JPS62297418A - Control method for sheet temperature at outlet side of cooling apparatus for steel sheet in continuous annealing line - Google Patents

Control method for sheet temperature at outlet side of cooling apparatus for steel sheet in continuous annealing line

Info

Publication number
JPS62297418A
JPS62297418A JP13911486A JP13911486A JPS62297418A JP S62297418 A JPS62297418 A JP S62297418A JP 13911486 A JP13911486 A JP 13911486A JP 13911486 A JP13911486 A JP 13911486A JP S62297418 A JPS62297418 A JP S62297418A
Authority
JP
Japan
Prior art keywords
cooling
water
steel strip
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13911486A
Other languages
Japanese (ja)
Other versions
JPH0229731B2 (en
Inventor
Makoto Arai
新井 信
Kuniaki Sato
邦昭 佐藤
Yasuhiro Yamaguchi
裕弘 山口
Isamu Shioda
勇 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13911486A priority Critical patent/JPH0229731B2/en
Publication of JPS62297418A publication Critical patent/JPS62297418A/en
Publication of JPH0229731B2 publication Critical patent/JPH0229731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To stably control sheet temp. at outlet side without any influence of changing factors, such as passing rate of the steel sheet, cooling water temp., etc., by adjusting cooling water level in water cooling jacket in the cooling method using the water cooling jacket. CONSTITUTION:The cooling water is introduced into the water cooling jacket 1 from supplying hole at downstream side of running course of the steel sheet S and after flowing forcibly as straightening flow along the both side surface of the steel sheet toward reverse direction of the running course of the steel sheet, it is overflowed from the discharging port. In this cooling apparatus, an elevating plate 6 is arranged at the inlet side of the steel sheet for the straight flow plate 1a and elevated by an elevating device 10, composing of such as cylinder 7, rope 8, sheave 9, etc., to change the overflow level in the cooling apparatus 1. A computing element 16 calculates the overflow level in order to make to the aimed sheet temp. from each detecting signal of thermometer 12 for the steel sheet, level meter 13 for the overflow height and thermometers 14, 15 for cooling water and the aimed cooling temp. 17 of the steel sheet and the passing rate 18 of sheet after treatment. The calculating result is inputted into a controlling device 19 and the elevating plate 6 is controlled by the device 10 so as to affairs the prescribed level.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) この発明は、連続焼鈍ラインにおける鋼帯の冷却装置出
側板温制御方法に関し、とくに鋼帯の通彼量の変動や季
節的要因による供給冷却水温の変化に拘らず、鋼帯を所
定の目標温度まで効率良(制御冷却しようとするもので
ある。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for controlling the plate temperature at the exit side of a steel strip cooling device in a continuous annealing line, and in particular to a method for controlling the plate temperature at the exit side of a steel strip cooling device in a continuous annealing line. The objective is to efficiently (controllably) cool the steel strip to a predetermined target temperature, regardless of changes in the supplied cooling water temperature due to seasonal factors.

(従来の技術) 一般に表面処理用原板や深絞り用鋼肢などは、冷間圧延
後、所定の@成約性質を付与するために、加熱、均熱お
よび冷却などの熱処理を順次に施すいわゆる連続焼鈍が
施される。
(Prior art) In general, after cold rolling, raw sheets for surface treatment and steel parts for deep drawing are subjected to so-called continuous heat treatment such as heating, soaking, and cooling in order to impart predetermined contract properties. Annealing is performed.

このような連続焼鈍処理に採用されている冷却方法とし
ては、ガスジェット冷却、ロール冷却および浸漬冷却な
どがある。このうちガスジェット冷却は、冷却された雰
囲気ガスを鋼帯に吹付けることによって、またロール冷
却は、内部に冷媒を通したロールに鋼帯を巻付けること
によって、さらに浸漬冷却は、冷却水槽に鋼帯を浸漬さ
せることによってそれぞれ冷却するもので、冷却速度は
ガスジェット冷却、ロール冷却ついで浸漬冷却の順に大
きくなる。
Cooling methods employed in such continuous annealing include gas jet cooling, roll cooling, and immersion cooling. Of these, gas jet cooling involves blowing cooled atmospheric gas onto the steel strip, roll cooling involves wrapping the steel strip around a roll with a refrigerant passed through it, and immersion cooling involves using a cooling water tank. The steel strip is cooled by immersion, and the cooling rate increases in the order of gas jet cooling, roll cooling, and immersion cooling.

従って連続焼鈍ラインの冷却帯において、再結晶温度か
ら大気中で酸化しない温度まで冷却する場合、高温側で
はガスジェットおよび/またはロール冷却を、一方低温
側では浸漬冷却を用いるのが最も効率的であると考えら
れている。
Therefore, in the cooling zone of a continuous annealing line, when cooling from the recrystallization temperature to a temperature that does not oxidize in the atmosphere, it is most efficient to use gas jet and/or roll cooling on the high temperature side, while immersion cooling on the low temperature side. It is thought that there is.

かかる浸漬冷却に関しては、これまでにも種々の方法が
提案されている。たとえば、特公昭57−11931号
および同57−11933号各公報に開示の方法は、複
数の冷却水槽を用い各水槽の注水制御を行うことによっ
て、またスプレー冷却やミスト冷却と組合わせることに
よって、それぞれ鋼帯を効率よく冷却すると共に、冷却
後の水温をできるだけ高めて温水としての有効利用も併
せて図ったものである。
Regarding such immersion cooling, various methods have been proposed so far. For example, the method disclosed in Japanese Patent Publications No. 57-11931 and No. 57-11933 uses a plurality of cooling water tanks and controls water injection into each water tank, and also by combining spray cooling and mist cooling. In addition to efficiently cooling the steel strip, the water temperature after cooling is raised as much as possible to effectively utilize the water as hot water.

ところで浸漬冷却は通常、鋼帯中の飽和固溶炭素量の変
化量が少なくなる250〜300℃程度の温度から大気
中でテンパーカラーの発生しない温度までの冷却に適用
される。従来、かかる浸漬処理による冷却速度が速すぎ
ると、固溶炭素による時効性の問題が懸念されたが、最
近では非時効性の材料としてたとえばNb添加極低炭素
鋼など予め第3元素で固溶炭素を固定した素材が用いら
れるようになった。従って冶金的には冷却速度をいかに
高くしてもそれほど問題にならなくなってきており、む
しろ高速化、高生産能率化などの面から、最終冷却にお
ける冷却速度の一層の向上が望まれている。
By the way, immersion cooling is usually applied to cooling from a temperature of about 250 to 300° C., at which the amount of change in the amount of saturated solid solute carbon in the steel strip is small, to a temperature at which temper color does not occur in the atmosphere. In the past, if the cooling rate due to such immersion treatment was too fast, there were concerns about aging problems due to solid solution carbon, but recently, non-aging materials such as Nb-added ultra-low carbon steel have been developed using solid solution with a third element in advance. Materials that fixed carbon began to be used. Therefore, from a metallurgical point of view, it is no longer a problem no matter how high the cooling rate is, and in fact, it is desired to further improve the cooling rate in the final cooling from the viewpoint of higher speed and higher production efficiency.

しかしながら上記した如き要望に対して、従来の浸漬冷
却は、次のような問題を残していた。
However, in response to the above-mentioned demands, conventional immersion cooling still has the following problems.

