JPH0229732B2 - RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO - Google Patents

RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Info

Publication number
JPH0229732B2
JPH0229732B2 JP13911586A JP13911586A JPH0229732B2 JP H0229732 B2 JPH0229732 B2 JP H0229732B2 JP 13911586 A JP13911586 A JP 13911586A JP 13911586 A JP13911586 A JP 13911586A JP H0229732 B2 JPH0229732 B2 JP H0229732B2
Authority
JP
Japan
Prior art keywords
cooling
water
steel strip
temperature
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13911586A
Other languages
Japanese (ja)
Other versions
JPS62297419A (en
Inventor
Makoto Arai
Kuniaki Sato
Yasuhiro Yamaguchi
Isamu Shioda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13911586A priority Critical patent/JPH0229732B2/en
Priority to CA000514447A priority patent/CA1266602A/en
Priority to ES868600603A priority patent/ES2000758A6/en
Priority to AU60501/86A priority patent/AU571786B2/en
Priority to KR1019860006082A priority patent/KR900006694B1/en
Priority to EP86305721A priority patent/EP0210847A3/en
Priority to BR8603527A priority patent/BR8603527A/en
Publication of JPS62297419A publication Critical patent/JPS62297419A/en
Publication of JPH0229732B2 publication Critical patent/JPH0229732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連続焼鈍ラインにおける鋼帯の冷
却装置出側板温制御方法に関し、とくに鋼帯の通
板量の変動や季節的要因による供給冷却水温の変
化に拘らず、鋼帯を所定の目標温度まで効率良く
制御冷却しようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for controlling the plate temperature at the exit side of a cooling device for steel strip in a continuous annealing line, and in particular to supply cooling due to fluctuations in the amount of steel strip passing through or seasonal factors. The objective is to efficiently control and cool the steel strip to a predetermined target temperature regardless of changes in water temperature.

(従来の技術) 一般に表面処理用原板や深絞り用鋼板などは、
冷間圧延後、所定の機械的性質を付与するため
に、加熱、均熱および冷却などの熱処理を順次に
施すいわゆる連続焼鈍が施される。
(Conventional technology) In general, original sheets for surface treatment and steel sheets for deep drawing are
After cold rolling, so-called continuous annealing is performed in which heat treatments such as heating, soaking, and cooling are sequentially performed in order to impart predetermined mechanical properties.

このような連続焼鈍処理に採用されている冷却
方法としては、ガスジエツト冷却、ロール冷却お
よび浸漬冷却などがある。このうちガスジエツト
冷却は、冷却された雰囲気ガスを鋼帯に吹付ける
ことによつて、またロール冷却は、内部に冷媒を
通したロールに鋼帯を巻付けることによつて、さ
らに浸漬冷却は、冷却水槽に鋼帯を浸漬させるこ
とによつてそれぞれ冷却するもので、冷却速度は
ガスジエツト冷却、ロール冷却ついで浸漬冷却の
順に大きくなる。
Cooling methods employed in such continuous annealing include gas jet cooling, roll cooling, and immersion cooling. Of these, gas jet cooling involves blowing cooled atmospheric gas onto the steel strip, roll cooling involves wrapping the steel strip around a roll through which a refrigerant is passed, and immersion cooling involves The steel strip is cooled by immersing it in a cooling water tank, and the cooling rate increases in the order of gas jet cooling, roll cooling, and immersion cooling.

従つて連続焼鈍ラインの冷却帯において、再結
晶温度から大気中で酸化しない温度まで冷却する
場合、高温側ではガスジエツトおよび/またはロ
ール冷却を、一方低温側では浸漬冷却を用いるの
が最も効率的であると考えられている。
Therefore, in the cooling zone of a continuous annealing line, when cooling from the recrystallization temperature to a temperature that does not oxidize in the atmosphere, it is most efficient to use gas jet and/or roll cooling on the high temperature side, while immersion cooling on the low temperature side. It is thought that there is.

