JPS6256931B2 - - Google Patents

Info

Publication number
JPS6256931B2
JPS6256931B2 JP11192683A JP11192683A JPS6256931B2 JP S6256931 B2 JPS6256931 B2 JP S6256931B2 JP 11192683 A JP11192683 A JP 11192683A JP 11192683 A JP11192683 A JP 11192683A JP S6256931 B2 JPS6256931 B2 JP S6256931B2
Authority
JP
Japan
Prior art keywords
cooling tank
temperature
molten salt
steel wire
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11192683A
Other languages
Japanese (ja)
Other versions
JPS605823A (en
Inventor
Kuniaki Tauchi
Yasunobu Hayama
Muneaki Takasaki
Miki Hanasaki
Kenichi Sakamoto
Noboru Iohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11192683A priority Critical patent/JPS605823A/en
Publication of JPS605823A publication Critical patent/JPS605823A/en
Publication of JPS6256931B2 publication Critical patent/JPS6256931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • C21D1/64Quenching devices for bath quenching with circulating liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱間圧延機と隣接して設けられる鋼
線材直接熱処理設備、即ち圧延後の鋼線材を冷媒
と直触熱交換する熱処理設備の制御方法に関し、
運転条件変更のために鋼線材の搬送が短時間途切
れる場合でも冷媒の温度を好適に制御できるよう
にしたものである。 溶融塩などの冷媒(以下、冷媒として溶融塩を
例にとつて説明する)による鋼材の熱処理方法で
は、従来は溶融塩の取扱量自体が桁違いに小さか
つたため、溶融塩の加熱・冷却ともその制御が技
術的に問題とならず、加熱は電気ヒータで行い、
冷却は冷却槽自体の外面を空冷する程度で十分で
あつた。 ところが、鋼材の処理量が昨今の如く多くなる
と、熱い鋼材により溶融塩中に持ち込まれる熱量
が非常に大きいものとなり、空冷程度では冷却能
力不足となつてしまつた。そこで、溶融塩を循環
し冷却する装置が、鋼材冷却装置とは別に必要と
なつていた。 第1図は、上述した鋼材の熱処理における溶融
塩の循環・冷却を適用した鋼線材の直接熱処理設
備を示す。第1図において、1は熱間圧延後の約
800℃の鋼線材であり、第2図に示す如くループ
状にして冷却槽2中に浸漬され、冷却槽に貯留し
た冷媒例えば溶融塩3によつて所定の温度例えば
約500℃まで冷却される。この場合、溶融塩3は
逆に鋼線材1の顕熱によつて加熱されるので、ポ
ンプ4によつて冷却槽2と熱交換器5間に溶融塩
3を循環させ、熱交換器5において水6などと熱
交換させて冷却している。 第1図のような鋼線材直接熱処理設備の制御装
置としては、第3図に示すような温度制御装置が
特願昭57−228496号として既に出願されている。 第3図の温度制御装置は、後述する熱バランス
式(1)から得られる式(2)により冷却槽入側溶融塩温
度の目標値T2Iを演算により求め、又は式(3)から
冷却槽内溶融塩温度の目標値T2を演算で求め、
これらの目標値T2IあるいはT2となるように溶
融塩温度を制御する装置である。具体的には、 演算器12に式(2)あるいは式(3)を演算するに必
要な運転条件のデータをインプツトし、T2I又は
T2といつた温度目標値を演算させ、この目標値
を溶融塩温度制御装置7に設定値として与える。
第3図の例では、7は熱交換器5から戻つてくる
冷却槽入側溶融塩の温度制御装置であり、温度検
出器8によつて検出された冷却槽入側溶融塩温度
が演算器12の出力である冷却槽入側溶融塩温度
の目標値T2Iになるように、熱交換器5の給水流
量制御装置9の設定値を調節する。この給水流量
制御装置9は、流量検出器10によつて検出され
た給水流量がその設定値となるように、給水弁1
1を制御する。 2I=f(d、v、T1O) ……式(2) T2=f(d、v、T1O) ……式(3) ここでα:溶融塩と線材の熱伝達率 A:線材表面積(線材処理量、速度、線
径の関数) C1:線材の比熱 C2:溶融塩の比熱 W1:線材処理量 W2:溶融塩循環流量 T1I:冷却槽入側における線材温度 T1O: 〃 出側 〃 T2I: 〃 入側溶融塩温度 T2:冷却槽内側溶融塩度 Δtm:
The present invention relates to a method for controlling a steel wire direct heat treatment facility installed adjacent to a hot rolling mill, that is, a heat treatment facility that directly catalytically exchanges heat between a rolled steel wire and a refrigerant.
This allows the temperature of the refrigerant to be suitably controlled even when the conveyance of the steel wire rod is interrupted for a short time due to a change in operating conditions. In the heat treatment method for steel materials using a refrigerant such as molten salt (hereinafter, we will explain using molten salt as an example of refrigerant), the amount of molten salt itself handled was an order of magnitude smaller, so heating and cooling of the molten salt was difficult. There is no technical problem in controlling it, and heating is done with an electric heater.
Air cooling of the outer surface of the cooling tank itself was sufficient. However, as the amount of steel processed has increased in recent years, the amount of heat carried into the molten salt by the hot steel has become extremely large, and air cooling has become insufficient in its cooling capacity. Therefore, a device for circulating and cooling the molten salt was required in addition to the steel material cooling device. FIG. 1 shows a direct heat treatment facility for steel wire rods to which the above-described circulation and cooling of molten salt in the heat treatment of steel materials is applied. In Figure 1, 1 is approximately
It is a steel wire at 800°C, and as shown in Fig. 2, it is looped and immersed in a cooling tank 2, and is cooled to a predetermined temperature, for example, about 500°C, by a refrigerant, such as a molten salt 3, stored in the cooling tank. . In this case, the molten salt 3 is conversely heated by the sensible heat of the steel wire 1, so the molten salt 3 is circulated between the cooling tank 2 and the heat exchanger 5 by the pump 4, and the molten salt 3 is circulated between the cooling tank 2 and the heat exchanger 5. It is cooled by exchanging heat with water 6 etc. As a control device for a steel wire direct heat treatment facility as shown in FIG. 1, a temperature control device as shown in FIG. 3 has already been filed as Japanese Patent Application No. 57-228496. The temperature control device shown in FIG. Calculate the target value T 2 of the internal molten salt temperature,
This device controls the molten salt temperature so that it reaches these target values T 2I or T 2 . Specifically, the operating condition data required to calculate equation (2) or equation (3) is input into the calculator 12, and T 2I or
A temperature target value such as T 2 is calculated, and this target value is given to the molten salt temperature control device 7 as a set value.
In the example shown in FIG. 3, 7 is a temperature control device for the molten salt at the entrance side of the cooling tank that returns from the heat exchanger 5, and the temperature of the molten salt at the entrance side of the cooling tank detected by the temperature detector 8 is calculated by the computer. The setting value of the water supply flow rate control device 9 of the heat exchanger 5 is adjusted so that the temperature of the molten salt at the entrance side of the cooling tank becomes the target value T 2I , which is the output of step 12. This water supply flow rate control device 9 controls the water supply valve 1 so that the water supply flow rate detected by the flow rate detector 10 becomes the set value.
Control 1. T 2I = f (d, v, T 1O ) ...Formula (2) T 2 = f (d, v, T 1O ) ...Formula (3) where α: Heat transfer coefficient between molten salt and wire A: Wire surface area (function of wire throughput, speed, and wire diameter) C 1 : Specific heat of wire C 2 : Specific heat of molten salt W 1 : Wire throughput W 2 : Molten salt circulation flow rate T 1I : Wire temperature at the entrance side of the cooling tank T 1O : 〃 Output side 〃 T 2I : 〃 Inlet side molten salt temperature T 2 : Cooling tank inside molten salt degree Δtm:

【式】 QL:熱損失 Q2:熱交換器による冷却量 d:線径 v:線材速度 しかし、第3図のような制御系では、鋼線材1
自体を加熱源として考えているため、短時間でも
鋼線材1の搬送が途切れると制御が誤つてしま
う。即ち、運転条件が変化する場合例えば線径が
変わる場合は、線径圧延機のロール組替えのため
に数十分程度、線材が搬送されてこない空き時間
が生じる。この間は、冷却槽2に対する加熱源で
ある鋼線材がなくなるため、冷却槽内溶融塩温度
が大きく下つてしまう。第4図は、冷却槽入側溶
融塩温度を一定と仮定し、鋼線材尻抜け後の冷却
槽内溶融塩温度の応答を計算した例を示す。これ
によると、温度降下率は約2〜3℃/minであ
る。 上述した温度降下を防ぐには、熱交換器5での
抜熱をなくす必要がある。ところが、例えば冷却
水の供給を停止するならば、約400〜500℃といつ
た高温溶融塩による熱交換器5の空炊き、という
問題が生じてしまう。そのため、空炊きを防止で
きる最低限の抜熱量が必要であり、溶融塩温度制
御装置7には低流量側に対するリミツタ即ちロー
リミツタ機能を付設せねばならない。一方、溶融
塩3の循環を停止するならば、熱交換器5内で滞
留する溶融塩の凝固といつた問題が生じてしま
う。 なお、前述の空炊き防止の最低抜熱量以上の容
量を持つ加熱源、例えば電気ヒータを用意すれ
ば、溶融塩温度降下の問題はなくなる。しかし、
1日に数回しかない線径変更などのために大容量
のヒータを常備することはオーバースペツク(過
剰仕様)であり、同時に省エネルギーに反する。 本発明は上述した事情に基づき、鋼線材処理の
短時間停止時において、 (a) 溶融塩の循環も冷却水の供給も停止すること
なく、 (b) できるだけ冷却槽内溶融塩温度を下げず、 (c) 更に、鋼線材処理の再開時にはできるだけ早
く冷却槽内溶融塩温度を所定値に制御すること
ができるような、 制御方法を提供することを目的とする。 この目的を達成する本発明の鋼線材直接熱処理
設備の制御方法は、 (i) 先行する鋼線材(先行材という)の終端が冷
却槽を通過すると同時に、冷却槽入側溶融塩温
度制御系の温度設定値として、後行する鋼線材
(後行材という)に対して算出した冷却槽内溶
融塩温度の目標値を与えること、 (ii) 鋼線材の搬送が再開された場合は、後行材の
先端が冷却槽を通過し且つ冷却槽内溶融塩温度
検出値が〔目標値−許容制御偏差〕以上になる
と、同時に通常運転通り冷却槽入側溶融塩温度
制御系の設定値として後行材に対して算出した
冷却槽入側溶融塩温度の目標値を与えること、 を技術的思想の基礎とする。 以下、第5図及び第6図により本発明を説明す
る。 第5図は本発明の制御方法を実現する制御装置
の一構成例を示し、第1図、第3図と同部材には
同符号を付し説明の重複を省く。同図中の符号1
3は冷却槽内溶融塩温度の検出器である。演算器
14は第3図に示した演算器12の機能に加え、
本発明方法の処理に必要な演算機能を備える。即
ち、前式(2)による冷却槽入側溶融塩温度T2Iの算
出及び前式(3)による冷却槽内溶融塩温度T2の算
出をともに行う。 今、先行材が冷却処理されているとすると、演
算器14からは、この先行材に関する運転条件の
データインプツトにより算出された冷却槽入側の
目標値T2Iが冷却槽入側溶融塩温度制御装置7に
その設定値として与えられており、検出器8の検
出温度がT2Iとなるように即ち第3図と同じよう
に給水流量制御装置9、流量検出器10及び給水
弁11からなる流量調節系が制御される。 線径変更等の運転条件の変更により上述した先
行材の終端が冷却槽2を通過すると、演算器14
が後行材に関する運転条件のインプツトデータに
より算出した冷却槽内の目標値T2がT2Iの代り
に、温度制御装置7にその設定値として与えられ
る。従つて、検出器8の検出温度がT2となるよ
うに流量調節系が制御される。これにより、熱交
換器5への給水及び溶融塩の循環を行いつつ、抜
熱量をできるだけ抑えることができる。なお、T
2IからT2への設定値の変更は、熱処理ラインの
動きを見て運転員が手動で指令しても良く、ある
いは先行材の終端通過を検出する適当な検出器を
用い、その検出信号を取り入れて自動的に行つて
も良い。 次に後行材の搬送が再開されると、後行材の先
端が冷却槽2を通過し且つ検出器13により検出
された冷却槽内溶融塩温度が 〔目標値T2−許容制御偏差〕 即ち許容最低温度以上になつたことを条件とし
て、演算器14が算出した後行材に対する冷却槽
入側の目標値T2IがT2の代りに温度制御装置7
の設定値として与えられる。これにより、検出器
8の温度が新らなT2Iとなるように制御される。
この場合、T2からT2Iへの設定値変更に必要な
後行材先端の通過は、運転員が処理ラインを見て
検出しても良く、あるいは適当な検出器で自動的
に検出しても良い。また、許容最低温度に対する
監視は、温度偏差を表示器に表示し運転員がこれ
を見て行つても良く、あるいは演算器14に判定
機能を持たせても良い。 ここで、線材処理再開後に冷却槽内溶融塩温度
検出値が許容最低温度以上になるまでは冷却槽入
側の温度制御装置7の設定値をT2Iまで下げない
理由は次の通りである。 即ち、もし空き時間が長くなつて線材処理再開
時に冷却槽内溶融塩温度が大きく下つた場合、熱
交換器5による抜熱量を抑えながら線材顕熱によ
つて冷却槽内溶融塩温度をできるだけ早く上昇さ
せるためである。このような冷却槽内溶融塩温度
の高応答性により、線材処理再開と同時に設定値
をT2Iの如く下げるよりも、歩留の低下が少なく
なる。 第6図に、第5図の制御系に本発明方法を適用
した場合の応答特性の計算例を示す。但し、第6
図では先行材の槽内目標値の方が後行材の槽内目
標値より大きいものと仮定している。なお、第6
図中cとdは許容偏差である。 第6図によれば、線材処理の短時間停止期間S
において熱交換器5の最低抜熱量によつて冷却槽
内溶融塩温度が徐々に下がるのは避けられない
が、第4図に示した従来の場合に比べ、その温度
降下率が0.4〜0.6℃/minと大幅に小さくなつ
た。また、運転再開時には後行材の顕熱を活用し
ているので、冷却槽内溶融塩温度が高応答化し、
歩留りが大幅に向上した。
[Formula] Q L : Heat loss Q 2 : Cooling amount by heat exchanger d: Wire diameter v: Wire speed However, in the control system as shown in Fig. 3, steel wire 1
Since the wire rod itself is considered as a heating source, if the conveyance of the steel wire rod 1 is interrupted even for a short time, the control will be erroneous. That is, when the operating conditions change, for example when the wire diameter changes, there is a vacant time of about several tens of minutes during which the wire is not transported due to the roll rearrangement of the wire diameter rolling mill. During this time, the steel wire rod serving as the heating source for the cooling tank 2 is no longer present, so the temperature of the molten salt in the cooling tank drops significantly. FIG. 4 shows an example in which the response of the temperature of the molten salt in the cooling tank after the steel wire bottom falls out is calculated, assuming that the molten salt temperature on the entrance side of the cooling tank is constant. According to this, the temperature drop rate is about 2 to 3°C/min. In order to prevent the temperature drop mentioned above, it is necessary to eliminate heat removal from the heat exchanger 5. However, if the supply of cooling water is stopped, for example, a problem arises in that the heat exchanger 5 runs dry due to the high temperature molten salt at about 400 to 500°C. Therefore, a minimum amount of heat removal is required to prevent dry cooking, and the molten salt temperature control device 7 must be provided with a limiter, that is, a low limiter function for the low flow rate side. On the other hand, if the circulation of the molten salt 3 is stopped, problems such as solidification of the molten salt remaining in the heat exchanger 5 will occur. Note that if a heating source, such as an electric heater, having a capacity greater than the minimum amount of heat removed to prevent dry cooking is provided, the problem of the temperature of the molten salt falling will be eliminated. but,
Having a large-capacity heater on hand for changing the wire diameter only a few times a day is over-specification, and at the same time goes against energy conservation. Based on the above-mentioned circumstances, the present invention is designed to: (a) do not stop the circulation of molten salt or the supply of cooling water; and (b) keep the temperature of the molten salt in the cooling tank as low as possible when steel wire processing is stopped for a short time. (c) Furthermore, it is an object of the present invention to provide a control method that can control the temperature of the molten salt in the cooling tank to a predetermined value as soon as possible when steel wire processing is restarted. The method for controlling the steel wire direct heat treatment equipment of the present invention that achieves this objective is as follows: (i) At the same time as the end of the preceding steel wire (referred to as the preceding material) passes through the cooling tank, the molten salt temperature control system at the entrance of the cooling tank is controlled. As the temperature setting value, give the target value of the temperature of the molten salt in the cooling tank calculated for the following steel wire rod (referred to as the following material); (ii) When the conveyance of the steel wire rod is resumed, When the tip of the material passes through the cooling tank and the detected value of the temperature of the molten salt in the cooling tank exceeds [target value - allowable control deviation], the setting value of the molten salt temperature control system on the entrance side of the cooling tank is set as normal operation. The basis of the technical idea is to provide a target value for the molten salt temperature at the entrance of the cooling tank calculated for the material. The present invention will be explained below with reference to FIGS. 5 and 6. FIG. 5 shows an example of the configuration of a control device that implements the control method of the present invention, and the same members as in FIGS. 1 and 3 are given the same reference numerals to avoid redundant explanation. Code 1 in the same figure
3 is a detector for the temperature of the molten salt in the cooling tank. In addition to the functions of the calculator 12 shown in FIG. 3, the calculator 14 has the following functions:
Equipped with calculation functions necessary for processing the method of the present invention. That is, the molten salt temperature T 2I on the entrance side of the cooling tank is calculated using the above equation (2), and the molten salt temperature T 2 inside the cooling tank is calculated using the above equation (3). Now, assuming that the preceding material is being cooled, the computing unit 14 calculates the target value T2I on the cooling tank inlet side, which is calculated from the data input of the operating conditions regarding this preceding material, as the molten salt temperature on the cooling tank inlet side. The set value is given to the control device 7, and the temperature detected by the detector 8 is set to T2I . A flow regulation system is controlled. When the end of the preceding material passes through the cooling tank 2 due to a change in operating conditions such as a change in wire diameter, the arithmetic unit 14
The target value T 2 in the cooling tank calculated from the input data of the operating conditions regarding the trailing material is given to the temperature control device 7 as its set value instead of T 2I . Therefore, the flow rate adjustment system is controlled so that the temperature detected by the detector 8 becomes T2 . Thereby, the amount of heat removed can be suppressed as much as possible while supplying water to the heat exchanger 5 and circulating the molten salt. In addition, T
The setting value can be changed from 2I to T 2 by the operator manually observing the movement of the heat treatment line, or by using an appropriate detector that detects the passing of the end of the preceding material and transmitting the detection signal. You can also import it and do it automatically. Next, when the conveyance of the trailing material is resumed, the leading end of the trailing material passes through the cooling tank 2, and the temperature of the molten salt in the cooling tank detected by the detector 13 becomes [Target value T 2 - permissible control deviation] That is, on the condition that the temperature has exceeded the allowable minimum temperature, the target value T2I of the cooling tank entry side for the trailing material calculated by the calculator 14 is changed to the temperature control device 7 instead of T2 .
is given as the setting value. Thereby, the temperature of the detector 8 is controlled to become the new T 2I .
In this case, the passage of the leading edge of the trailing material required to change the set value from T 2 to T 2I can be detected by an operator by looking at the processing line, or automatically detected by an appropriate detector. Also good. Further, the minimum allowable temperature may be monitored by displaying the temperature deviation on a display and having the operator look at it, or by providing the computing unit 14 with a determination function. Here, the reason why the set value of the temperature control device 7 on the entrance side of the cooling tank is not lowered to T 2I until the detected value of the temperature of the molten salt in the cooling tank becomes equal to or higher than the allowable minimum temperature after restarting the wire processing is as follows. In other words, if the idle time becomes long and the temperature of the molten salt in the cooling tank drops significantly when wire processing is resumed, the temperature of the molten salt in the cooling tank is reduced as quickly as possible using sensible heat from the wire while suppressing the amount of heat removed by the heat exchanger 5. This is to raise the temperature. Due to such high responsiveness of the temperature of the molten salt in the cooling tank, the decrease in yield is smaller than when the set value is lowered to T 2I at the same time as wire processing is restarted. FIG. 6 shows an example of calculation of response characteristics when the method of the present invention is applied to the control system of FIG. 5. However, the 6th
In the figure, it is assumed that the in-tank target value of the preceding material is larger than the in-tank target value of the succeeding material. In addition, the 6th
In the figure, c and d are allowable deviations. According to FIG. 6, the short stop period S for wire processing
Although it is inevitable that the temperature of the molten salt in the cooling tank gradually decreases due to the minimum amount of heat removed by the heat exchanger 5, the rate of temperature decrease is 0.4 to 0.6 degrees Celsius compared to the conventional case shown in FIG. /min. In addition, when restarting operation, the sensible heat of the trailing material is utilized, so the molten salt temperature in the cooling tank becomes highly responsive.
Yield has been significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は線材直接熱処理設備の基本的構成図、
第2図は搬送される線材の斜視図、第3図は既に
提案した線材直接熱処理設備の制御装置の構成
図、第4図の従来の制御方法における応答計算例
のグラフ、第5図は本発明方法を実現する制御装
置の一例を示す構成図、第6図は本発明方法にお
ける応答計算例のグラフである。 図面中、1は鋼線材、2は冷却槽、3は溶融塩
(冷媒)、4はポンプ、5は熱交換器、6は冷却
水、7は冷却槽入側溶融塩の温度制御装置、8は
温度検出器、9は給水流量制御装置、10は流量
検出器、11は給水弁、13は温度検出器、14
は演算器である。
Figure 1 is a basic configuration diagram of wire direct heat treatment equipment.
Fig. 2 is a perspective view of the wire rod being transported, Fig. 3 is a configuration diagram of the control device for the wire direct heat treatment equipment that has already been proposed, Fig. 4 is a graph of an example of response calculation in the conventional control method, and Fig. 5 is the book of this book. FIG. 6 is a block diagram showing an example of a control device that implements the method of the invention, and is a graph of an example of response calculation in the method of the invention. In the drawing, 1 is a steel wire rod, 2 is a cooling tank, 3 is a molten salt (refrigerant), 4 is a pump, 5 is a heat exchanger, 6 is a cooling water, 7 is a temperature control device for the molten salt at the entrance of the cooling tank, 8 9 is a temperature detector, 9 is a water supply flow rate control device, 10 is a flow rate detector, 11 is a water supply valve, 13 is a temperature detector, 14
is an arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1 熱間圧延された鋼線材を、冷却槽に貯留した
冷媒と直触熱交換することによつて冷却する鋼線
材冷却装置と、冷媒を前記冷却槽との間で循環し
て冷却する熱交換器と、この熱交換器から冷却槽
に供給される冷媒の温度即ち冷却槽入側冷媒温度
を設定値に制御する制御装置とを備える鋼線材直
接熱処理設備の制御方法において、運転条件変更
のために鋼線材の搬送が途切れるに際し、先行材
の終端が前記冷却槽を通過した以後は後行材の運
転条件により算出した冷却槽内冷媒温度の目標値
を前記制御装置の設定値とし、鋼線材の搬送が再
開された後は後行材の先端が冷却槽を通過し且つ
冷却槽内冷媒温度の検出値が許容最低温度以上に
なつた以後に前記制御装置の設定値として後行材
の運転条件により算出した冷却槽入側冷媒温度の
目標値を与えることを特徴とする鋼線材直接熱処
理設備の制御方法。
1. A steel wire cooling device that cools hot-rolled steel wire by direct catalytic heat exchange with a refrigerant stored in a cooling tank, and a heat exchanger that cools the hot-rolled steel wire by circulating the refrigerant between the cooling tank and the cooling tank. and a control device for controlling the temperature of the refrigerant supplied from the heat exchanger to the cooling tank, that is, the temperature of the refrigerant at the entrance of the cooling tank, to a set value. When the conveyance of the steel wire is interrupted, after the end of the preceding material passes through the cooling tank, the target value of the refrigerant temperature in the cooling tank calculated based on the operating conditions of the succeeding material is set as the setting value of the control device, and the steel wire is After the conveyance of the trailing material is resumed, the operation of the trailing material is set as the setting value of the control device after the leading end of the trailing material passes through the cooling tank and the detected value of the refrigerant temperature in the cooling tank becomes equal to or higher than the allowable minimum temperature. A method for controlling direct heat treatment equipment for steel wire rods, characterized in that a target value of a refrigerant temperature on the entrance side of a cooling tank is given based on conditions.
JP11192683A 1983-06-23 1983-06-23 Controlling method of direct heat treating installation for steel wire rod Granted JPS605823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11192683A JPS605823A (en) 1983-06-23 1983-06-23 Controlling method of direct heat treating installation for steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11192683A JPS605823A (en) 1983-06-23 1983-06-23 Controlling method of direct heat treating installation for steel wire rod

Publications (2)

Publication Number Publication Date
JPS605823A JPS605823A (en) 1985-01-12
JPS6256931B2 true JPS6256931B2 (en) 1987-11-27

Family

ID=14573579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11192683A Granted JPS605823A (en) 1983-06-23 1983-06-23 Controlling method of direct heat treating installation for steel wire rod

Country Status (1)

Country Link
JP (1) JPS605823A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890159B2 (en) * 2006-09-05 2012-03-07 新日本製鐵株式会社 Molten salt piping and heat treatment method
JP2014148731A (en) * 2013-02-04 2014-08-21 Kobe Steel Ltd Operation support system for heat treatment furnace

Also Published As

Publication number Publication date
JPS605823A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
US6536677B2 (en) Automation and control of solar air conditioning systems
JPS6289515A (en) Temperature control method and device for hot rolling stock
US4330112A (en) Apparatus for cooling a steel strip in a continuous annealing line
JPS6256931B2 (en)
CA1272431A (en) Method and apparatus of cooling steel strip
US2890037A (en) Method and apparatus for continuously cooling metal strips
JPH0773735B2 (en) Finishing temperature controller
JPH062948A (en) Electric hot water supplying apparatus
JP2001205316A (en) Steel conveying system
JPH0390206A (en) Control method for cooling of hot rolled steel plate
JPS6237693B2 (en)
JPS5858905A (en) Controlling method for optimum rolling in hot rolling
JPS629654B2 (en)
JPS63235013A (en) Control method for static pressure cooling
JPS6337171B2 (en)
JP3539036B2 (en) Cold rolling equipment and cold rolling method
JPS605887A (en) Method and device for controlling washing of steel wire rod
JPH0234728A (en) Method for controlling injection of water into dip cooler in continuous annealing furnace
JPS60248998A (en) Supplying device of supplementary water to cooling tower
JPH0583618B2 (en)
JPS6315330B2 (en)
JP3829746B2 (en) Manufacturing method of hot-rolled steel sheet
JPH08319592A (en) Method for pickling steel sheet
JPS6411686B2 (en)
JPS6368208A (en) Method for cooling sheet bar in hot rolling