(1)冷却水の温度上昇を抑制するためには、冷却水槽
中への冷却水の補給が不可欠であるが、この場合水槽内
の水の流れは上層部に止まり、下部では水の動きはほと
んどないことから、高温の鋼帯が冷却水中に浸漬される
際に鋼帯表面には蒸気膜が発生し、この蒸気膜の除去、
破壊が困難なため、冷却効率には自ら限界があった。そ
れ故、冷却処理の高速化、高能率化を図るためには、浸
漬冷却装置の大型化が余儀なくされ、建設費、設置スペ
ースなどの面での不利が大きかった。さらに既設設備の
改善によって高速化を図ることはほとんど不可能に近か
った。
(1) In order to suppress the temperature rise of the cooling water, it is essential to replenish the cooling water into the cooling water tank, but in this case, the flow of water in the tank stops in the upper part, and the water does not move in the lower part. When a high-temperature steel strip is immersed in cooling water, a vapor film is generated on the surface of the steel strip, and the removal of this vapor film,
Because it was difficult to destroy, there was a limit to its cooling efficiency. Therefore, in order to increase the speed and efficiency of the cooling process, it is necessary to increase the size of the immersion cooling device, which is disadvantageous in terms of construction costs and installation space. Furthermore, it was almost impossible to increase speed by improving existing equipment.

(2)上記のように浸漬水槽内の水の動きが不均一であ
るため温度むらが生じ、鋼帯に悪影響を与える。
(2) As mentioned above, the uneven movement of water in the immersion water tank causes temperature unevenness, which adversely affects the steel strip.

(3)浸漬冷却水槽から排出される冷却水を温水として
再利用する場合には、浸tirFを少なくとも2槽とし
てカスケード制御を行わねばならず、従って装着がさら
に大型化するだけでなく、複雑な制御も必要となる。
(3) When reusing the cooling water discharged from the immersion cooling water tank as hot water, cascade control must be performed using at least two immersion tirF tanks, which not only increases the size of the installation but also complicates it. Control is also required.

ところで発明者らは、先に上記の諸問題を有利に解決す
るものとして、特願昭60−162909号明細書にお
いて、連続焼鈍ラインの冷却ゾーンを通過させた鋼帯を
最終冷却するに際し、第3図に示したように鋼帯を、そ
の表裏面から冷却水の流路を隔てて対設した整流板をそ
なえる水冷ジャケットで被い、この水冷ジャケット中を
、鋼帯の走行方向とは逆向きにしかも該鋼帯の表裏面に
沿う整流として冷却水を強制流動させることから成る連
続焼鈍処理における鋼帯の冷却方法およびその実施に用
いて好適な冷却装置を提案した。
By the way, in order to advantageously solve the above-mentioned problems, the inventors disclosed in Japanese Patent Application No. 162909/1982 that, when final cooling a steel strip passed through a cooling zone of a continuous annealing line, As shown in Figure 3, a steel strip is covered with a water-cooling jacket that has flow regulating plates placed opposite each other across the cooling water flow path from the front and back sides of the steel strip. We have proposed a cooling method for a steel strip in continuous annealing treatment, which consists of forcing cooling water to flow in a rectifying direction along the front and back surfaces of the steel strip, and a cooling device suitable for carrying out the method.

上記の新しい冷却技術の開発により、従来に比較して格
段に高能率で鋼帯を冷却することが可能になり、連続焼
鈍処理にお、ける処理能力は大幅に向上した。
The development of the new cooling technology described above has made it possible to cool the steel strip with much higher efficiency than before, and the processing capacity in continuous annealing treatment has been greatly improved.

(発明が解決しようとする問題点) しかしながら上記の冷却技術には、冷却水の供給温度が
例えば季節的な要因で変化したり、或いは鋼帯の通板量
が変動したりすると、冷却処理後の鋼帯温度も変動して
目標温度から外れてしまうところに問題を残していた。
(Problem to be solved by the invention) However, the above-mentioned cooling technology has problems when the cooling water supply temperature changes due to seasonal factors, or the amount of steel strip threaded changes. The problem remained that the temperature of the steel strip fluctuated and deviated from the target temperature.

第4図に、冷却水温度が40℃の場合における鋼帯の通
板量と冷却後の鋼帯温度との関係について調査した結果
を示したが、通板量が増加すると鋼帯の温度も高くなっ
て目標温度範囲から外れる場合がある。
Figure 4 shows the results of an investigation into the relationship between the threading amount of the steel strip and the steel strip temperature after cooling when the cooling water temperature is 40°C.As the threading amount increases, the temperature of the steel strip also increases. The temperature may become high and out of the target temperature range.

