JPS6241298B2 - - Google Patents

Info

Publication number
JPS6241298B2
JPS6241298B2 JP56171311A JP17131181A JPS6241298B2 JP S6241298 B2 JPS6241298 B2 JP S6241298B2 JP 56171311 A JP56171311 A JP 56171311A JP 17131181 A JP17131181 A JP 17131181A JP S6241298 B2 JPS6241298 B2 JP S6241298B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel strip
liquid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56171311A
Other languages
Japanese (ja)
Other versions
JPS5873728A (en
Inventor
Yoshikazu Fukuoka
Teiji Nakayama
Shigehiro Takushima
Akihiko Furuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP17131181A priority Critical patent/JPS5873728A/en
Publication of JPS5873728A publication Critical patent/JPS5873728A/en
Publication of JPS6241298B2 publication Critical patent/JPS6241298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Description

【発明の詳細な説明】 本発明は連続焼鈍炉における鋼帯の冷却方法に
係り、連続焼鈍設備や連続亜鉛メツキ設備の如き
において鋼帯を冷却するに当り、該鋼帯を過時効
処理温度まで精度よく温度管理して冷却すること
のできる方法を提供しようとするものである。
[Detailed Description of the Invention] The present invention relates to a method for cooling a steel strip in a continuous annealing furnace, and when cooling the steel strip in continuous annealing equipment or continuous galvanizing equipment, the steel strip is heated to an overaging treatment temperature. The purpose is to provide a cooling method that can accurately control temperature.

連続焼鈍設備や連続亜鉛メツキ設備において鋼
帯を高温から冷却する方法としては、鋼帯に雰
囲気ガスを吹付けて冷却する方法、鋼帯を100
℃以下の水中に通板し鋼帯表面に発生する蒸気膜
をスプレーノズルで飛散させ冷却する方法、鋼
帯に気水を空中でスプレー冷却する方法、冷媒
液として100℃以上の沸点を有する水性液を使用
するものとして特開昭52−93619、特開昭53−
146219並びに溶融塩を冷媒とする特開昭55−
104433などが知られているが、これら従来法によ
るものはそれぞれに不利、欠点もしくは未解決の
問題があり、何れも未だ効果的な鋼帯冷却方法と
なし得ない。即ちによるガス吹付法は冷却速度
が遅く、せいぜい40℃/secが限度であり、この
ため再結晶温度以上の如きから鋼帯を冷却する際
に軟質材を製造するに必要な固溶炭素析出促進力
が不足し、又高張力鋼板を製造する際には(α+
γ)相からの冷却においてマルテンサイトの析出
を期待するには冷却速度に限界がある。更にこの
方法は多量のガス循還冷却風量を必要とするめ設
備コスト及びランニングコストが高くならざるを
得ない。これに対の方法はその冷却速度が約
1000℃/secと著しく高速であるので前記ガス冷
却方法の不利点を解消できるが、この方法は冷却
終点が水温まで低下するので過時効処理に移る以
前に鋼帯を再加熱しなければならないこととな
り、工数的、エネルギー的に不利となる。又の
方法は気水空中スプレーによりの方法の不利を
避けることが可能であるが、鋼帯表面の蒸気膜形
成が幅方向における両端部と中央部とで一様でな
く、両端部の蒸気膜が急速に消滅し易いため鋼帯
温度の幅方向での不均一化が生じ鋼帯形状を損う
と共に材質的にも悪影響の起ることがある欠点を
有する。の方法中、水性液を使用するものは過
冷却は免れず、再加熱のためのエネルギー付与を
必要とする。又、溶融塩を使用した例において
は、冷却速度もしくは終点温度の管理等の終点温
度の制御精度を高める点まではまだ検討されてお
らず、連続焼鈍炉の冷却技術としてはまだ問題が
あつた。
Methods for cooling steel strip from high temperatures in continuous annealing equipment and continuous galvanizing equipment include cooling the steel strip by blowing atmospheric gas onto it;
A method in which the steel strip is cooled by passing it through water at a temperature below ℃ and scattering the vapor film generated on the surface of the steel strip using a spray nozzle.A method in which the steel strip is cooled by spraying air water in the air.Aqueous refrigerant liquid with a boiling point of 100℃ or higher JP-A No. 52-93619 and JP-A No. 53-Sho.
146219 and JP-A-1989-55 using molten salt as a refrigerant
104433, etc., but each of these conventional methods has disadvantages, shortcomings, or unresolved problems, and none of them has been able to be used as an effective steel strip cooling method yet. In other words, the cooling rate of the gas blowing method is slow, at most 40°C/sec, and therefore, when cooling the steel strip from temperatures above the recrystallization temperature, it is difficult to promote the precipitation of solid solution carbon, which is necessary to produce soft materials. When the force is insufficient or when manufacturing high tensile strength steel plates (α+
There is a limit to the cooling rate in order to expect the precipitation of martensite in cooling from the γ) phase. Furthermore, this method requires a large amount of gas circulation cooling air, which inevitably increases equipment costs and running costs. On the other hand, the cooling rate of the opposite method is approximately
Since it is extremely fast at 1000℃/sec, it can overcome the disadvantages of the gas cooling method described above, but in this method, the cooling end point drops to water temperature, so the steel strip must be reheated before proceeding to overaging treatment. Therefore, it is disadvantageous in terms of man-hours and energy. The other method can avoid the disadvantages of the method using air-water spray, but the formation of a steam film on the steel strip surface is not uniform between both ends and the center in the width direction, and the steam film at both ends is not uniform. This has the disadvantage that the temperature of the steel strip tends to disappear rapidly, which causes non-uniformity of the steel strip temperature in the width direction, which impairs the shape of the steel strip and may also have an adverse effect on the material quality. Among these methods, those using aqueous liquids are subject to supercooling and require energy to be reheated. In addition, in the case of using molten salt, improving the control accuracy of the end point temperature, such as cooling rate or end point temperature management, has not yet been considered, and there are still problems as a cooling technology for continuous annealing furnaces. .

本発明は上記したような実情に鑑み検討を重ね
て創業されたものであつて、鋼帯を加熱し均熱し
てから冷却し、次いで過時効処理してから最終冷
却するに当り、前記均熱後の冷却において、液温
が180℃以上過時効処理温度以下の冷媒中におい
て、複数の冷媒液を通過させるか、液温の異なる
冷媒液を通過させるか、又は冷媒液の液位を変化
させて通過させるかして、冷却条件を調整して過
時効処理温度まで冷却せしめることにより鋼帯幅
方向において均一且つ効率よく冷却することに成
功した。即ち斯かる本発明においては連続焼鈍炉
などで鋼帯を焼鈍し冷却するに当つて沸点が高
く、又蒸気膜が発生し難い冷媒液を用い、その液
温を所望冷却終点温度近くにコントロールし、鋼
帯を該冷媒液中に通板することによつて鋼帯を均
一に冷却終点温度まで冷却するものである。又本
発明においては上記したような冷媒液を収容した
冷却タンクを1ユニツトのみとする場合の外、2
ユニツト、3ユニツト或いはそれ以上の多段に設
置することができ、このように冷却タンクを多段
に設置することにより鋼帯材質の改善等、必要と
される品質に応じ冷却開始温度から終点温度まで
の冷却速度を任意にコントロールすることが可能
となる。使用すべき冷媒液としては沸点が100℃
より高いモノエチレングリコール(沸点197℃)、
ジエチレングリコール(沸点245℃)、トリエチレ
ングリコール(沸点278℃)、テトラエチレングリ
コール(沸点327℃)およびポリエチレングリコ
ール(沸点330℃以上)などが適宜に用いられ
る。
The present invention was established after repeated studies in view of the above-mentioned circumstances, and the present invention is based on the above-mentioned soaking process. In the subsequent cooling, multiple refrigerant liquids are passed through the refrigerant whose liquid temperature is higher than or equal to the overaging treatment temperature, or refrigerant liquids with different liquid temperatures are passed through, or the liquid level of the refrigerant liquid is changed. By adjusting the cooling conditions and cooling the steel strip to the overaging treatment temperature, the steel strip was successfully cooled uniformly and efficiently in the width direction. That is, in the present invention, when a steel strip is annealed and cooled in a continuous annealing furnace or the like, a refrigerant liquid that has a high boiling point and does not easily generate a vapor film is used, and the temperature of the liquid is controlled close to the desired cooling end point temperature. The steel strip is cooled uniformly to the cooling end point temperature by passing the steel strip through the refrigerant liquid. Furthermore, in the present invention, in addition to the case where the number of cooling tanks containing the refrigerant liquid as described above is only one unit, two units are used.
It can be installed in multiple units, three units, or more, and by installing cooling tanks in multiple stages, it is possible to improve the quality of the steel strip from the cooling start temperature to the end point temperature according to the required quality, such as improving the steel strip material. It becomes possible to arbitrarily control the cooling rate. The boiling point of the refrigerant liquid to be used is 100℃.
Higher monoethylene glycol (boiling point 197 °C),
Diethylene glycol (boiling point: 245°C), triethylene glycol (boiling point: 278°C), tetraethylene glycol (boiling point: 327°C), polyethylene glycol (boiling point: 330°C or higher), and the like are appropriately used.

本発明によるものの具体的実施態様を添附図面
に示すものについて説明すると、低炭素鋼板
(C:0.01〜0.07%、Mn:0.15〜0.3%)を第1図
に示すように700℃に加熱してから適当な均熱時
間を採り、次いで400℃まで50〜1500℃/secで冷
却し、この温度から300℃近辺で1〜3分間の過
時効処理を行い、最終冷却帯で100℃以下に冷却
して炉外に引出し絞り性の優れた軟質鋼板を得る
に当つて、第2図に示すような連続焼鈍設備を用
いた。即ちペイオフリール1に装入した鋼帯10
のコイルを巻きほどきながら入側ルーパ2を経て
加熱帯3および均熱帯4に通板せしめて前記した
ように700℃前後或いは冶金上からの要求に応じ
てそれより高い850℃迄の温度、若しくは700℃よ
り低い450℃程度までの温度から冷却タンク13
の冷媒液12中に挿入せしめられ、前記のような
冷却速度で希望する終点温度まで急速冷却され
る。このものは過時効処理帯5、最終冷却帯6を
経、出側ルーパー7から調質圧延機8を経てテン
シヨンリール9に巻き取られるように成つている
が、前記したような冷却タンク13部分の具体的
構成の仔細は別に第3図に示されている。
To explain the specific embodiment of the present invention shown in the attached drawings, a low carbon steel plate (C: 0.01 to 0.07%, Mn: 0.15 to 0.3%) is heated to 700°C as shown in Figure 1. Take an appropriate soaking time from then on, cool down to 400℃ at a rate of 50 to 1500℃/sec, perform an overaging treatment for 1 to 3 minutes at around 300℃ from this temperature, and cool to below 100℃ in the final cooling zone. In order to obtain a soft steel plate with excellent drawability and drawability outside the furnace, continuous annealing equipment as shown in FIG. 2 was used. That is, the steel strip 10 charged into the payoff reel 1
While unwinding the coil, the plate is passed through the inlet looper 2 to the heating zone 3 and soaking zone 4, and as mentioned above, the temperature is around 700°C, or higher depending on metallurgical requirements up to 850°C. Or cooling tank 13 from temperatures below 700°C to around 450°C.
is inserted into the refrigerant liquid 12, and rapidly cooled to the desired end point temperature at the cooling rate as described above. This material passes through an overaging treatment zone 5, a final cooling zone 6, an exit looper 7, a temper rolling mill 8, and is wound onto a tension reel 9. Details of the specific structure of the parts are separately shown in FIG.

前記冷却タンク13を底部に設けた冷却室15
の均熱帯4側に設けられた入口部には入口部ガス
シール23が設けられ、該ガスシール部23を介
して鋼帯10を冷却タンク13の冷媒液12中に
通入する。該冷媒液12中には液温計18が設け
られ、該液温計18で得られた温度信号が自動温
度コントローラ19に送られ、制御信号切換器2
0を介して、液温上昇の場合にはヒータ17に対
する加熱自動調節器22に切換操作が与えられ、
又冷却の場合にはクーラー16に対する冷却水量
自動調節弁21に切換操作が与えられ自動的な温
度コントロール操作が行われ、所定の液温に冷媒
液をコントロールし、該冷媒液112には循環ポ
ンプ14で昇圧され、スプレーノズル11から鋼
帯10の表面に1m/sec以上の流速でスプレー
され、しかも鋼帯10の温度は冷却室10の上部
に設けられた板温計30で測定されて自動温度コ
ントローラ19に信号が送られ、目標板温との相
違によつて修正操作がなされるように成つてい
る。鋼帯10は冷却室出側において出口部ガスシ
ール24を経て過時効処理帯に送入されるが、こ
の出口部ガスシール24に先行して冷媒液ワイピ
ング31でN2ガスの如きで冷媒液を拭い取る。
なお過時効処理帯5の出側における鋼帯10の移
送ロールにライン速度計27を設けてライン速度
を検出し、その検出結果を電流指示変換器28を
介して液位コントローラ29に送り、該液位コン
トローラ29により液位調整モータ25を操作
し、液位調整ゲート26を昇降して冷却タンク1
3内の冷媒液位を適宜に調整し得るように成つて
いる。
Cooling chamber 15 with the cooling tank 13 provided at the bottom
An inlet gas seal 23 is provided at the inlet provided on the soaking zone 4 side, and the steel strip 10 is passed through the gas seal 23 into the refrigerant liquid 12 of the cooling tank 13. A liquid thermometer 18 is provided in the refrigerant liquid 12, and a temperature signal obtained by the liquid thermometer 18 is sent to an automatic temperature controller 19, and a control signal switch 2
0, a switching operation is given to the automatic heating regulator 22 for the heater 17 in the case of an increase in liquid temperature;
In the case of cooling, a switching operation is given to the automatic cooling water amount control valve 21 for the cooler 16 to perform an automatic temperature control operation to control the refrigerant liquid to a predetermined liquid temperature. 14, and the spray is sprayed from the spray nozzle 11 onto the surface of the steel strip 10 at a flow rate of 1 m/sec or more, and the temperature of the steel strip 10 is automatically measured by a plate thermometer 30 installed at the top of the cooling chamber 10. A signal is sent to the temperature controller 19, and a corrective operation is performed depending on the difference from the target plate temperature. The steel strip 10 is sent to the overaging treatment zone through the outlet gas seal 24 on the exit side of the cooling chamber. Prior to the outlet gas seal 24, a refrigerant liquid wiping 31 is used to wipe the refrigerant liquid with N2 gas or the like. wipe it off.
Note that a line speed meter 27 is installed on the transfer roll of the steel strip 10 on the exit side of the overaging treatment zone 5 to detect the line speed, and the detection result is sent to the liquid level controller 29 via the current indicating converter 28 to The liquid level adjustment motor 25 is operated by the liquid level controller 29, and the liquid level adjustment gate 26 is raised and lowered to cool the cooling tank 1.
The liquid level of the refrigerant in 3 can be adjusted as appropriate.

本発明によるものの具体的実施例として、鋼帯
10を冷却開始温度700℃からポリエチレングリ
コール〔HO(CH2CH2O)nH〕で冷却する場合
について説明すると、前記鋼帯として厚さ0.8
mm、幅1000mmの低炭素鋼板を40T/Hrの通過処理
量で冷却するときの冷媒液温400℃A、350℃B、
300℃C、および180℃Dの場合の鋼帯温度と冷却
時間の関係は要約して第4図に示す通りである。
即ち例えば700℃から冷却して終点温度400℃で冷
却を止めたい場合に、液温350℃Bを採用したと
すれば鋼帯10は700℃から400℃まで冷却速度α
=400℃/secで0.75秒間に冷却され、制御精度
は400℃±10℃の終点温度が要求される場合の冷
却時間についての保持精度は0.75±0.12秒を必要
とする。又液温180℃のDを採用し冷却終点温度
400℃で止めようとすると、その冷却速度α
830℃/secと速くなるから上記同様に400℃±10
℃を維持するにはその冷却時間保持精度は0.37±
0.03秒と更に厳格な冷却時間のコントロールを必
要とする。これらに対し液温を400℃としてAの
場合は冷却時間保持精度を同じとじて比較すると
冷却終点温度精度が最もよく、液温が低くなるに
従い冷却速度は早くなるが精度が劣ることにな
る。換言すれば、本発明において冷却終点温度精
度を±10℃として考えた場合、冷媒液温350℃B
にすれば冷却時間の変動許容値が±0.12秒で、工
業的に0.1秒以内であれば充分に制御することが
可能であり、実地的にこの液温350℃Bで管理
し、常に適切な冷却終点温度による冷却をなすこ
とができる。勿論夫々の場合において冷媒液温を
終点板温精度の許容値や要望冷却速度によつて変
えることができる。
As a specific example of the present invention, a case will be described in which a steel strip 10 is cooled from a cooling start temperature of 700° C. with polyethylene glycol [HO(CH 2 CH 2 O) nH]. The steel strip has a thickness of 0.8
refrigerant liquid temperature 400℃A, 350℃B when cooling a low carbon steel plate with a width of 1000mm with a throughput of 40T/Hr,
The relationship between steel strip temperature and cooling time at 300°C and 180°C is summarized in FIG. 4.
That is, for example, if you want to cool from 700°C and stop cooling at the end point temperature of 400°C, if you adopt a liquid temperature of 350°C, then the steel strip 10 will cool at a cooling rate α from 700°C to 400°C.
2 = cooling in 0.75 seconds at 400°C/sec, and control accuracy requires a holding accuracy of 0.75±0.12 seconds for the cooling time when an end point temperature of 400°C ± 10°C is required. In addition, by adopting D with a liquid temperature of 180℃, the cooling end point temperature
If you try to stop it at 400℃, the cooling rate α 4 is
The speed is 830℃/sec, so 400℃±10 as above.
To maintain the temperature at ℃, the cooling time retention accuracy is 0.37±
Requires even stricter cooling time control of 0.03 seconds. On the other hand, when the liquid temperature is 400°C and the cooling time holding accuracy is the same, the cooling end point temperature accuracy is the best, and as the liquid temperature becomes lower, the cooling rate becomes faster but the accuracy becomes worse. In other words, when considering the cooling end point temperature accuracy as ±10℃ in the present invention, the refrigerant liquid temperature is 350℃B.
If the allowable value of variation in cooling time is ±0.12 seconds, industrially it is possible to fully control it within 0.1 seconds, and in practice, this liquid temperature is controlled at 350℃B and always maintained at an appropriate temperature. Cooling can be performed according to the cooling end point temperature. Of course, in each case, the refrigerant liquid temperature can be changed depending on the tolerance value of the end point plate temperature accuracy and the desired cooling rate.

次に冷却終点板温制御について説明すると、上
記のように板温終点400℃の場合、冷媒目標設定
温度を350℃とする。即ちこの液温を400℃まで高
めれば第5図に示すように冷却温度精度は向上す
るが、上記冷媒液の場合には蒸気膜が鋼帯板幅方
向において不均一発生域F内に入り形状が悪くな
る。従つてこれらの両条件を考慮して350℃程度
とすることが適正である。
Next, to explain the cooling end point plate temperature control, when the plate temperature end point is 400°C as described above, the refrigerant target set temperature is set to 350°C. In other words, if the liquid temperature is increased to 400℃, the cooling temperature accuracy will improve as shown in Figure 5, but in the case of the above-mentioned refrigerant liquid, the vapor film will enter the non-uniformity generation area F in the width direction of the steel strip and the shape will change. becomes worse. Therefore, considering both of these conditions, it is appropriate to set the temperature to about 350°C.

上記のように目標液温が決定されると前記した
第3図に示すように自動温度コントローラ19で
常に制御され、鋼帯通過速度はライン速度計27
で計測され、その速度変更分は冷媒通過時間が変
動するので変動量を修正するよう液位コントロー
ラ29に信号を与え、モータ25でゲート26を
調整する。
Once the target liquid temperature is determined as described above, it is constantly controlled by the automatic temperature controller 19 as shown in FIG.
Since the speed change changes the refrigerant passage time, a signal is given to the liquid level controller 29 to correct the amount of change, and the motor 25 adjusts the gate 26.

更に上記したような本発明のものは上述したよ
うな冷却ユニツトを多段に配設することにより鋼
帯10の材質要求に応じ冷却速度を冷却途中で任
意に選定しコントロールすることができる。即ち
冷却速度は第4図に示したように冷媒液温を変え
ることにより夫々の冷却タンクで制御することが
でき、又途中での冷却終点は各冷却タンクにおけ
る鋼板通過時間(即ち液面コントロール)によつ
て適切に得られる。従つて例えば冷却タンクを3
段に配設した場合において、前記したような700
℃からの冷却を例えば第1タンクで冷却速度50
℃/sec程度で650℃まで冷却し、第2タンクでは
冷却速度800℃/sec程度で450℃まで冷却し、そ
の後に第3タンクで冷却速度50℃/secで400℃ま
で冷却することができる。又第1、第2タンクで
夫々冷却速度50℃/sec程度で600℃まで冷却し、
次いで第3タンクで800℃/secの冷却速度で400
℃まで冷却するようなことが好ましい通板操業条
件下において達成される。
Further, in the present invention as described above, by arranging the cooling units as described above in multiple stages, the cooling rate can be arbitrarily selected and controlled during cooling depending on the material requirements of the steel strip 10. In other words, the cooling rate can be controlled in each cooling tank by changing the refrigerant liquid temperature as shown in Figure 4, and the cooling end point in the middle is determined by the steel plate passage time in each cooling tank (i.e., liquid level control). can be properly obtained by Therefore, for example, if the cooling tank is
700 as described above when arranged in stages.
For example, cooling from ℃ to 50℃ in the first tank.
It can be cooled to 650℃ at a cooling rate of about ℃/sec, cooled to 450℃ at a cooling rate of about 800℃/sec in the second tank, and then cooled to 400℃ at a cooling rate of 50℃/sec in the third tank. . In addition, the first and second tanks cool down to 600℃ at a cooling rate of about 50℃/sec, respectively.
Then, in the third tank, the cooling rate was 400°C/sec.
Such cooling to 0.degree. C. is achieved under preferred threading operating conditions.

以上説明したような本発明によるときはこの種
鋼帯の連続焼鈍設備において過時効処理温度まで
精度のよい温度管理条件下において冷却すること
ができ、それによつて従来の冷却技術に求め得な
い特段の作用効果を発揮し得るものであるから工
業的にその効果の大きい発明である。
According to the present invention as explained above, this type of steel strip can be cooled to the overaging treatment temperature under precise temperature control conditions in a continuous annealing facility, thereby achieving special characteristics that cannot be obtained with conventional cooling techniques. This invention is industrially highly effective because it can exhibit the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すものであつて、
第1図は本発明の1実施形態としての鋼帯加熱冷
却過程を示した図表、第2図は本発明方法を実施
する連続焼鈍設備の全般的な構成関係を示した説
明図、第3図はその冷却タンク部分についての構
成関係仔細を示した説明図、第4図は冷媒液温を
種々に変化させた場合における冷却時間と鋼帯温
度との関係を示した図表、第5図は冷媒液温と冷
却温度精度との関係を示した図表である。 然してこれらの図面において、4は均熱帯、5
は過時効処理帯、10は鋼帯、12は冷媒液、1
3は冷却処理タンク、14は循環ポンプ、16は
クーラー、17はヒーター、19は自動温度コン
トローラ、20は制御信号切換器、25は液位調
整モータ、26は液位調整ゲート、27はライン
速度計、29は液位コントローラ、30は板温
計、31は冷媒液ワイピングを示し、又第4図に
おいてAは冷媒液温400℃、Bは350℃、Cは300
℃、Dは180℃の場合を夫々示すものである。
The drawings illustrate embodiments of the invention,
Fig. 1 is a diagram showing a steel strip heating and cooling process as an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the general structural relationship of continuous annealing equipment that implements the method of the present invention, and Fig. 3 is an explanatory diagram showing details of the structural relationship of the cooling tank part, Figure 4 is a diagram showing the relationship between cooling time and steel strip temperature when the refrigerant liquid temperature is varied, and Figure 5 is a diagram showing the relationship between the cooling time and steel strip temperature when the refrigerant liquid temperature is variously changed. It is a chart showing the relationship between liquid temperature and cooling temperature accuracy. However, in these drawings, 4 is the soaking zone, and 5 is the soaking zone.
1 is an over-aging treatment zone, 10 is a steel strip, 12 is a refrigerant liquid, 1
3 is a cooling treatment tank, 14 is a circulation pump, 16 is a cooler, 17 is a heater, 19 is an automatic temperature controller, 20 is a control signal switch, 25 is a liquid level adjustment motor, 26 is a liquid level adjustment gate, 27 is a line speed 29 is a liquid level controller, 30 is a plate temperature gauge, and 31 is a refrigerant liquid wiping.
℃ and D indicate the case of 180℃, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼帯を加熱し均熱してから冷却し、次いで過
時効処理してから最終冷却するに当り、前記均熱
後の冷却において、液温が180℃以上過時効処理
温度以下の冷媒中において、複数の冷媒液を通過
させるか、液温の異なる冷媒液を通過させるか、
又は冷媒液の液位を変化させて通過させるかし
て、冷却条件を調整して過時効処理温度まで冷却
せしめることを特徴とする連続焼鈍炉における鋼
帯の冷却方法。
1. When heating a steel strip, soaking it, cooling it, then overaging it, and then finally cooling it, in a refrigerant whose liquid temperature is 180°C or more and below the overaging temperature during cooling after the soaking, Should multiple refrigerant liquids be passed through, or should refrigerant liquids with different liquid temperatures be passed through?
Or, a method for cooling a steel strip in a continuous annealing furnace, characterized in that the liquid level of the refrigerant is changed and the cooling condition is adjusted to cool the steel strip to the overaging treatment temperature.
JP17131181A 1981-10-28 1981-10-28 Cooling method of steel band in continuous annealing furnace Granted JPS5873728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17131181A JPS5873728A (en) 1981-10-28 1981-10-28 Cooling method of steel band in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17131181A JPS5873728A (en) 1981-10-28 1981-10-28 Cooling method of steel band in continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPS5873728A JPS5873728A (en) 1983-05-04
JPS6241298B2 true JPS6241298B2 (en) 1987-09-02

Family

ID=15920908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17131181A Granted JPS5873728A (en) 1981-10-28 1981-10-28 Cooling method of steel band in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPS5873728A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293619A (en) * 1976-01-30 1977-08-06 Centre Rech Metallurgique Method and apparatus for continious heat treatment rolled steel sheets

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293619A (en) * 1976-01-30 1977-08-06 Centre Rech Metallurgique Method and apparatus for continious heat treatment rolled steel sheets

Also Published As

Publication number Publication date
JPS5873728A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
US6054095A (en) Widthwise uniform cooling system for steel strip in continuous steel strip heat treatment step
US4440583A (en) Method of controlled cooling for steel strip
US4408561A (en) Dual-purpose plant for producing cold rolled steel sheet and hot-dip galvanized steel sheet
AU604281B2 (en) A method for producing non-aging hot-dip galvanized steel strip
JPS60174833A (en) Cooling method of hot steel sheet
US4767472A (en) Method for the treatment of steel wires
JPS6241298B2 (en)
JPS5839210B2 (en) Cooling method of steel strip during continuous annealing
EP0803583B1 (en) Primary cooling method in continuously annealing steel strips
US3615926A (en) Quench system
US4871146A (en) Apparatus for heat treatment of steel rods
EP0086331A1 (en) Continuous heat treating line for mild and high tensile strength stell strips or sheets
JPS5944367B2 (en) Water quenching continuous annealing method
JPH0641647A (en) Heat treatment of wire rod
KR890002799B1 (en) Method for controlling the temperature of steel strip in the cooling zone of continuous annealing furnace
JPH052728B2 (en)
JPS62297419A (en) Control method for sheet temperature of outlet side of cooling apparatus for steel sheet in continuous annealing line
JPS60145326A (en) Method and installation for continuous annealing of cold rolled steel sheet
JP4242932B2 (en) Primary cooling method in continuous annealing of steel strip
JPS60145327A (en) Method and installation for continuous annealing of cold rolled steel sheet
JPS5813611B2 (en) Continuous annealing method and equipment for cold rolled steel strip
JPH0293024A (en) Continuous annealing installation for cold rolled steel strip
JPS62297418A (en) Control method for sheet temperature at outlet side of cooling apparatus for steel sheet in continuous annealing line
JPS5751221A (en) Method and device for continuous annealing
JPH0234727A (en) Method and device for cooling metallic strip