かかる浸漬冷却に関しては、これまでにも種々
の方法が提案されている。たとえば、特公昭57−
11931号および同57−11933号各公報に開示の方法
は、複数の冷却水槽を用い各水槽の注水制御を行
うことによつて、またスプレー冷却やミスト冷却
と組合わせることによつて、それぞれ鋼帯を効率
よく冷却すると共に、冷却後の水温をできるだけ
高めて温水としての有効利用も併せて図つたもの
である。
Regarding such immersion cooling, various methods have been proposed so far. For example, special public relations
The methods disclosed in Publications No. 11931 and No. 57-11933 use multiple cooling water tanks to control water injection into each tank, and in combination with spray cooling and mist cooling. In addition to efficiently cooling the belt, the temperature of the water after cooling is raised as much as possible so that it can be used effectively as hot water.

ところで浸漬冷却は通常、鋼帯中の飽和固溶炭
素量の変化量が少なくなる250〜300℃程度の温度
から大気中でテンパーカラーの発生しない温度ま
での冷却に適用される。従来、かかる浸漬処理に
よる冷却速度が速すぎると、固溶炭素による時効
性の問題が懸念されたが、最近では非時効性の材
料としてたとえばNb添加極低炭素鋼など予め第
3元素で固溶炭素を固定した素材が用いられるよ
うになつた。従つて冶金的には冷却速度をいかに
高くしてもそれほど問題にならなくなつてきてお
り、むしろ高速化、高生産能率化などの面から、
最終冷却における冷却速度の一層の向上が望まれ
ている。
By the way, immersion cooling is usually applied to cooling from a temperature of about 250 to 300°C, at which the amount of change in the amount of saturated solid solute carbon in the steel strip is small, to a temperature at which temper color does not occur in the atmosphere. In the past, if the cooling rate by such immersion treatment was too fast, there were concerns about aging problems due to solid solution carbon, but recently, non-aging materials such as Nb-added ultra-low carbon steel have been developed using solid solution with a third element in advance. Materials that fixed carbon began to be used. Therefore, from a metallurgical perspective, it is becoming less of a problem no matter how high the cooling rate is.In fact, from the standpoint of increasing speed and production efficiency,
Further improvement of the cooling rate in final cooling is desired.

しかしながら上記した如き要望に対して、従来
の浸漬冷却は、次のような問題を残していた。
However, in response to the above-mentioned demands, conventional immersion cooling still has the following problems.

(1) 冷却水の温度上昇を抑制するためには、冷却
水槽中への冷却水の補給が不可欠であるが、こ
の場合水槽内の水の流れは上層部に止まり、下
部では水の動きはほとんどないことから、高温
の鋼帯が冷却水中に浸漬される際に鋼帯表面に
は蒸気膜が発生し、この蒸気膜の除去、破壊が
困難なため、冷却効率には自ら限界があつた。
それ故、冷却処理の高速化、高能率化を図るた
めには、浸漬冷却装置の大型化が余儀なくさ
れ、建設費、設置スペースなどの面での不利が
大きかつた。さらに既設設備の改善によつて高
速化を図ることはほとんど不可能に近かつた。
(1) In order to suppress the temperature rise of cooling water, it is essential to replenish the cooling water into the cooling water tank, but in this case, the flow of water in the tank stops at the upper part, and the water does not move at the lower part. As a result, when a high-temperature steel strip is immersed in cooling water, a vapor film is generated on the surface of the steel strip, and this vapor film is difficult to remove or destroy, so cooling efficiency has its own limits. .
Therefore, in order to increase the speed and efficiency of the cooling process, it is necessary to increase the size of the immersion cooling device, which is disadvantageous in terms of construction costs and installation space. Furthermore, it was almost impossible to increase speed by improving existing equipment.

(2) 上記のように浸漬水槽内の水の動きが不均一
であるため温度むらが生じ、鋼帯に悪影響を与
える。
(2) As mentioned above, the uneven movement of water in the immersion tank causes temperature unevenness, which adversely affects the steel strip.