この発明は、上述した水冷ジャケットを用いる冷却方法
において、鋼帯の通板量や冷却水温など通常考えられる
変動要因に左右されることなく、常に安定して鋼帯温度
を所定の目標温度に冷却することができる、鋼帯の冷却
装置出側板温制御方法を提案することを目的とする。
In the cooling method using the above-mentioned water-cooling jacket, this invention constantly and stably cools the steel strip temperature to a predetermined target temperature without being influenced by normally considered fluctuation factors such as the amount of steel strip passing through or the cooling water temperature. The purpose of this study is to propose a method for controlling the plate temperature at the exit side of a steel strip cooling device.

(問題点を解決するための手段) この発明は、連続焼鈍ラインの冷却ゾーンを通過させた
鋼帯を、その表裏面から冷却水の流路を隔てて対設した
整流板をそなえる水冷ジャケット内に導いて最終冷却を
施すに際し、冷却水を、上記水冷ジャケット内において
鋼帯の走行方向とは逆向きにしかも該鋼帯の表裏面に沿
う整流として強制流動させて鋼帯を冷却する方法におい
て、水冷ジャケット内の冷却水レベルをコントロールす
ることにより、鋼帯の水冷ジャケット出側温度を所定の
目標温度に制御することを特徴とする、連続焼鈍ライン
における鋼帯の冷却装置出側板温制御方法である。
(Means for Solving the Problems) This invention provides for a steel strip that has passed through a cooling zone of a continuous annealing line to be placed inside a water-cooled jacket that is provided with rectifying plates that are disposed opposite to each other across a cooling water flow path from the front and back surfaces of the steel strip. In the method of cooling the steel strip by forcing the cooling water to flow in the water cooling jacket in the opposite direction to the running direction of the steel strip and along the front and back surfaces of the steel strip when conducting final cooling. , a method for controlling outlet side plate temperature of a steel strip cooling device in a continuous annealing line, characterized in that the temperature at the outlet side of the water cooling jacket of the steel strip is controlled to a predetermined target temperature by controlling the cooling water level in the water cooling jacket. It is.

以下この発明を具体的に説明する。This invention will be specifically explained below.

第1図に、この発明に従う制御系を水冷ジャケット式冷
却装置と共に模式で示す。図中番号1a。
FIG. 1 schematically shows a control system according to the present invention together with a water-cooled jacket type cooling device. Number 1a in the figure.

1bはそれぞれ、冷却水を鋼帯の表裏面に沿って整流と
して強制的に導くための整流板であって、これらの整流
板1a、 lbで竪型のU字管状構造になる水冷ジャケ
ット1を構成する。2はディフレクタロール、3は冷却
水の供給管、4はポンプ、5は冷却排水の貯蔵タンクで
ある。
1b are rectifying plates for forcibly guiding cooling water along the front and back surfaces of the steel strip as rectifiers, and these rectifying plates 1a and lb form a water cooling jacket 1 having a vertical U-shaped tubular structure. Configure. 2 is a deflector roll, 3 is a cooling water supply pipe, 4 is a pump, and 5 is a storage tank for cooling waste water.

さて上記の如きしくみになる冷却装置において、冷却水
は、鋼帯Sの走行径路の下流側に設けられた供給口から
水冷ジャケット1内に導入され、該ジャケット1内を鋼
帯Sの走行方向とは逆向きjこ強制流動させられる間に
鋼帯を効率よく冷却したのち排出口からオーバーフロー
させるわけであるが、この発明では、かかる水冷ジャケ
ット内の冷却水レベルを、以下のようにして調整するこ
とによって、鋼板の出側板温をコントロールするのであ
る。
Now, in the cooling device configured as described above, cooling water is introduced into the water cooling jacket 1 from the supply port provided on the downstream side of the running path of the steel strip S, and the cooling water is introduced into the water cooling jacket 1 in the running direction of the steel strip S. The steel strip is efficiently cooled while being forced to flow in the opposite direction, and then overflows from the discharge port.In this invention, the level of cooling water in the water cooling jacket is adjusted as follows. By doing this, the temperature of the steel plate on the exit side is controlled.

6は整流板1aの鋼帯入側に設置された昇降を反であり
、例えばシリンダー7、ローブ8、シーブ9などからな
る昇降装置10により自由に昇降できるしくみになって
いる。即ち、この昇降板6を昇降させることによって冷
却装置1のオーバーフローレベルを変化させることがで
きるのである。
Reference numeral 6 denotes a lifting device installed on the steel strip entry side of the rectifying plate 1a, which can be freely raised and lowered by a lifting device 10 comprising, for example, a cylinder 7, a lobe 8, a sheave 9, and the like. That is, by raising and lowering this lifting plate 6, the overflow level of the cooling device 1 can be changed.

第2図に、昇降板6と整流板1aとの好適な接合状態を
示す。
FIG. 2 shows a preferred bonding state between the elevating plate 6 and the rectifying plate 1a.

なお、11は冷却処理後の鋼帯の水切りを行うリンガー
ローノベ12は冷却処理後の鋼帯温度を測定するための
温度計、13はオーバーフロー高さを測定するためのレ
ベル計である。また14は冷却水の温度を測定する温度
計、15は冷却装置1の出側における冷却水温度を検出
するための温度計、そして16は演算装置であり、温度
計12、レベル計13、冷却水用温度計14. 15の
各検出1言号及び鋼帯Sの冷却目標温度17と鋼帯の通
板量18が人力され、目標板温にするためのオーバーフ
ローレベルが演Nされる。演算結果は制御装置19に出
力されて昇降装置10により、所定のレベルになるよう
に昇降板6が制御されるわけである。
In addition, 11 is a thermometer for draining the steel strip after cooling treatment, 12 is a thermometer for measuring the temperature of the steel strip after cooling treatment, and 13 is a level meter for measuring the overflow height. Further, 14 is a thermometer for measuring the temperature of the cooling water, 15 is a thermometer for detecting the temperature of the cooling water at the outlet side of the cooling device 1, and 16 is a calculation device, including the thermometer 12, the level meter 13, and the cooling water temperature. Water thermometer 14. 15 detection words, the cooling target temperature 17 of the steel strip S, and the steel strip threading amount 18 are input manually, and the overflow level for achieving the target strip temperature is calculated. The calculation result is output to the control device 19, and the lifting device 10 controls the lifting plate 6 to reach a predetermined level.

(作 用) 次に演算装置16における演算内容について説明する。(for production) Next, the contents of the calculation in the calculation device 16 will be explained.

いま水冷ジャケット1における鋼帯Sの冷却長(冷却水
と鋼帯が接触している長さ)を直m〉、鋼帯通板量を!
+I(kg/h) 、冷却前後の鋼帯温度をTSI(t
) 、Ts5 (t) 、またストリップ幅をB (m
)、ストリップの比熱をCP(kcal/l ・kg)
 、熱(云達係数をα(kcal/m2・h・℃)とす
ると、冷却装置内における鋼帯から冷却水への熱移動量
Q(kcal/h)は次式で表される。
Now, the cooling length of the steel strip S in the water-cooling jacket 1 (the length of contact between the cooling water and the steel strip) is directly m〉, and the threading amount of the steel strip is!
+I (kg/h), the steel strip temperature before and after cooling is TSI (t
), Ts5 (t), and strip width B (m
), the specific heat of the strip is CP (kcal/l ・kg)
, heat (if the transfer coefficient is α (kcal/m2·h·°C)), the amount of heat transfer Q (kcal/h) from the steel strip to the cooling water in the cooling device is expressed by the following equation.

Q=2・α・L−B−4JT   ・・・・・・ (1
)−C3・W・(Ts+ ’rs:)    ・・・・
・・ (2)ここで、4T(t)は冷却水とス) IJ
ツブの対数平均温度差であり、次式で算出される。
Q=2・α・L-B-4JT ・・・・・・ (1
)-C3・W・(Ts+'rs:)...
... (2) Here, 4T (t) is cooling water and IJ
It is the logarithmic average temperature difference of the whelk, and is calculated by the following formula.

なお、TイI+ TwO(t)は各々冷却水の供給温度
、オーバーフロー水温度である。
Note that TI+TwO(t) are the cooling water supply temperature and overflow water temperature, respectively.

従って、冷却長しは(1)、(2)式よりここで、例え
ば鋼帯通板量がWからW′に変化し、鋼帯出側温度がT
s′oからT’s″0に変化したとすると、冷却長しは
この時点では変化させていないので、次式が成立する。
Therefore, the cooling length is calculated from equations (1) and (2). For example, when the steel strip passing amount changes from W to W', the steel strip exit temperature becomes T.
Assuming that T's'' changes from s'o to T's''0, the following equation holds true since the cooling length is not changed at this point.

尚、鋼帯入側温度T、!は水冷ジャケットの前段にある
焼鈍炉における熱処理により一定であり、また鋼帯出側
温度が変化するに伴ってオーバーフロー水温度も変化し
、従って平均対数温度差7jTもAT′に変化している
ものとする。
In addition, the steel strip entrance temperature T,! is constant due to the heat treatment in the annealing furnace in the front stage of the water-cooled jacket, and as the steel strip exit temperature changes, the overflow water temperature also changes, and therefore the average logarithmic temperature difference 7jT also changes to AT'. do.

そこで、鋼帯出側温度T ’ s?iをTs;に戻すの
に必要な冷却長L′は次式で求められる。
Therefore, the steel strip outlet temperature T's? The cooling length L' required to return i to Ts; is determined by the following equation.

即ち、現在の冷却長りを 71L=L’−L         ・・・ (1)だ
け変化させてやれば、鋼帯出側温度をTsmに保持でき
る。
That is, by changing the current cooling length by 71L=L'-L (1), the steel strip outlet temperature can be maintained at Tsm.

以上は通板量が変化した場合につき説明したが、冷却水
の供給温度が変化した場合も同様に算出できる。
Although the above description has been made regarding the case where the sheet passing amount changes, calculations can be made in the same way when the cooling water supply temperature changes.

(実旌例) 前掲第1図に示した冷却装置および制御系を用いて、以
下の条件下に鋼帯の冷却処理を行った。
(Practical Example) Using the cooling device and control system shown in FIG. 1 above, a steel strip was cooled under the following conditions.

・鋼帯寸法:厚み1mm、幅1000mm・冷却水温:
40℃ ・冷却水量: 14 T/h ・鋼帯冷却開始温度=150℃ ・冷却処理後の目標温度:50〜60℃・初期通板量:
30T/h ・冷却水のオーバーフロー高す=0.6m上記の条件下
に冷却処理を開始し、次第に通板量を上げていったとこ
ろ、それに伴って鋼帯の冷却装置出側温度も次第に上昇
し始めたので、通板量が40T/hとなった時点でオー
バーフロー高さを0.8mまで引き上げた。その結果鋼
帯出側温度は53℃まで低下したので、そのまま冷却処
理を継続したところ通板量が50T/hとなった時点で
再び鋼帯の出側板温が上昇する傾向がみられたので再度
オーバーフロー高さを1.2mまで引上げた。
・Steel strip dimensions: Thickness 1mm, width 1000mm ・Cooling water temperature:
40℃ ・Cooling water amount: 14 T/h ・Steel strip cooling start temperature = 150℃ ・Target temperature after cooling treatment: 50 to 60℃ ・Initial threading amount:
30T/h ・Cooling water overflow height = 0.6m Cooling treatment was started under the above conditions and the throughput was gradually increased, and the temperature at the outlet of the cooling device for the steel strip also gradually increased accordingly. The overflow height was raised to 0.8 m when the throughput reached 40 T/h. As a result, the temperature on the exit side of the steel strip decreased to 53°C, so we continued the cooling process, and when the throughput reached 50T/h, the temperature on the exit side of the steel strip tended to rise again. The overflow height was raised to 1.2m.

その結果、鋼帯温度は51℃まで低下し、その後は通板
量を60T/hまで上昇させても、鋼帯温度は60℃を
越えることはなかった。第5図jこ操業成績を整理して
示したとおり、通板量が30T/hから60T/hまで
変化した場合であっても、鋼帯の冷却装置出側温度を常
に目標温度である50〜60℃の範囲に収めることがで
きた。
As a result, the steel strip temperature decreased to 51°C, and thereafter, even if the threading rate was increased to 60 T/h, the steel strip temperature did not exceed 60°C. As shown in Fig. 5, the operating results are summarized and shown, even when the throughput rate changes from 30T/h to 60T/h, the temperature at the outlet of the steel strip cooling device is always kept at the target temperature of 50T/h. It was possible to keep the temperature within the range of ~60°C.

(発明の効果) かくしてこの発明によれば、連続焼鈍ラインにおける冷
却処理において、通板量などが変動したとしても、かか
る変動要因に左右されることなしに鋼帯温度を常に所定
の目標温度範囲に収めることができる。
(Effects of the Invention) Thus, according to the present invention, even if the threading amount etc. fluctuates in the cooling process in the continuous annealing line, the steel strip temperature is always kept within the predetermined target temperature range without being influenced by such fluctuation factors. can be accommodated in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う制御系を水冷ジャケット式冷
却装置と共に示した模式図、 第2図は、昇降板と整流板との好適接合状態を示した図
、 第3図は、水冷ジアケット式冷却装置の模式図、第4図
は、冷却本人側温度が一定の温度における通板量と水冷
ジャケット出側鋼帯温度との関係を示したグラフ、 第5図は、この発明を実操業jこ適用したときの通板量
と水冷ジャケット出側鋼帯温度との関係を示したグラフ
である。 1・・・水冷ジャケラ)  la、lb・・・整流板2
・・・ディフレククロール 3・・・冷却水の供給管 4・・・ポンプ 5・・・冷却排水の貯蔵タンク 6・・・昇降板     7・・・シリンダー8・・・
ロープ     9・・・シーブ10・・・昇降装置 
   11・・・リンガ−ロール12・・・温度計  
   13・・・レベル計14、15・・・温度計  
 16・・・演算装置17・・・冷却目標温度  18
・・・鋼帯通板量19・・・制御装置 第2図 第3図 第4図 通板量(T/h ) 第5図 適才反量c丁/h)
Fig. 1 is a schematic diagram showing a control system according to the present invention together with a water-cooled jacket type cooling device, Fig. 2 is a diagram showing a preferred state of connection between the elevating plate and the rectifying plate, and Fig. 3 is a water-cooled jacket type cooling device. Fig. 4 is a schematic diagram of the cooling device, and Fig. 4 is a graph showing the relationship between the sheet passing amount and the steel strip temperature on the outlet side of the water-cooled jacket when the temperature on the cooling side is constant. It is a graph showing the relationship between the throughput amount and the temperature of the steel strip on the exit side of the water-cooled jacket when this application is applied. 1...water cooling jacket) la, lb...straightening plate 2
... Deflection crawl 3 ... Cooling water supply pipe 4 ... Pump 5 ... Cooling wastewater storage tank 6 ... Elevating plate 7 ... Cylinder 8 ...
Rope 9... Sheave 10... Lifting device
11... Ringer roll 12... Thermometer
13... Level meter 14, 15... Thermometer
16... Arithmetic device 17... Cooling target temperature 18
...Steel strip threading amount 19...Control device Fig. 2 Fig. 3 Fig. 4 Threading amount (T/h) Fig. 5 Appropriate reaction amount c t/h)

Claims (1)

【特許請求の範囲】 1、連続焼鈍ラインの冷却ゾーンを通過させた鋼帯を、
その表裏面から冷却水の流路を隔てて対設した整流板を
そなえる水冷ジャケット内に導いて最終冷却を施すに際
し、冷却水を、上記水冷ジャケット内において鋼帯の走
行方向とは逆向きにしかも該鋼帯の表裏面に沿う整流と
して強制流動させて鋼帯を冷却する方法において、 水冷ジャケット内の冷却水レベルをコント ロールすることにより、鋼帯の水冷ジャケット出側温度
を所定の目標温度に制御することを特徴とする、連続焼
鈍ラインにおける鋼帯の冷却装置出側板温制御方法。
[Claims] 1. A steel strip passed through a cooling zone of a continuous annealing line,
When conducting final cooling by guiding the cooling water from the front and back surfaces into a water-cooling jacket equipped with rectifying plates arranged oppositely across the cooling water flow path, the cooling water is directed in the direction opposite to the running direction of the steel strip within the water-cooling jacket. Moreover, in the method of cooling the steel strip through forced flow as rectification along the front and back surfaces of the steel strip, by controlling the level of cooling water in the water cooling jacket, the temperature at the exit side of the water cooling jacket of the steel strip can be adjusted to a predetermined target temperature. 1. A method for controlling the plate temperature at the exit side of a steel strip cooling device in a continuous annealing line.
JP13911486A 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO Expired - Lifetime JPH0229731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13911486A JPH0229731B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13911486A JPH0229731B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Publications (2)

Publication Number Publication Date
JPS62297418A true JPS62297418A (en) 1987-12-24
JPH0229731B2 JPH0229731B2 (en) 1990-07-02

Family

ID=15237817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13911486A Expired - Lifetime JPH0229731B2 (en) 1986-06-17 1986-06-17 RENZOKUSHODONRAINNIOKERUKOTAINOREIKYAKUSOCHISHUTSUGAWAITAONSEIGYOHOHO

Country Status (1)

Country Link
JP (1) JPH0229731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240077A (en) * 2004-02-25 2005-09-08 Jfe Steel Kk Method for manufacturing high-strength cold-rolled steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240077A (en) * 2004-02-25 2005-09-08 Jfe Steel Kk Method for manufacturing high-strength cold-rolled steel sheet
JP4547936B2 (en) * 2004-02-25 2010-09-22 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet

Also Published As

Publication number Publication date
JPH0229731B2 (en) 1990-07-02

Similar Documents

Publication Publication Date Title
US4759807A (en) Method for producing non-aging hot-dip galvanized steel strip
KR20090025218A (en) Method for controlling a metal strip in a heat treatment furnace
JPS62202029A (en) Method and apparatus for treating steel wire
JPS586766B2 (en) Cooling method and equipment for steel strip in continuous annealing line
US4713154A (en) Continuous annealing and pickling method and apparatus for steel strips
US4729800A (en) Method for cooling steel strip
JPS62297418A (en) Control method for sheet temperature at outlet side of cooling apparatus for steel sheet in continuous annealing line
KR900001092B1 (en) Apparatus for colling strip of metals
JP5245746B2 (en) Metal strip cooling device and metal strip cooling method
EP0210847A2 (en) Method and apparatus for cooling steel strips
JPS5839210B2 (en) Cooling method of steel strip during continuous annealing
JPS5822525B2 (en) Sealing device in cooling section of steel strip
EP0803583B1 (en) Primary cooling method in continuously annealing steel strips
JPS62297419A (en) Control method for sheet temperature of outlet side of cooling apparatus for steel sheet in continuous annealing line
KR890002799B1 (en) Method for controlling the temperature of steel strip in the cooling zone of continuous annealing furnace
JPH0319287B2 (en)
JPS5864322A (en) Method and device for cooling of band-like steel plate
JPS63145722A (en) Cooling apparatus for continuous annealing line
JPS5944367B2 (en) Water quenching continuous annealing method
JPS61295331A (en) Cooler for traveling steel sheet
JP3142459B2 (en) Cooling system for steel strip in continuous annealing line
JPH0234727A (en) Method and device for cooling metallic strip
KR950004711B1 (en) Device for continuously cooling metal strip
JPS6261654B2 (en)
JPS60145326A (en) Method and installation for continuous annealing of cold rolled steel sheet

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees