JPS6223937A - Method and apparatus for cooling steel strip in continuous annealing treatment - Google Patents

Method and apparatus for cooling steel strip in continuous annealing treatment

Info

Publication number
JPS6223937A
JPS6223937A JP60162909A JP16290985A JPS6223937A JP S6223937 A JPS6223937 A JP S6223937A JP 60162909 A JP60162909 A JP 60162909A JP 16290985 A JP16290985 A JP 16290985A JP S6223937 A JPS6223937 A JP S6223937A
Authority
JP
Japan
Prior art keywords
cooling
steel strip
continuous annealing
cooling water
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60162909A
Other languages
Japanese (ja)
Other versions
JPS6342698B2 (en
Inventor
Makoto Arai
新井 信
Kuniaki Sato
邦昭 佐藤
Yasuhiro Yamaguchi
裕弘 山口
Isamu Shioda
勇 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60162909A priority Critical patent/JPS6223937A/en
Priority to CA000514447A priority patent/CA1266602A/en
Priority to ES868600603A priority patent/ES2000758A6/en
Priority to AU60501/86A priority patent/AU571786B2/en
Priority to KR1019860006082A priority patent/KR900006694B1/en
Priority to EP86305721A priority patent/EP0210847A3/en
Priority to BR8603527A priority patent/BR8603527A/en
Publication of JPS6223937A publication Critical patent/JPS6223937A/en
Publication of JPS6342698B2 publication Critical patent/JPS6342698B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To develop a cooler which is small in size and has excellent cooling capacity by providing flow regulating plates for cooling water on both sides of a steel strip and forcibly flowing the cooling water at a high speed in the direction opposite from the traveling direction of the steel strip thereby improving the efficiency of cooling the steel strip in the stage of cooling the steel strip in a continuous annealing line. CONSTITUTION:The long-sized steel strip S subjected to continuous annealing is run in the flow regulating plates 1a, 1b for the cooling water having outlets 6a, 6b and inlets 5a, 5b for the cooling water at the top and bottom and having sealing rolls 2a, 2b, 3a, 3b and 4a, 4b for preventing the leakage of the cooling water to the upper and lower parts as well as the side parts in the stage of cooling the strip S. On the other hand, the cooling water is pressurized by pumps 7a, 7b and is put through the inlets 5a, 5b into the plates 1a, 1b where the water is forcibly flowed in the direction opposite from the traveling direction of the steel strip and is discharged from the outlets 6a, 6b. The strip S is uniformly and quickly cooled in the transverse direction thereof. The steel strip is thus cooled with the excellent treating capacity by the small-sized cooler.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連続焼鈍ライ/における鋼帯の冷却方法お
よび冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and a cooling device for cooling a steel strip in a continuous annealing rye.

一般に表面処理用原板や深絞他用ifa板などは、−□
冷間圧延後、所定の機械的性質を付与するために、加熱
、均熱および冷却などの熱処理を順次に施すいわゆる連
続焼鈍が施される。
In general, original plates for surface treatment, ifa plates for deep drawing, etc. are -□
After cold rolling, so-called continuous annealing is performed in which heat treatments such as heating, soaking, and cooling are sequentially performed in order to impart predetermined mechanical properties.

ところで最近では、板厚0.3關以下の極薄材の需要が
増加していることもあって、上記連続焼鈍゛パラインに
おける通板速度の高速化および高処理能力化が進んでい
る。従って炉設備も必然的に長大なものとなり、建設費
や設置スペースなど設備建設上の問題の他、以下に述べ
るような操業上の問題があった。
Recently, there has been an increase in demand for ultra-thin materials with a thickness of about 0.3 or less, and therefore the continuous annealing parline has been increasing its threading speed and throughput. Therefore, the furnace equipment inevitably becomes long, and there are problems in terms of equipment construction such as construction costs and installation space, as well as operational problems as described below.

すなわち炉の長大化に伴い炉の熱慣性が増大し、熱処理
条件の変更に長時間を要することの他、鋼帯の蛇行やヒ
ートバックルなどの様々な点で、従来炉以上の問題が生
じてきたのである。
In other words, as the furnace becomes longer, the thermal inertia of the furnace increases, and in addition to requiring a longer time to change the heat treatment conditions, various problems arise, such as meandering of the steel strip and heat buckling, compared to conventional furnaces. It was.