(3) 浸漬冷却水槽から排出される冷却水を温水と
して再利用する場合には、浸漬槽を少なくとも
2槽としてカスケード制御を行わねばならず、
従つて装置がさらに大型化するだけでなく、複
雑な制御も必要となる。
(3) When reusing the cooling water discharged from the immersion cooling water tank as hot water, cascade control must be performed using at least two immersion tanks.
Therefore, not only the device becomes larger but also requires complicated control.

ところで発明者らは、先に上記の諸問題を有利
に解決するものとして、特願昭60−162909号明細
書において、連続焼鈍ラインの冷却ゾーンを通過
させた鋼帯を最終冷却するに際し、第4図に示し
たように鋼帯を、その表裏面から冷却水の流路を
隔てて対設した整流板をそなえる水冷ジヤケツト
で被い、この水冷ジヤケツト中を、鋼帯の走行方
向とは逆向きにしかも該鋼帯の表裏面に沿う整流
として冷却水を強制流動させることから成る連続
焼鈍処理における鋼帯の冷却方法およびその実施
に用いて好適な冷却装置を提案した。
By the way, in order to advantageously solve the above-mentioned problems, the inventors disclosed in Japanese Patent Application No. 162909/1987 that, when final cooling a steel strip passed through a cooling zone of a continuous annealing line, As shown in Figure 4, a steel strip is covered with a water-cooling jacket that has rectifier plates placed opposite each other across the cooling water flow path from the front and back sides of the steel strip, and a water cooling jacket is passed through the water-cooling jacket in the opposite direction to the running direction of the steel strip. We have proposed a cooling method for a steel strip in continuous annealing treatment, which consists of forcing cooling water to flow in a rectifying direction along the front and back surfaces of the steel strip, and a cooling device suitable for carrying out the method.

上記の新しい冷却技術の開発により、従来に比
較して格段に高能率で鋼帯を冷却することが可能
になり、連続焼鈍処理における処理能力は大幅に
向上した。
The development of the new cooling technology described above has made it possible to cool the steel strip with much higher efficiency than before, and the processing capacity in continuous annealing treatment has been greatly improved.

(発明が解決しようとする問題点) しかしながら上記の冷却技術には、冷却水の供
給温度が例えば季節的な要因で変化したり、或い
は鋼帯の通板量が変動したりすると、冷却処理後
の鋼帯温度も変動して目標温度から外れてしまう
ところに問題を残していた。
(Problem to be solved by the invention) However, the above-mentioned cooling technology has problems when the cooling water supply temperature changes due to seasonal factors, or the amount of steel strip threaded changes. The problem remained that the temperature of the steel strip fluctuated and deviated from the target temperature.

第5図に鋼帯の通板量が40T/hの場合におけ
る冷却水の供給温度と冷却後の鋼帯温度との関係
を示したが、同図から明らかなように、冷却水供
給温度が高すぎたり低すぎたりすると、鋼帯温度
は目標温度範囲から外れる。
Figure 5 shows the relationship between the cooling water supply temperature and the steel strip temperature after cooling when the steel strip passing rate is 40T/h.As is clear from the figure, the cooling water supply temperature is If it is too high or too low, the steel strip temperature will be out of the target temperature range.

また、第6図に、冷却水温度が40℃と30℃の2
水準の各場合における鋼帯の通板量と冷却後の鋼
帯温度との関係について調査した結果を示した
が、通板量が増加すると鋼帯の温度も高くなつて
目標温度範囲から外れる場合がある。
Figure 6 also shows two cooling water temperatures of 40°C and 30°C.
The results of an investigation into the relationship between the threading amount of the steel strip and the temperature of the steel strip after cooling for each level are shown, but as the threading amount increases, the temperature of the steel strip also rises and may deviate from the target temperature range. There is.

この発明は、上述した水冷ジヤケツトを用いる
冷却方法において、鋼帯の通板量や冷却水温など
通常考られる変動要因に左右されることなく、常
に安定して鋼帯温度を所定の目標温度に冷却する
ことができる、鋼帯の冷却装置出側板温制御方法
を提案することを目的とする。
In the cooling method using the water-cooled jacket described above, this invention is capable of constantly and stably cooling the steel strip temperature to a predetermined target temperature without being affected by normally considered fluctuation factors such as the amount of steel strip threaded or the cooling water temperature. The purpose of this study is to propose a method for controlling the plate temperature at the exit side of a steel strip cooling device.

(問題点を解決するための手段) この発明は、連続焼鈍ラインの冷却ゾーンを通
過させた鋼帯を、その表裏面から冷却水の流路を
隔てて対設した整流板をそなえる水冷ジヤケツト
内に導いて最終冷却を施すに際し、冷却水を、上
記水冷ジヤケツト内において鋼帯の走行方向とは
逆向きにしかも該鋼帯の表裏面に沿う整流として
強制流動させて鋼帯を冷却する方法において、 冷却水として、水冷ジヤケツト出側の冷却排水
の一部を循環させて入側供給新水と混合させたも
のを用いるものとし、この混合比を調整して冷却
水の温度をコントロールすることにより、鋼帯の
水冷ジヤケツト出側温度を所定の目標温度に制御
することを特徴とする、連続焼鈍ラインにおける
鋼帯の冷却装置出側板温制御方法である。
(Means for Solving the Problems) The present invention provides for a steel strip that has passed through a cooling zone of a continuous annealing line to be placed in a water-cooled jacket equipped with rectifying plates arranged oppositely across a cooling water flow path from the front and back surfaces of the steel strip. In a method of cooling a steel strip by forcing cooling water to flow in the water-cooling jacket in the opposite direction to the running direction of the steel strip and along the front and back surfaces of the steel strip when conducting final cooling. , As the cooling water, a part of the cooling waste water on the outlet side of the water cooling jacket is circulated and mixed with fresh water supplied on the inlet side, and this mixture ratio is adjusted to control the temperature of the cooling water. , a method for controlling the temperature at the exit side of a cooling device for steel strip in a continuous annealing line, characterized in that the temperature at the exit side of the water cooling jacket of the steel strip is controlled to a predetermined target temperature.

以下この発明を具体的に説明する。 This invention will be specifically explained below.

第1図に、この発明に従う制御系を水冷ジヤケ
ツト式冷却装置と共に模式で示す。図中番号1
a,1bはそれぞれ、冷却水を鋼帯の表裏面に沿
つて整流として強制的に導くための整流板であつ
て、これらの整流板1a,1bで水冷ジヤケツト
1を構成する。2はデイフレクタロール、3は冷
却水の供給管、4は冷却排水の貯蔵タンク、5は
ポンプである。
FIG. 1 schematically shows a control system according to the present invention together with a water-cooled jacket type cooling device. Number 1 in the diagram
Reference numerals a and 1b are current plates for forcibly guiding the cooling water as rectification along the front and back surfaces of the steel strip, respectively, and these current plates 1a and 1b constitute the water cooling jacket 1. 2 is a deflector roll, 3 is a cooling water supply pipe, 4 is a storage tank for cooling wastewater, and 5 is a pump.

さて上記の如きしくみになる冷却装置におい
て、冷却水は、鋼帯Sの走行径路の下流側に設け
られた供給口から水冷ジヤケツト1内に導入さ
れ、該ジヤケツト1内を鋼帯Sの走行方向とは逆
向きに強制流動させられる間に鋼帯を効率よく冷
却したのち排出口から排出されるわけであるが、
この発明では、かかる冷却排水の一部を冷却水の
温度調整のために循環再利用するのである。
Now, in the cooling system constructed as described above, the cooling water is introduced into the water cooling jacket 1 from the supply port provided on the downstream side of the running path of the steel strip S, and flows through the jacket 1 in the running direction of the steel strip S. While the steel strip is forced to flow in the opposite direction, it is efficiently cooled and then discharged from the discharge port.
In this invention, a part of the cooling waste water is recycled and recycled for temperature adjustment of the cooling water.

6は冷却排水を循環させるための戻り配管、7
は循環水の温度を検出する温度計、8は循環水の
流量調節弁、9は循環水の流量計である。また1
0は冷却新水供給用の配管、そして11,12,
13はそれぞれ冷却新水の温度計、流量調節弁お
よび流量計であり、14は鋼帯の出側板温を検出
する温度計である。
6 is a return pipe for circulating cooling waste water, 7
Reference numeral 8 indicates a thermometer for detecting the temperature of circulating water, 8 indicates a flow rate control valve for circulating water, and 9 indicates a flow meter for circulating water. Also 1
0 is the piping for supplying fresh cooling water, and 11, 12,
13 is a thermometer, a flow rate control valve, and a flow meter for fresh cooling water, and 14 is a thermometer for detecting the outlet side plate temperature of the steel strip.

さらに15は演算器であり、各検出器からの検
出値に基づいて、供給冷却水温が所定の温度にな
るように循環水と新水との量を算出する。得られ
た演算結果は流量制御器16,17に出力され、
その出力に応じて流量調節弁8,12の開度が調
節される。かくしてそれぞれ所定の量に調整され
た循環水と新水とは混合器18で混合され、所定
温度の冷却水とされたのち、供給配管3を介して
水冷ジヤケツト1に供給されることになる。
Furthermore, 15 is a computing unit, which calculates the amount of circulating water and fresh water based on the detected values from each detector so that the supplied cooling water temperature becomes a predetermined temperature. The obtained calculation results are output to the flow rate controllers 16 and 17,
The opening degrees of the flow control valves 8 and 12 are adjusted according to the output. The circulating water and fresh water, each adjusted to a predetermined amount, are mixed in the mixer 18 to form cooling water at a predetermined temperature, which is then supplied to the water cooling jacket 1 via the supply pipe 3.

なお19は冷却処理後の鋼帯Sの水切りを行う
ためのリンガーロールである。
Note that 19 is a ringer roll for draining the steel strip S after cooling treatment.

(作 用) 次に演算装置15における演算内容について説
明する。
(Function) Next, the contents of the calculation in the calculation device 15 will be explained.

いま鋼帯の目標冷却温度TSOの許容温度範囲は
(1)式のとおりとする。
The allowable temperature range for the target cooling temperature T SO of the steel strip is now
As shown in equation (1).

TSO1≦TSO≦TSO2 ……(1) 循環水量をQC、新水量をQNとすると、冷却水
の供給量Qは次式(2)で示される。
T SO1 ≦T SO ≦T SO2 ...(1) When the amount of circulating water is Q C and the amount of new water is Q N , the amount Q of cooling water supplied is expressed by the following equation (2).

Q=QC+QN ……(2) また冷却水の設定温度をTW、循環水温度を
TWC、新水温度をTWNとすると、次式(3)の関係が
成り立つ。
Q=Q C +Q N ...(2) Also, T W is the set temperature of the cooling water, and T W is the temperature of the circulating water.
When T WC is the new water temperature and T WN is the new water temperature, the following equation (3) holds true.

QC:QN=TW−TWN/TWC−TWN:TWC−TW/TWC−TWN すなわち (TW−TWN)QN=(TWC−TW)QC ……(3) であるから、(2),(3)式より QC=TW−TWN/TWC−TWNQ ……(4) QN=TWC−TW/TWC−TWNQ ……(5) が算出される。 Q C :Q N =T W −T WN /T WC −T WN :T WC −T W /T WC −T WN, that is, (T W −T WN )Q N = (T WC −T W )Q C … …(3) Therefore, from equations (2) and (3), Q C =T W −T WN /T WC −T WN Q …(4) Q N =T WC −T W /T WC −T WN Q...(5) is calculated.

そこでまず温度計14で検出した鋼帯温度
TSO′が(1)式の範囲内にあるかどうかを判定する。
(1)式を満足していれば検出された温度TWN,TWC
に基づき、(4),(5)式よりQC,QNを算出する。
First, the temperature of the steel strip detected by thermometer 14 is
Determine whether T SO ′ is within the range of equation (1).
If equation (1) is satisfied, the detected temperatures T WN and T WC
Based on this, calculate Q C and Q N from equations (4) and (5).

一方、上限を超えていれば、設定水温TWを一
定値だけ下げる。
On the other hand, if the upper limit is exceeded, the set water temperature T W is lowered by a certain value.

TW=TW−a ……(6) 逆に下限を下まわつていれば、設定水温TW
一定値だけ上げる。
T W = T W −a (6) Conversely, if the water temperature is below the lower limit, increase the set water temperature T W by a certain value.

TW=TW+a ……(7) 次に新たに設定された水温TWに基づき、循環
水量QCと新水量QNとを(4),(5)式から算出する。
ここで、各水温TWC,TWNは温度計7,11の検
出値を用いる。
T W = T W +a ... (7) Next, based on the newly set water temperature T W , the circulating water amount Q C and the new water amount Q N are calculated from equations (4) and (5).
Here, the detected values of the thermometers 7 and 11 are used for each water temperature T WC and T WN .

以上をまとめると、第2図のフローのようにな
る。
To summarize the above, the flow is as shown in Figure 2.

上述したようにな手順によつて、冷却水供給温
度を制御した場合の鋼帯出側板温と通板量との関
係を模式的に示すと第3図のとおりになる。
FIG. 3 schematically shows the relationship between the sheet temperature on the outlet side of the steel strip and the threading amount when the cooling water supply temperature is controlled by the procedure described above.

(実施例) 前掲第1図に示した冷却装置および制御系を用
いて次の条件下に鋼帯の冷却処理を行つた。
(Example) A steel strip was cooled under the following conditions using the cooling device and control system shown in FIG. 1 above.

●鋼帯寸法:厚み1mm、幅1000mm ●冷却水量:13.2T/h (新水量:3.3T/h,循環水
量:9.9T/h) ●冷却水量:40℃(新水温度:10℃、循環水温
度:50℃) ●冷却処理後の目標温度:50〜60℃ ●初期通板量20T/h 上記の条件下に通板量を次第に上げていつたと
ころ通板量が40T/hに達したときに、鋼帯の冷
却装置出側温度が目標温度の上限である60℃を越
えそうになつたので、新水と循環水との混合割合
をそれぞれ7.1T/h、6.1T/hに変更して、冷
却水温度を30℃まで低減した。その結果、鋼帯温
度は50℃まで低下したので、そのまま冷却処理を
継続したところ、通板量が65T/hとなつた時点
で、鋼帯温度が再び60℃を越える傾向がみられた
ので、新水と循環水との混合割合をそれぞれ
11T/h,2.2T/hに調整して冷却水温を20℃ま
で低下させた。
●Steel strip dimensions: thickness 1mm, width 1000mm ●Cooling water amount: 13.2T/h (new water amount: 3.3T/h, circulating water amount: 9.9T/h) ●Cooling water amount: 40℃ (new water temperature: 10℃, circulating Water temperature: 50℃) ●Target temperature after cooling treatment: 50 to 60℃ ●Initial threading rate: 20T/h When the threading rate was gradually increased under the above conditions, the threading rate reached 40T/h. At one time, the temperature at the outlet of the steel strip cooling system was about to exceed the upper limit of the target temperature of 60℃, so the mixing ratio of fresh water and circulating water was changed to 7.1T/h and 6.1T/h, respectively. The cooling water temperature was reduced to 30℃. As a result, the steel strip temperature dropped to 50℃, so we continued the cooling process, and when the throughput reached 65T/h, the steel strip temperature tended to exceed 60℃ again. , the mixing ratio of fresh water and recycled water, respectively.
The cooling water temperature was lowered to 20℃ by adjusting to 11T/h and 2.2T/h.

その結果、鋼帯温度は50℃まで低下し、その後
は通板量を80T/hまで上昇させても、鋼帯温度
は60℃を越えることはなかつた。第7図に操業成
績を整理して示したとおり、通板量が20T/hか
ら80T/hまで変化した場合であつても、鋼帯の
冷却装置出側温度を常に目標温度である50〜60℃
の範囲に収めることができた。
As a result, the steel strip temperature decreased to 50°C, and thereafter, even when the throughput was increased to 80T/h, the steel strip temperature did not exceed 60°C. As shown in Fig. 7, the operating results are summarized and shown, even when the throughput rate changes from 20T/h to 80T/h, the temperature at the outlet of the steel strip cooling device is always kept at the target temperature of 50~80T/h. 60℃
was able to fit within the range.

(発明の効果) かくしてこの発明によれば、連続焼鈍ラインに
おける冷却処理において、通板量などが変動した
としても、かかる変動要因に左右されることなし
に鋼帯温度を常に所定の目標温度範囲に収めるこ
とができる。
(Effects of the Invention) Thus, according to the present invention, even if the threading amount etc. fluctuates in the cooling process in the continuous annealing line, the steel strip temperature is always kept within the predetermined target temperature range without being influenced by such fluctuation factors. can be accommodated in

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う制御系を水冷ジヤケ
ツト式冷却装置と共に示した模式図、第2図は、
この発明に従う制御要領を示すフローチヤート、
第3図は、この発明に従う板温制御を行つたとき
の通板量と水冷ジヤケツト出側鋼帯温度との関係
を示したグラフ、第4図は、水冷ジヤケツト式冷
却装置の模式図、第5図は、通板量が一定の場合
における冷却水入側温度と水冷ジヤケツト出側鋼
帯温度との関係を示したグラフ、第6図は、冷却
水入側温度が一定の温度における通板量と水冷ジ
ヤケツト出側鋼帯温度との関係を示したグラフ、
第7図は、この発明を実操業に適用したときの通
板量と水冷ジヤケツト出側鋼帯温度との関係を示
したグラフである。 1……水冷ジヤケツト、1a,1b……整流
板、2……デイフレクタロール、3……冷却水の
供給管、4……冷却排水の貯蔵タンク、5……ポ
ンプ、6……戻り配管、7,11,14……温度
計、8,12……流量調節弁、9,13……流量
計、15……演算器、16,17……流量制御
器、18……混合器、19……リンガーロール。
FIG. 1 is a schematic diagram showing a control system according to the present invention together with a water-cooled jacket type cooling device, and FIG.
A flowchart showing the control procedure according to the present invention,
FIG. 3 is a graph showing the relationship between the amount of sheet passing and the temperature of the steel strip at the exit side of the water-cooled jacket when performing sheet temperature control according to the present invention. FIG. Figure 5 is a graph showing the relationship between the cooling water inlet temperature and the water-cooled jacket outlet steel strip temperature when the threading amount is constant. A graph showing the relationship between the amount and the temperature of the steel strip at the exit side of the water-cooled jacket.
FIG. 7 is a graph showing the relationship between the throughput amount and the temperature of the steel strip at the exit side of the water-cooled jacket when the present invention is applied to actual operation. 1... Water cooling jacket, 1a, 1b... Current plate, 2... Deflector roll, 3... Cooling water supply pipe, 4... Cooling wastewater storage tank, 5... Pump, 6... Return piping , 7, 11, 14... Thermometer, 8, 12... Flow rate control valve, 9, 13... Flow meter, 15... Arithmetic unit, 16, 17... Flow rate controller, 18... Mixer, 19 ...Ringer roll.

Claims (1)

【特許請求の範囲】 1 連続焼鈍ラインの冷却ゾーンを通過させた鋼
帯を、その表裏面から冷却水の流路を隔てて対設
した整流板をそなえる水冷ジヤケツト内に導いて
最終冷却を施すに際し、冷却水を、上記水冷ジヤ
ケツト内において鋼帯の走行方向とは逆向きにし
かも該鋼帯の表裏面に沿う整流として強制流動さ
せて鋼帯を冷却する方法において、 冷却水として、水冷ジヤケツト出側の冷却排水
の一部を循環させて入側供給新水と混合させたも
のを用いるものとし、この混合比を調整して冷却
水の温度をコントロールすることにより、鋼帯の
水冷ジヤケツト出側温度を所定の目標温度に制御
することを特徴とする、連続焼鈍ラインにおける
鋼帯の冷却装置出側板温制御方法。
[Scope of Claims] 1. A steel strip passed through a cooling zone of a continuous annealing line is guided from its front and back surfaces into a water-cooled jacket equipped with baffle plates placed opposite each other across a cooling water flow path for final cooling. In this method, the steel strip is cooled by forcing the cooling water to flow in the water-cooling jacket in a direction opposite to the running direction of the steel strip and along the front and back surfaces of the steel strip, in which the water-cooling jacket is used as the cooling water. A part of the outlet cooling waste water is circulated and mixed with the fresh water supplied to the inlet side, and by adjusting this mixing ratio and controlling the temperature of the cooling water, the water cooling jacket outlet of the steel strip can be cooled. 1. A method for controlling outlet side plate temperature of a steel strip cooling device in a continuous annealing line, the method comprising controlling the side temperature to a predetermined target temperature.
JP13911586A 1985-07-25 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO Expired - Lifetime JPH0229732B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP13911586A JPH0229732B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO
CA000514447A CA1266602A (en) 1985-07-25 1986-07-23 Method and apparatus for cooling steel strips
ES868600603A ES2000758A6 (en) 1985-07-25 1986-07-24 Method and apparatus for cooling steel strips.
AU60501/86A AU571786B2 (en) 1985-07-25 1986-07-24 Cooling of steel strip in a continuous annealing line
KR1019860006082A KR900006694B1 (en) 1985-07-25 1986-07-25 Method and apparatus for cooling steel strips
EP86305721A EP0210847A3 (en) 1985-07-25 1986-07-25 Method and apparatus for cooling steel strips
BR8603527A BR8603527A (en) 1985-07-25 1986-07-25 METHOD AND APPLIANCE FOR COOLING STEEL STRIPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13911586A JPH0229732B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Publications (2)

Publication Number Publication Date
JPS62297419A JPS62297419A (en) 1987-12-24
JPH0229732B2 true JPH0229732B2 (en) 1990-07-02

Family

ID=15237842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13911586A Expired - Lifetime JPH0229732B2 (en) 1985-07-25 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Country Status (1)

Country Link
JP (1) JPH0229732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547936B2 (en) * 2004-02-25 2010-09-22 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet

Also Published As

Publication number Publication date
JPS62297419A (en) 1987-12-24

Similar Documents

Publication Publication Date Title
JPH0229732B2 (en) RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO
CA1060322A (en) Method and apparatus for water quenching steel strip with reduced amount of oxidation
US4838526A (en) Apparatus of cooling steel strip
JP6792561B2 (en) Methods and equipment for reaction control
KR900001092B1 (en) Apparatus for colling strip of metals
KR900006694B1 (en) Method and apparatus for cooling steel strips
JPS62297418A (en) Control method for sheet temperature at outlet side of cooling apparatus for steel sheet in continuous annealing line
JP4286544B2 (en) Method and apparatus for forced convection cooling of steel strip in continuous heat treatment equipment
JP2000256818A (en) Method and device for cooling galvanized steel sheet
KR890002799B1 (en) Method for controlling the temperature of steel strip in the cooling zone of continuous annealing furnace
JPH1143758A (en) Cooling method in alloying treatment process
JPS6337171B2 (en)
JP3142459B2 (en) Cooling system for steel strip in continuous annealing line
JPH0234727A (en) Method and device for cooling metallic strip
JPH0371486B2 (en)
JP2004124144A (en) Continuous hot-dip metal plating apparatus
JPH0319287B2 (en)
JPS5832219B2 (en) Cooling method of steel strip in continuous annealing line
SU1357100A1 (en) Automatic control system for accelerated cooling of rolled stock on exit side of section mill
JPS6241298B2 (en)
JPH0583618B2 (en)
JPS59118816A (en) Control device of installation for direct heat treatment of steel wire rod
JPS60145326A (en) Method and installation for continuous annealing of cold rolled steel sheet
JPS6223937A (en) Method and apparatus for cooling steel strip in continuous annealing treatment
JP2889650B2 (en) Continuous annealing equipment

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees