storage arithmetic unit 6, and is a part of the overall control flow. The operation of FIG. 3 is performed at regular intervals. Further, first, the cooling proportional band is set to the minimum cooling proportional band PB1.

記憶演算器6の制御フローでは、まずステップ21で現
在設定されている冷却比例帯が最小の冷却比例帯PB1か
否か判断する。最小の冷却比例帯PB1でもあれば何も処
理せずステップ23以降の処理に移る。現在の冷却比例帯
が最小の冷却比例帯PB1でなければ、ステップ22で偏差
温度e(t)が−TT℃より小さいか否か判断する。偏差
温度e(t)が−TT℃より小さい、すなわち測定温度が
設定温度より所定の温度TT℃より高いときは、ステップ
28に移り、例えば、最小の冷却比例帯PB1をPID調節計4
に指令する。なお、ステップ28で現在より1段低い冷却
比例帯をPID調節計4に指令してもよい。すなわち、現
在の冷却比例帯がPBiであれば、1段低い冷却比例帯PBi
−1にする。偏差温度e(t)が−TT℃より大きい、す
なわち測定温度が設定温度より所定の温度TT℃より高く
ないときにはステップ23以降の処理に移る。
In the control flow of the memory computing unit 6, it is first determined in step 21 whether the cooling proportional band currently set is the minimum cooling proportional band PB1. If it is also the minimum cooling proportional band PB1, no processing is performed and the process proceeds to step 23 and subsequent steps. If the current cooling proportional band is not the minimum cooling proportional band PB1, it is determined in step 22 whether the deviation temperature e (t) is smaller than -TT ° C. If the deviation temperature e (t) is less than -TT ° C, that is, the measured temperature is higher than the set temperature by a predetermined temperature TT ° C, the step
28, for example, set the minimum cooling proportional band PB1 to PID controller 4
Command. In step 28, the PID controller 4 may be instructed to use a cooling proportional band one step lower than the present. That is, if the current cooling proportional band is PBi, the cooling proportional band PBi is one step lower.
Set to -1. When the deviation temperature e (t) is larger than -TT ° C, that is, the measured temperature is not higher than the preset temperature TT ° C, the process proceeds to step 23 and subsequent steps.

ステップ23では現在の冷却比例帯が最大の冷却比例帯
PBnか否か判断し、最大であれば何も処理しないでリタ
ーンに移り、記憶演算器6の処理を終了する。最大でな
ければステップ24に移る。
In step 23, the current cooling proportional band is the maximum cooling proportional band.
Whether it is PBn or not is determined, and if it is the maximum, nothing is processed and the process returns to the return, and the process of the storage operation unit 6 is ended. If it is not the maximum, go to step 24.

次に、操作出力が加熱と冷却を交互に繰返しなされて
おり、かつ不安定か否か演算して判断する(ステップ2
4、25)。短い周期で加熱と冷却を繰返せば不安定であ
るとする。例えば、第4図(a)に示すように、ある期
間T内において加熱制御期間T1HとT2Hの間隔THと冷却
制御期間T1CとT2Cの間隔TCと求め、この間隔THとTC
の比TH/TCを演算する。この比TH/TCが例えば次の
(6)式を満足すれば「不安定」と判断する。
Next, it is determined whether or not the operation output is being repeatedly heated and cooled alternately and is unstable (step 2).
4, 25). It is considered unstable if heating and cooling are repeated in a short cycle. For example, as shown in FIG. 4 (a), the interval TH between the heating control periods T1H and T2H and the interval TC between the cooling control periods T1C and T2C are determined within a certain period T, and the intervals TH and TC
The ratio TH / TC of is calculated. If this ratio TH / TC satisfies, for example, the following expression (6), it is judged to be "unstable".

0.7<TH/TC<1.3 ……(6) ステップ25で不安定であると判断されると、ステップ
29で1段大きな冷却比例帯をPID調節計4に指令する。
すなわち、現在の冷却比例帯がPBiであればPBi+1を指
令する。そして、リターンに移り記憶演算器6の処理を
終了する。
0.7 <TH / TC <1.3 (6) If it is judged to be unstable in step 25, step
At 29, the PID controller 4 is instructed to provide a larger cooling proportional band.
That is, if the current cooling proportional band is PBi, PBi + 1 is commanded. Then, the process returns to the end and the processing of the memory computing unit 6 is completed.

操作出力が冷却のみである場合にはステップ26、27に
移り、不安定か否か演算し判断する。冷却ON率が繰返し
大きく変化していれば不安定であるとする。例えば、第
4図(b)に示すように、冷却ON率の最小MIN(i)と
最大MAX(i)が交互に生じ、最大冷却ON率MAX(i)が
3回連続して3%以上であり、比MIN(i)/MAX(i)
が2以上であれば不安定であるとする。ステップ27で不
安定であると判断されると、ステップ30で現在の冷却比
例帯PBiより例えば20%大きな冷却比例帯をPID調節計4
に指令する。これは、冷却制御が続いている場合の「不
安定」は、冷却と加熱を交互に繰返している場合より少
し冷却比例帯を増加させてやれば解消するからである。
If the operation output is only cooling, the process proceeds to steps 26 and 27 to calculate and judge whether or not the operation is unstable. If the cooling ON rate repeatedly changes significantly, it is considered to be unstable. For example, as shown in FIG. 4 (b), the minimum MIN (i) and the maximum MAX (i) of the cooling ON rate alternately occur, and the maximum cooling ON rate MAX (i) is 3% or more in succession three times. And the ratio MIN (i) / MAX (i)
Is 2 or more, it is considered to be unstable. If it is judged to be unstable in step 27, in step 30, the PID controller 4 sets the cooling proportional band larger than the current cooling proportional band PBi by, for example, 20%.
Command. This is because the "unstable" when the cooling control is continued is eliminated by slightly increasing the cooling proportional band as compared with the case where the cooling and the heating are alternately repeated.

第5図に本実施例による温度制御の実験結果を示し、
第6図に従来の温度制御の実験結果を示す。それぞれ上
側のグラフが温度制御結果で、下側のグラフがそのとき
の操作出力である。実験は、90φmmの単軸押出機の第3
ゾーンにステップ状の外乱(内部発熱)を意図的に入れ
て行った。比較すれば明らかなように。最大偏差温度が
従来より本実施例の方が約1/2と小さくなり、設定温度
に達する時間も従来より本実施例の方が約10分間短い。
FIG. 5 shows the experimental results of the temperature control according to this embodiment,
FIG. 6 shows the experimental results of conventional temperature control. The upper graph is the temperature control result, and the lower graph is the operation output at that time. The experiment is the third of the 90φmm single screw extruder.
A step-like disturbance (internal heat generation) was intentionally put in the zone. As you can see from the comparison. The maximum deviation temperature is about 1/2 of that of the conventional example, and the time required to reach the set temperature is about 10 minutes shorter than that of the conventional example.

本発明は上記実施例に限らず種々の変形が可能であ
る。例えば、上記実施例では調節計は比例動作と積分動
作と微分動作を行うPID調節計であったが、比例動作と
積分動作を行うPI調整計でもよい。
The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, the controller is a PID controller that performs proportional operation, integral operation, and derivative operation, but it may be a PI controller that performs proportional operation and integral operation.

〔発明の効果〕〔The invention's effect〕

以上の通り本発明によれば、設定温度や押出機内部の
発熱量が変化しても、静的冷却特性に強い非直線性があ
っても、その変化に応じて最適な制御定数を指令するこ
とができる。したがって、制御温度は最短時間で安定
し、安全な連続運転を行うことができる。
As described above, according to the present invention, even if the set temperature or the calorific value inside the extruder changes, even if there is strong nonlinearity in the static cooling characteristics, the optimum control constant is commanded according to the change. be able to. Therefore, the control temperature is stable in the shortest time, and safe continuous operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による押出機のシリンダ温度
制御方法を実施する装置のブロック図、第2図は押出機
のシリンダの静的冷却特性を近似的に表したグラフ、第
3図は同押出機のシリンダ温度制御方法を示すフローチ
ャート、第4図は同押出機のシリンダ温度制御方法にお
ける制御安定性を説明するためのタイムチャート、第5
図は本発明による押出機のシリンダ温度制御方法による
制御結果を示すグラフ、第6図は従来の押出機のシリン
ダ温度制御方法による制御結果を示すグラフ、第7図は
従来の押出機のシリンダ温度制御方法を実施する装置の
ブロック図、第8図は温度制御における時間比例制御を
説明するためのタイムチャート、第9図は押出機のシリ
ンダの静的冷却特性を表したグラフである。 1……温度設定部、3……比較部、4……PID調節計、
5……プロセス、6……記憶演算器。
FIG. 1 is a block diagram of an apparatus for carrying out a method for controlling a cylinder temperature of an extruder according to an embodiment of the present invention, FIG. 2 is a graph approximately representing static cooling characteristics of a cylinder of an extruder, and FIG. FIG. 4 is a flow chart showing a cylinder temperature control method of the extruder, FIG. 4 is a time chart for explaining control stability in the cylinder temperature control method of the extruder, and FIG.
FIG. 6 is a graph showing a control result by a cylinder temperature control method of an extruder according to the present invention, FIG. 6 is a graph showing a control result by a cylinder temperature control method of a conventional extruder, and FIG. 7 is a cylinder temperature of a conventional extruder. FIG. 8 is a block diagram of an apparatus for carrying out the control method, FIG. 8 is a time chart for explaining time proportional control in temperature control, and FIG. 9 is a graph showing static cooling characteristics of a cylinder of an extruder. 1 ... Temperature setting section, 3 ... Comparison section, 4 ... PID controller,
5 ... Process, 6 ... Memory calculator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリンダの設定温度と測定温度との偏差温
度をなくすように、少なくとも比例動作と積分動作を行
って操作出力を演算する調節計により冷却制御又は加熱
制御を行う押出機のシリンダ温度制御方法において、 前記偏差温度及び前記操作出力の状態に基づいて前記調
節計の比例動作の定数を変更することを特徴とする押出
機のシリンダ温度制御方法。
1. A cylinder temperature of an extruder in which cooling control or heating control is performed by a controller that calculates an operation output by performing at least a proportional operation and an integral operation so as to eliminate a deviation temperature between a set temperature of a cylinder and a measured temperature. In the control method, the constant of proportional operation of the controller is changed based on the deviation temperature and the state of the operation output.
JP63056607A 1988-03-10 1988-03-10 Extruder cylinder temperature control method Expired - Lifetime JP2512519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056607A JP2512519B2 (en) 1988-03-10 1988-03-10 Extruder cylinder temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056607A JP2512519B2 (en) 1988-03-10 1988-03-10 Extruder cylinder temperature control method

Publications (2)

Publication Number Publication Date
JPH01229611A JPH01229611A (en) 1989-09-13
JP2512519B2 true JP2512519B2 (en) 1996-07-03

Family

ID=13031924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056607A Expired - Lifetime JP2512519B2 (en) 1988-03-10 1988-03-10 Extruder cylinder temperature control method

Country Status (1)

Country Link
JP (1) JP2512519B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661811B2 (en) * 1989-11-24 1994-08-17 東芝機械株式会社 Heating temperature control device

Also Published As

Publication number Publication date
JPH01229611A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
CN102608911B (en) Fossil power plant coordination control method based on multi-parameter prediction
CN107816793A (en) A kind of intellectual water closet instantaneous heating system, device and control method
JPS58208817A (en) Temperature controller
JP2512519B2 (en) Extruder cylinder temperature control method
JPS623286B2 (en)
JPH09193225A (en) Method for controlling temperature of molding machine
JPS63247592A (en) Condenser cooling water flow rate control system
JPH09109216A (en) Nozzle temperature controller for injection molding machine
JPH0555881B2 (en)
JP2001265408A (en) Device and method for controlling temperature of heat system plant
KR960009222B1 (en) Hot-water supplier
JPH11223302A (en) Automatic control device and method of power generating plant
JP4479696B2 (en) Process control method
SU1577081A2 (en) Device for controlling thermal conditions of methodic induction unit
Danilushkin et al. Synthesis of Algorithms and Optimal Control System of Start-Up Modes of Continuous Induction Installation
JP3074933B2 (en) Alloying control device
JP2910136B2 (en) Temperature control system for tundish molten steel plasma heating system
US20050114069A1 (en) Die temperature control
JPH1054545A (en) Lng pressure reduction/heating controller
JPH0410642B2 (en)
SU1470792A1 (en) Method of controlling metal-heating
JP3320497B2 (en) Temperature control device
JPH06270222A (en) Temperature feedback control method for molding machine
JPS6220464B2 (en)
JPS625684B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term