この発明は、上記したような炉操業の高速化に°゛″伴
って派生しCくる種々の問題点の中で、とくに゛最終冷
却に関する問題の有利な解決を図ろうとするものである
The present invention is intended to advantageously solve the problems related to final cooling, among the various problems that arise as a result of the above-described high-speed furnace operation.

(従来の技術) 連続焼鈍処理に採用されている冷却方法としCは、ガス
ジェット冷却、ロール冷却および浸漬冷却などがある。
(Prior Art) Cooling methods C employed in continuous annealing include gas jet cooling, roll cooling, and immersion cooling.

このうちガスジェット冷却は、冷却された雰囲気ガスを
鋼帯に吹付けることによって、またロール冷却は、内部
に冷媒を通したロールに鋼帯を巻付けることによって、
さらに浸漬冷1゛□却は、冷却水槽に鋼帯を浸漬させる
ことによってそれぞれ冷却するもので、冷却速度はガス
ジェット冷却、ロール冷却ついで浸漬冷却の順に大きく
なる〇 従って連続焼鈍ラインの冷却帯において、再結゛晶温度
から大気中で酸化しない温度まで冷却する場合、高温側
ではガスジェットおよび/またはロール冷却を、一方低
温側では浸漬冷却を用いるのが最も効率的であると考え
られている。
Of these, gas jet cooling involves spraying cooled atmospheric gas onto the steel strip, and roll cooling involves wrapping the steel strip around a roll through which a refrigerant is passed.
Furthermore, immersion cooling involves cooling the steel strip by immersing it in a cooling water tank, and the cooling rate increases in the order of gas jet cooling, roll cooling, and immersion cooling. Therefore, in the cooling zone of a continuous annealing line, When cooling from the recrystallization temperature to a temperature that does not oxidize in the atmosphere, it is considered most efficient to use gas jet and/or roll cooling on the high temperature side, while immersion cooling on the low temperature side. .

かかる浸漬冷却に関しては、こnまでにも種々“の方法
が提案さnている。たとえば、持分ITr457 ′−
11981号および同57−11938号各公報に開示
の方法は、複数の冷却水槽を用い各水槽の注水制御を行
うことによって、またスプレー冷却やミスト冷却と組合
わせることによって、それぞれ鋼帯を効率よく冷却する
と共に、冷却後の水温をできるだけ高めて温水としての
有効利用も併せて図ったものである。
Regarding such immersion cooling, various methods have been proposed so far.For example, ITr457'-
The methods disclosed in Publications No. 11981 and No. 57-11938 efficiently cool steel strips by using multiple cooling water tanks and controlling water injection into each tank, and by combining spray cooling and mist cooling. In addition to cooling the water, the temperature of the water after cooling is raised as much as possible so that it can be effectively used as hot water.

(発明が解決しようとする問題点) 浸漬冷却は通常、鋼帯中の飽和固溶炭素fItの変■化
量が少なくなる250〜300’C程度の温度がら大気
中でテンパーカラーの発生しない温度までの冷却に適用
される。従来、かがる浸漬処理による冷却速度が速すぎ
ると、固溶炭素による時効性の問題が懸念されたが、最
近では非時効性の材料1′とし”CたとえばNb添加極
低炭素鋼など予め第8元素で固溶炭素を固定した素材が
用いられるようになった。従って冶金的には冷却速度を
いかに高くしてもそれほど問題にならなくなってきてお
り、むしろ高速化、高生産能率化などの面がら、最終□
゛冷却における冷却速度の一層の向上が望まれていする
0 しかしながら上記した如き要望に対して、従来の浸漬冷
却は、次のような問題を残し′Cいた。
(Problems to be Solved by the Invention) Immersion cooling is usually performed at a temperature of about 250 to 300'C, at which the amount of change in saturated solid solute carbon fIt in the steel strip is small, but at a temperature at which temper color does not occur in the atmosphere. Applicable for cooling up to. In the past, if the cooling rate by dipping treatment was too fast, there was a concern about aging problems due to solid solution carbon, but recently, non-aging materials 1' have been developed, such as Nb-added ultra-low carbon steel. Materials in which solid solution carbon is fixed with the 8th element have come to be used.Therefore, from a metallurgical perspective, no matter how high the cooling rate is, it is no longer a problem, but rather, it is necessary to increase the cooling speed and increase production efficiency. Final appearance, final □
``It is desired to further improve the cooling rate in cooling.''However, in response to the above-mentioned demands, conventional immersion cooling still leaves the following problems.

(1)冷却液の温度上昇を抑制するためには、冷却水・
槽中への冷却水の補給が不可欠であるが、この場合水槽
内の水の流れは上層部に止まり、下部では水の動きはほ
とんどないことから、高温の鋼帯が冷却水中に浸漬され
る際に鋼帯表面には蒸気膜が発生し、この蒸気膜の除去
、破壊が困難なため、1・・冷却効率には自ら限界があ
った。それ故、冷却処理の高速化、高能率化を図るため
には、浸漬冷却装置の大型化が余儀なくされ、建設費、
設置スペースなどの面での不利が大きかった。さらに既
設設備の改善によって高速化を図ることはほとんど1゛
不可能に近かった。
(1) In order to suppress the temperature rise of the cooling water,
It is essential to replenish cooling water into the tank, but in this case, the flow of water in the tank stops at the top and there is almost no water movement at the bottom, so the hot steel strip is immersed in the cooling water. At this time, a vapor film is generated on the surface of the steel strip, and since it is difficult to remove or destroy this vapor film, there is a limit to the cooling efficiency. Therefore, in order to increase the speed and efficiency of the cooling process, it is necessary to increase the size of the immersion cooling equipment, which increases construction costs and
There were major disadvantages in terms of installation space, etc. Furthermore, it was almost impossible to increase speed by improving existing equipment.

(2)上記のように浸漬水槽内の水の動きが不均一であ
るため温度むらが生じ、鋼帯に悪影響を与える。
(2) As mentioned above, the uneven movement of water in the immersion water tank causes temperature unevenness, which adversely affects the steel strip.

(8)浸漬冷却水槽から排出される冷却水を温水として
再利用する場合には、浸漬槽を少なくとも2槽2″とし
てカスケード制御を行わねばならず、従ってI装置がさ
らに大型化するだけでなく、複雑なflit制御も必要
となる。
(8) When reusing the cooling water discharged from the immersion cooling water tank as hot water, it is necessary to use at least two immersion tanks 2" and perform cascade control, which not only increases the size of the I device but also , complex flit control is also required.

この発明は、上記の諸問題を有利に解決するもので、最
終冷却における効率のよい冷却方法を、−その実施に用
いて好適な冷却装置と共に提案することを目的とする。
The present invention advantageously solves the above-mentioned problems and aims at proposing an efficient cooling method for final cooling, together with a suitable cooling device for its implementation.

すなわちこの発明は、連続焼純ラインの冷却ゾーンを通
過させた鋼帯を、冷却液を用いて最終冷却するに際し、
該冷却液を、鋼帯の冷却方向とは゛゛逆向に、しかも該
鋼帯の表裏面に沿う整流として強制流動させることを特
徴とする連続焼鈍処理におけるm帯の冷却方法である。
That is, in this invention, when the steel strip that has passed through the cooling zone of the continuous sintering line is finally cooled using a cooling liquid,
This method of cooling an m-band in continuous annealing treatment is characterized in that the cooling liquid is forced to flow in the opposite direction to the cooling direction of the steel strip and in a rectified flow along the front and back surfaces of the steel strip.

またこの発明は、連続焼鈍ラインの冷却ゾーンを通過さ
せた鋼帯に、冷却液による最終冷却を施゛□す冷却装置
であって、鋼帯の表裏面に沿う冷却液の強制流を導く整
流板を、該鋼帯の表裏面から冷却液の流路を隔てて対設
し、該整流板には、鋼帯の走行方向の下流側に冷却液の
供給口を、他方上流側に排出口をそれぞれ設けたことを
特徴とする特許連続焼鈍炉における鋼帯の冷却装置であ
る。  □以下この発明を具体的に説明する。
The present invention also provides a cooling device that performs final cooling using a cooling liquid on a steel strip that has passed through a cooling zone of a continuous annealing line. A plate is provided oppositely from the front and back surfaces of the steel strip across a coolant flow path, and the flow straightening plate has a coolant supply port on the downstream side in the running direction of the steel strip and a discharge port on the other upstream side. This is a cooling device for a steel strip in a patented continuous annealing furnace, which is characterized in that it is provided with the following features: □This invention will be explained in detail below.

(作用) 第1図に、この発明に従う冷却要領を模式で示す。同図
に示したところにおいて、記号Sは鋼帯で上方に移動し
ている。またWは整流された冷却水であって、鋼帯Sの
側方から供給さnz#i*sと接する位置で下方に向き
を変更させ’r:SM帝Sの走向方向とは逆向きに流動
させるしくみとする。
(Function) FIG. 1 schematically shows the cooling procedure according to the present invention. In the figure, the symbol S is moving upward on the steel strip. In addition, W is rectified cooling water, which is supplied from the side of the steel strip S and changes its direction downward at the position where it contacts nz#i*s. The mechanism is to make it flow.

上述したように、冷却水全体をa帝sの走行に1″対向
させて強制的に流動させることにより、従来の浸漬方式
のように冷却水が淀むこともなく、また仮に鋼帯表面に
蒸気膜が生成したとしても速やかに除去または破壊させ
得るので、効率の良い冷却ができるわけである。
As mentioned above, by forcing the entire cooling water to flow 1 inch opposite to the running surface of the steel strip, the cooling water does not stagnate unlike the conventional immersion method, and it also prevents steam from forming on the surface of the steel strip. Even if a film is formed, it can be quickly removed or destroyed, so efficient cooling can be achieved.

ここで鋼帯Sの速度をvs(m/s ) 、他方冷却水
の速度をvW(m/s )とし、下方側を正の向きとす
ると冷却水Wの鋼帯Sに対する相対速度Vr(m/S)
は次式で表わされる。
Here, if the speed of the steel strip S is vs (m/s) and the speed of the cooling water is vW (m/s), and the downward direction is positive, then the relative speed of the cooling water W with respect to the steel strip S is Vr (m/s). /S)
is expressed by the following equation.

V−V−V     川・・・・・・・・・・・・・・
・・・・(1)      ”r    W    S かかる相対速度Vrと熱伝達係数α(1(cal/が・
h 、6c )との関係について調べた結果を、第2図
に示したが、同図に示したとおり、熱伝達係数αは相対
速度vrに比例して大きくなり、両者の関係は次式で近
似されることが判明した。
V-V-V River・・・・・・・・・・・・・・・
...(1) "r W S The relative velocity Vr and the heat transfer coefficient α (1 (cal/
Figure 2 shows the results of investigating the relationship between h and 6c). As shown in the figure, the heat transfer coefficient α increases in proportion to the relative velocity vr, and the relationship between the two is expressed by the following equation: It turns out that it can be approximated.

α−5600V  ・  ・・・・・・・・・・・・・
・・(2)ここにたとえば相対速度Vrを10m/sと
した場合を考えると、このときの熱伝達係数αは268
00 koal/m’−h・’cとなる。
α-5600V ・ ・・・・・・・・・・・・・
...(2) For example, if we consider the case where the relative velocity Vr is 10 m/s, then the heat transfer coefficient α is 268
00 koal/m'-h・'c.

この点、従来の浸漬冷却における熱伝達係数は、第8図
に示したとおり高k 5000 koal/m”−h−
”Cであり、この発明の冷却方法と比較すると数分の1
以下にすぎない。
In this regard, the heat transfer coefficient in conventional immersion cooling is high k 5000 koal/m''-h- as shown in Figure 8.
”C, which is a fraction of that of the cooling method of this invention.
No more than the following.

(実施例) まずこの発明の冷却装置について説明する。(Example) First, the cooling device of this invention will be explained.

第4図に、この発明の好適例を断面で、また第5図には
その要部を斜視面で示し、図中番号1a。
FIG. 4 shows a cross section of a preferred embodiment of the present invention, and FIG. 5 shows a main part thereof in a perspective view, numbered 1a in the figure.

1bは、冷却液を鋼帯Sの表裏面に沿ってすなわち整流
として導くための整流板であり、鋼帯Sの1両面に平行
に設置されている。Pa、!b、8a78bはいずれも
シールロールで、鋼帯Sの走行方向先後端部における冷
却液の流出防止を司る。4bは、整流板1bの両側に設
けられたシール部であって、これと同じものが整流板1
aの両側にも設5□  けられていて、両者をそれぞれ
接合することによって側面からの冷却液の漏洩を防止す
ると共に、整流板1 a # 1 b同士の位置決めの
機能もそなえている。
1b is a rectifying plate for guiding the cooling liquid along the front and back surfaces of the steel strip S, that is, as a rectifier, and is installed parallel to one both surfaces of the steel strip S. Pa! b, 8a and 78b are seal rolls that prevent the coolant from flowing out at the front and rear ends of the steel strip S in the running direction. 4b is a seal part provided on both sides of the rectifier plate 1b, and the same seal part is provided on both sides of the rectifier plate 1b.
They are also provided on both sides of the rectifying plates 1a, 1a, and 1b, and by joining them, they prevent leakage of the coolant from the sides, and also have the function of positioning the rectifying plates 1a, 1b, and 1b.

5a、5bはそれぞれ、整流板1a、1bに設置“。5a and 5b are installed on the rectifier plates 1a and 1b, respectively.

けられた冷却液の供給口、また6a 、6aは排出口で
ある。
6a and 6a are the supply ports for the cooled coolant, and 6a and 6a are the discharge ports.

なおフa、7bは、冷却液供給のための加圧ポンプ、8
,9はそれぞれデフレクタ−ロールであるO さて供給口5a 、5bから整流板内に導入された冷却
液は、鋼帯Sと整流板1a、1bとで形成された間隙す
なわち流路を鋼帯Sの走行方向とは逆向きに流動し、整
流板1atlbの他端に設けられた排出口ea、Qbか
ら排出されるわけであ3゛るが、このように鋼帯Sと整
流板1a 、lbとの1間の比較的狭い間隙を強制的に
流動させることにより、効果的な冷却が実現されるので
ある。
Note that F a and 7b are pressurizing pumps for supplying cooling liquid, and 8
, 9 are deflector rolls O. Now, the cooling liquid introduced into the rectifying plate from the supply ports 5a and 5b passes through the gap or flow path formed between the steel strip S and the rectifying plates 1a and 1b. It flows in the opposite direction to the traveling direction of the steel strip S and is discharged from the discharge ports ea and Qb provided at the other end of the current plate 1atlb. Effective cooling is achieved by forcing flow through the relatively narrow gap between the two.

第6〜8図に冷却装置の他の実施例を示す。第6図は、
第4図に示した整流板を鋼帯Sの走行う゛インに8i取
付けた例、また第7図および第8図に示したものは、整
流板をそれぞれU字形、W形とした例である。
Other embodiments of the cooling device are shown in FIGS. 6-8. Figure 6 shows
The example shown in Fig. 4 is an example in which the rectifying plate is attached to the inside where the steel strip S runs, and the ones shown in Figs. 7 and 8 are examples in which the rectifying plate is U-shaped and W-shaped, respectively. .

第4図に図解した冷却装置を用い、次の条件下に鋼帯の
最終冷却を行った。
The final cooling of the steel strip was performed using the cooling device illustrated in FIG. 4 under the following conditions.

・鋼帯寸法     厚み:Q、8m、幅+9001m
・処理量      60 t/h ・冷却開始温度   150℃ ・供給冷却水温度  80°C ・鋼帯冷却後温度  60°C ・冷却水の流路厚み 約6關 上記の処理に要した冷却水量は約40 t/h 、また
冷却水出側温度は約70″Cであった。
・Steel strip dimensions Thickness: Q, 8m, width +9001m
- Processing amount: 60 t/h - Cooling start temperature: 150°C - Supply cooling water temperature: 80°C - Temperature after steel strip cooling: 60°C - Cooling water channel thickness: approx. 40 t/h, and the cooling water outlet temperature was about 70''C.

かかる冷却処理によって鋼板は幅方向に均一に冷却さn
ていて、冷却むらや蒸気膜の発生に起因″。
Through this cooling treatment, the steel plate is cooled uniformly in the width direction.
This is caused by uneven cooling and the formation of a vapor film.

した悪影響は全く認められなかった。No adverse effects were observed.

なお従来の浸漬法によって上記の量の綱帯を処理するの
に要する冷却水量は約60 t/hであり、この点この
発明に従う冷却法では冷却水量の大幅な削減が達成され
た。
The amount of cooling water required to process the above amount of rope using the conventional immersion method is about 60 t/h, and in this respect, the cooling method according to the present invention achieves a significant reduction in the amount of cooling water.

(発明の効果) かくしてこの発明によれば、従来に比較して格段に高能
率で鋼帯を冷却することができ、従って連続焼鈍処理に
おける処理能力の向上に偉効を奏する。
(Effects of the Invention) Thus, according to the present invention, it is possible to cool the steel strip with much higher efficiency than in the past, and it is therefore very effective in improving the throughput in continuous annealing treatment.

また従来に比べ冷却装置の小型化も併せて実現される。Furthermore, the cooling device can also be made smaller than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う冷却要領説明図ζ第2図は、
冷却水の鋼帯に対する相対速度vrl−と熱伝達係数α
との関係を示したグラフ、第8図は、従来の浸漬冷却に
おける鋼帯温度−冷却水温度と熱伝達係数との関係を示
したグラフ、第4図は、この発明に従う冷却装置の断面
図、第5図は、その斜視図、          ゛□
゛第6〜8図はそれぞれ、他の実施例の模式図で゛ある
。 1a、xb・・・整流板 2a、2b、3a、8b−& −/l/ 0− ル4b
・・・シール部 5a、5b・・・冷却液の供給口 6a、6b・・・冷却液の排出口 アa、7b・・・加圧ポンプ 8.9・・・デフレクタロール
FIG. 1 is an explanatory diagram of the cooling procedure according to the present inventionζ FIG.
Relative velocity of cooling water to steel strip vrl- and heat transfer coefficient α
FIG. 8 is a graph showing the relationship between steel strip temperature-cooling water temperature and heat transfer coefficient in conventional immersion cooling. FIG. 4 is a cross-sectional view of the cooling device according to the present invention. , Figure 5 is its perspective view, ゛□
6 to 8 are schematic diagrams of other embodiments. 1a, xb... Rectifying plate 2a, 2b, 3a, 8b-&-/l/0-le 4b
...Seal parts 5a, 5b...Cooling liquid supply ports 6a, 6b...Cooling liquid discharge ports a, 7b...Pressure pump 8.9...Deflector roll

Claims (1)

【特許請求の範囲】 1、連続焼鈍ラインの冷却ゾーンを通過させた鋼帯を、
冷却液を用いて最終冷却するに際し、該冷却液を、鋼帯
の走行方向とは逆向きに、しかも該鋼帯の表裏面に沿う
整流として強制流動させることを特徴とする連続焼鈍処
理における鋼帯の冷却方法。 2、連続焼鈍ラインの冷却ゾーンを通過させた鋼帯に、
冷却液による最終冷却を施す冷却装置であつて、鋼帯の
表裏面に沿う冷却液の強制流を導く整流板を、該鋼帯の
表裏面から冷却液の流路を隔てて対設し、該整流板には
、鋼帯の走行方向の下流側に冷却液の供給口を、他方上
流側に排出口をそれぞれ設けたことを特徴とする連続焼
鈍処理における鋼帯の冷却装置。
[Claims] 1. A steel strip passed through a cooling zone of a continuous annealing line,
Steel in a continuous annealing process characterized in that during final cooling using a cooling liquid, the cooling liquid is forced to flow in a direction opposite to the running direction of the steel strip and as a rectified flow along the front and back surfaces of the steel strip. Method of cooling the strip. 2. The steel strip passed through the cooling zone of the continuous annealing line,
A cooling device that performs final cooling with a cooling liquid, in which a rectifying plate that guides a forced flow of the cooling liquid along the front and back surfaces of the steel strip is provided oppositely from the front and back surfaces of the steel strip, with a flow path of the cooling liquid being separated from the front and back surfaces of the steel strip, A cooling device for a steel strip in continuous annealing treatment, characterized in that the current plate is provided with a cooling liquid supply port on the downstream side in the running direction of the steel strip, and a discharge port on the other upstream side.
JP60162909A 1985-07-25 1985-07-25 Method and apparatus for cooling steel strip in continuous annealing treatment Granted JPS6223937A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60162909A JPS6223937A (en) 1985-07-25 1985-07-25 Method and apparatus for cooling steel strip in continuous annealing treatment
CA000514447A CA1266602A (en) 1985-07-25 1986-07-23 Method and apparatus for cooling steel strips
ES868600603A ES2000758A6 (en) 1985-07-25 1986-07-24 Method and apparatus for cooling steel strips.
AU60501/86A AU571786B2 (en) 1985-07-25 1986-07-24 Cooling of steel strip in a continuous annealing line
KR1019860006082A KR900006694B1 (en) 1985-07-25 1986-07-25 Method and apparatus for cooling steel strips
EP86305721A EP0210847A3 (en) 1985-07-25 1986-07-25 Method and apparatus for cooling steel strips
BR8603527A BR8603527A (en) 1985-07-25 1986-07-25 METHOD AND APPLIANCE FOR COOLING STEEL STRIPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162909A JPS6223937A (en) 1985-07-25 1985-07-25 Method and apparatus for cooling steel strip in continuous annealing treatment

Publications (2)

Publication Number Publication Date
JPS6223937A true JPS6223937A (en) 1987-01-31
JPS6342698B2 JPS6342698B2 (en) 1988-08-25

Family

ID=15763530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162909A Granted JPS6223937A (en) 1985-07-25 1985-07-25 Method and apparatus for cooling steel strip in continuous annealing treatment

Country Status (1)

Country Link
JP (1) JPS6223937A (en)

Also Published As

Publication number Publication date
JPS6342698B2 (en) 1988-08-25

Similar Documents

Publication Publication Date Title
KR910004610B1 (en) Method for producing non-aging hot-dip galvanized steel strip
CS216550B2 (en) Finishing method for continuous double-sided metalising of the iron metal band by submersion and device for executing the same method
US2797173A (en) Method of and apparatus for annealing and coating steel sheets
JP6792561B2 (en) Methods and equipment for reaction control
JPS6223937A (en) Method and apparatus for cooling steel strip in continuous annealing treatment
JPH0681093A (en) Hot dip metal coating equipment for strip
KR100815810B1 (en) Apparatus and method for cooling hot dip galvanizing bath
JPH05247619A (en) Vertical type galvannealing furnace for manufacturing galvannealed steel sheet
CA1133365A (en) Method and apparatus for cooling steel strips to effect continuous annealing
JPS6240350A (en) Method for controlling plating deposition of molten metal
KR900006694B1 (en) Method and apparatus for cooling steel strips
JPS5842254B2 (en) Continuous annealing equipment
JPS63145722A (en) Cooling apparatus for continuous annealing line
JP2807134B2 (en) Gas jet chamber sealing device
JP4286544B2 (en) Method and apparatus for forced convection cooling of steel strip in continuous heat treatment equipment
KR910001608B1 (en) Support device for moving metal strip
JPS54161507A (en) Continuous annealing apparatus
JPS62297419A (en) Control method for sheet temperature of outlet side of cooling apparatus for steel sheet in continuous annealing line
JP2970920B2 (en) Alloying furnace and operating method thereof
SU1014923A1 (en) Apparatus for cooling flat products
JP3362443B2 (en) Continuous annealing line operation method
JP2633363B2 (en) Method and apparatus for melting and brightening steel strip with electric tin
JPH08370Y2 (en) Pickling pretreatment device
JPH04253512A (en) Method for cooling work roll of cold rolling mill
JP2000204417A (en) Installation used for continuous annealing and also for hot-dipping

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees