JPH05247619A - Vertical type galvannealing furnace for manufacturing galvannealed steel sheet - Google Patents

Vertical type galvannealing furnace for manufacturing galvannealed steel sheet

Info

Publication number
JPH05247619A
JPH05247619A JP8032692A JP8032692A JPH05247619A JP H05247619 A JPH05247619 A JP H05247619A JP 8032692 A JP8032692 A JP 8032692A JP 8032692 A JP8032692 A JP 8032692A JP H05247619 A JPH05247619 A JP H05247619A
Authority
JP
Japan
Prior art keywords
zone
steel sheet
gas
heating
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8032692A
Other languages
Japanese (ja)
Inventor
Nobukazu Murakami
伸和 村上
Jinichi Tamoto
仁一 田本
Katsutoshi Sunada
勝利 砂田
Toshihiro Okochi
敏博 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8032692A priority Critical patent/JPH05247619A/en
Publication of JPH05247619A publication Critical patent/JPH05247619A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To stably manufacture a thick galvannealed steel sheet having excellent powdering resistance and flaking resistance, in a vertical galvannealing furnace for manufacturing the galvannealed steel sheet by pulling up the steel sheet after dipping into a hot-dipping galvanizing bath, gas-wiping, quickly heating, holding to execute galvannealing reaction and cooling. CONSTITUTION:In this galvannealing furnace, a temp. adjusting zone 12 for adjusting temp. of a holding zone 7 to the suitable temp. range for developing the galvannealing reaction by mixing cold blast with exhaust gas in a heating zone 5 is arranged in between the heating zone 5 for quickly heating the steel sheet 1 after gas-wiping by a directly firing type heating means 6 and the holding zone 7 for developing the galvannealing reaction by holding the steel sheet in a prescribed temp. range after quickly heating. Further, a pressure resistant body 13 freely adjusting the pressure loss resistance to a gas flow is arranged in the lifting gas flow passage from the temp. adjusting zone 12 to the holding zone 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板を溶融亜鉛めっき
浴に浸漬して引上げ、ガスワイピング後加熱、保定冷却
して合金化亜鉛めっき鋼板を製造するための竪型合金化
炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical alloying furnace for producing an alloyed zinc-plated steel sheet by immersing the steel sheet in a hot dip galvanizing bath and pulling it up, heating it by gas wiping, and cooling it by holding cooling. is there.

【0002】[0002]

【従来の技術】近年、自動車用材料等として合金化亜鉛
めっき鋼板の需要が増大してきており、防錆力強化の要
請が高まってきている。これに伴い、めっき付着量40
〜70g/m2 の厚めっき化と共に耐パウダーリング
性、耐フレーキング性等の加工性に優れた合金化亜鉛め
っき鋼板の製造技術が進展してきている。
2. Description of the Related Art In recent years, the demand for alloyed galvanized steel sheets as materials for automobiles has been increasing, and the demand for strengthening rust prevention has been increasing. Along with this, the amount of plating adhesion 40
The technology for producing alloyed galvanized steel sheets having excellent workability such as powder ring resistance and flaking resistance along with the thickening of 70 g / m 2 has been developed.

【0003】この合金化亜鉛めっき鋼板製造用合金化炉
としては、例えば図7に示すような竪型のものが知られ
ている。この竪型合金化炉においては、酸洗処理後の鋼
板1を溶融亜鉛めっき浴2に浸漬して鋼板1に溶融亜鉛
をめっきし、シンクロール3を経て引上げながらワイピ
ングノズル4によるガスワイピング処理を経てめっき目
付量を調整しながら加熱帯5に送り、ここで誘導加熱や
直火式の加熱手段6によって加熱し、保定帯7において
保定して合金化反応を生成し、得られた合金化亜鉛めっ
き鋼板10 を冷却装置8で冷却後搬送ローラー9により
炉外に搬出するようになっている。保定帯7の後端には
風量調整ができる煙道10が設けられ、又保定帯7と冷
却装置8間には、合金化亜鉛めっき鋼板10 の搬出に伴
う炉内雰囲気ガスのドラフトを抑制するガスシール部1
1が設けられている。
As an alloying furnace for producing this alloyed galvanized steel sheet, for example, a vertical type furnace as shown in FIG. 7 is known. In this vertical alloying furnace, the steel sheet 1 after the pickling treatment is dipped in a hot dip galvanizing bath 2 to plate the hot-dip galvanized zinc on the steel sheet 1, and a gas wiping treatment by a wiping nozzle 4 is performed while pulling up through a sink roll 3. Then, it is sent to the heating zone 5 while adjusting the coating weight, and heated there by induction heating or direct-heating type heating means 6 and retained in the retention zone 7 to generate an alloying reaction. It adapted to discharge out of the furnace by the cooling after the transport roller 9 a plated steel sheet 1 0 in the refrigerator 8. The rear end of Hojotai 7 flue 10 is provided which can air volume adjustment, between the Mataho Condition 7 cooling device 8, inhibit the draft furnace atmosphere gases with the unloading of the galvannealed steel sheet 1 0 Gas seal part 1
1 is provided.

【0004】[0004]

【発明が解決しようとする課題】この従来の合金化炉に
おけるヒートサイクルは図2のようになっており、47
0℃以下の低温域鋼板温度でのζ相生成抑制のため、A
l濃度と温度から定まる時間内に急速加熱して鋼板温度
を470℃以上とし、Γ相抑制のため520℃以下と
し、470〜520℃の適正温度で合金化処理し、δ1
相の生成を促進することとしている。
The heat cycle in this conventional alloying furnace is as shown in FIG.
In order to suppress the ζ phase generation at low temperature steel plate temperature below 0 ° C, A
The steel sheet temperature of 470 ° C. or higher and rapidly heated into the l concentration and determined from the temperature time, and 520 ° C. or less for Γ phase suppression, and alloying treatment at a proper temperature of four hundred seventy to five hundred and twenty ° C., [delta] 1
It is supposed to promote the formation of phases.

【0005】従来、熱処理サイクルは上限温度560℃
以下で合金化処理すれば良いのに対し、上記条件を満足
するためには急速加熱可能で熱処理温度サイクルを上下
限の狭い範囲内とすることが可能でなければならない。
即ち、ヒートサイクルの相違に基づき適切な対応を計る
ための設備技術面での主要課題は下記の通りである。
Conventionally, the heat treatment cycle has an upper limit temperature of 560 ° C.
The alloying treatment may be performed below, but in order to satisfy the above conditions, rapid heating must be possible and the heat treatment temperature cycle must be within a narrow upper and lower limit range.
In other words, the major issues in terms of equipment technology to take appropriate measures based on the difference in heat cycle are as follows.

【0006】 低温長時間に伴う炉長巨大化を抑制
し、かつ2相反応適性を満足すること、即ち目付量速度
毎に温度許容幅を満足し、かつ合金化温度と時間の最適
組合せおよび合金化全体長を決定する必要がある。
Suppressing the furnace lengthening due to low temperature and long time and satisfying the two-phase reaction suitability, that is, satisfying the temperature permissible width for each basis weight rate, and the optimum combination of alloying temperature and time and alloy It is necessary to determine the total length of conversion.

【0007】 急速加熱能力と許容設備長をAl濃化
層寿命より目付量、板厚、速度毎に決定し、急速加熱直
火バーナーを開発する必要がある。
It is necessary to develop a rapid heating direct-burning burner by determining the rapid heating capacity and the allowable equipment length for each basis weight, plate thickness, and speed from the life of the Al concentrated layer.

【0008】 巨大直火加熱容量下で目付、板厚速度
の各処理条件毎に保定帯オーバーシュート防止とヒート
サイクルを満足する様、熱バランス、炉圧バランスをシ
ミュレートするモデルを構築し、設備技術手法を評価す
る必要がある。
Under a huge direct heating capacity, a model was constructed to simulate heat balance and furnace pressure balance so as to satisfy the restraint zone overshoot prevention and heat cycle for each processing condition of unit weight and plate thickness speed Technical methods need to be evaluated.

【0009】 現実的な個別設備方式に対して最適設
備仕様に決定が可能なことが必要である。
It is necessary to be able to determine optimum equipment specifications for a realistic individual equipment system.

【0010】上記は厚めっき良加工性品質を確保する方
法であると共に、従来技術に代えて40g/m2 以下や
70g/m2 超の厚めっき以外の対象に適用しても品質
の安定した生産を可能とする。
[0010] with the above is a way to ensure Atsumekki good processability quality, stable quality be applied in place of the prior art to the subject other than the Ki thick Tsu of 40 g / m 2 or less or 70 g / m 2 greater Enables production.

【0011】一方、投資効率上は設備能力規模が適性な
レベルまで向上する事が望ましいが、従来技術では合金
化鋼板専用ラインに於いて月間30,000トン以下に
止まっていた。その要因はZnの付着量をガスワイピン
グ等で制御するめっき装置による。
On the other hand, in terms of investment efficiency, it is desirable that the equipment capacity scale be improved to an appropriate level, but in the prior art, the line for exclusive use of alloyed steel sheets was kept below 30,000 tons per month. The cause is due to the plating apparatus that controls the amount of Zn adhered by gas wiping or the like.

【0012】付着量制御は付着量が少なくなるほど困難
である。又、外観品質確保も含めて、現状では自動車用
途などの付着量45g/m2 相当では処理可能速度の上
限は130〜150MPM、60g/m2 相当では15
0〜180MPMである。一方、合金化処理に於いて
は、地鉄よりめっき表層までの拡散のため厚めっきほど
処理時間を要し、巨大な設備能力となるが、付着量制御
可能な処理速度を合金化処理可能速度以下に抑制する必
要を生ずる。したがって、厚めっき用には、従来にも増
して大きな設備能力を有し、前述の要件を満たし、最適
な品質の合金化亜鉛めっき鋼板を高生産性で得ることが
できる設備が必要である。δ1 相およびΓ相の2相反応
挙動の原理から炉内の熱・ガス挙動の検討を行った結
果、従来技術では不備が多く、新しい設備構成が必要で
ある。
It is more difficult to control the adhesion amount as the adhesion amount decreases. In addition, including securing the appearance quality, at present, the upper limit of the processable speed is 130 to 150 MPM when the adhesion amount is 45 g / m 2 for automobiles and the like, and 15 when it is equivalent to 60 g / m 2.
0 to 180 MPM. On the other hand, in the alloying process, the thicker the plating, the longer the processing time because of the diffusion from the base metal to the plating surface layer, which is a huge equipment capacity. The following needs to be suppressed. Therefore, there is a need for equipment for thick plating, which has a greater facility capacity than ever, meets the above requirements, and is capable of obtaining an alloyed galvanized steel sheet of optimum quality with high productivity. As a result of investigating the heat / gas behavior in the furnace from the principle of the two-phase reaction behavior of the δ 1 phase and the Γ phase, the conventional technology has many defects and requires a new equipment configuration.

【0013】本発明は、厚めっき合金化鋼板を含む従来
付着量の耐パウダーリング性およびフレーキング性の優
れた合金化鋼板を安定して生産可能とし、又大幅に設備
能力を向上させると共に、高熱効率性能を具備する合金
化炉を提供する。
The present invention makes it possible to stably produce alloyed steel sheets having a conventional adhesion amount including powder-plated alloyed steel sheets and having excellent powder ring resistance and flaking properties, and significantly improve the facility capacity. An alloying furnace having high thermal efficiency performance is provided.

【0014】特に、急速加熱能力の確保、保定帯オーバ
ーシュート防止、合金化温度、熱バランス、炉圧バラン
スの制御性の確保等が重要であり、従来はこれらの点で
特に構造上充分な対応ができているとは言い難く、めっ
き厚は片面当り40g/m2以下、めっき処理速度は1
00〜120m/minで、これを処理能力で表すと6
0t/Hr以下であり、上述の要請レベルに安定的には
応えられない。
In particular, it is important to secure a rapid heating capacity, prevent overshooting of the retaining band, controllability of alloying temperature, heat balance, furnace pressure balance, etc., and in the past, in view of these points, it is particularly structurally sufficient. It is hard to say that the plating thickness is 40 g / m 2 or less per side, and the plating processing speed is 1
At 0 to 120 m / min, this is expressed as a processing capacity of 6
Since it is 0 t / Hr or less, the above-mentioned required level cannot be stably met.

【0015】[0015]

【課題を解決するための手段】本発明は、鋼板を溶融亜
鉛めっき浴に浸漬後引上げてガスワイピングし、急速加
熱、保定して合金化反応させ、冷却して合金化亜鉛めっ
き鋼板を製造する竪型合金化炉において、ガスワイピン
グ後の鋼板を直火式加熱手段により急速加熱する加熱帯
と、この急速加熱後所定温度領域で保定して合金化反応
を生成する保定帯との間に、加熱帯の排ガスに冷風を混
合して保定帯の温度を合金化反応生成のための適温領域
に調整する温度調整帯を配設すると共に、温度調整帯か
ら保定帯に至る上昇ガス流通路に該ガス流に対する圧損
抵抗を調整自在な圧損抵抗体を配設したことを特徴とす
る合金化亜鉛めっき鋼板製造用竪型合金化炉である。必
要に応じて、加熱帯の上流の鋼板入側に炉内への空気侵
入を防止するためのシールガス噴出ノズルを配設し、炉
内の排ガスを該シールガス噴出ノズルを介して通板方向
と交叉方向に噴出するガスシール構造を設け、また、圧
損抵抗体にガス噴出ノズルを設け、炉内の排ガスを該ガ
ス噴出ノズルを介して鋼板に噴出する鋼板の振動抑制構
造を設ける。
According to the present invention, a steel sheet is dipped in a hot dip galvanizing bath, pulled up, gas wiped, rapidly heated and held to cause an alloying reaction, and then cooled to produce an alloyed galvanized steel sheet. In the vertical alloying furnace, between the heating zone for rapidly heating the steel sheet after gas wiping by the direct heating type heating means, and the retaining zone for retaining the alloy in the predetermined temperature region after the rapid heating to generate the alloying reaction, A temperature adjusting zone for adjusting the temperature of the retaining zone to an appropriate temperature region for alloying reaction generation by mixing cold air with the exhaust gas of the heating zone is provided, and the rising gas flow passage from the temperature adjusting zone to the retaining zone is provided with the temperature adjusting zone. A vertical alloying furnace for producing an alloyed galvanized steel sheet, characterized in that a pressure loss resistor whose pressure loss resistance to a gas flow is adjustable is arranged. If necessary, a seal gas jet nozzle is installed on the steel plate inlet side upstream of the heating zone to prevent air from entering the furnace, and the exhaust gas in the furnace is passed through the seal gas jet nozzle in the plate passing direction. And a vibration suppressing structure of a steel plate for ejecting exhaust gas in the furnace to the steel plate through the gas injection nozzle.

【0016】[0016]

【作用】本発明においては、直火式の加熱手段を用いて
急速加熱し、良好な合金化層の生成を阻害するζ相の残
留を抑制する。また、加熱帯と保定帯間に温度調整帯を
設け、保定帯の温度を合金化反応と品質安定に適した温
度領域に調整する。さらに、調整帯から保定帯に至る上
昇ガス流通路に圧損抵抗体を設け、これによりガス流に
対する圧損を調整し、特に加熱帯における燃焼ガスの滞
留性を向上させると共に、保定帯からのガスのドラフト
を抑制することにより鋼板に対する急速加熱を可能と
し、又、保定帯における保定効率を向上させる。
In the present invention, the direct heating type heating means is used for rapid heating to suppress the residue of the ζ phase which hinders the formation of a good alloyed layer. Further, a temperature adjusting zone is provided between the heating zone and the retaining zone to adjust the temperature of the retaining zone to a temperature range suitable for alloying reaction and quality stabilization. Furthermore, a pressure loss resistor is provided in the ascending gas flow passage from the adjustment zone to the retention zone to adjust the pressure loss to the gas flow, improve the retention of the combustion gas especially in the heating zone, and prevent gas from the retention zone. By suppressing the draft, the steel sheet can be rapidly heated, and the retaining efficiency in the retaining band is improved.

【0017】さらに、加熱帯の鋼板入側に、加熱帯の排
ガスを用いたガスシール構造を設けて炉内への大気侵入
を抑制することによって、加熱帯、保定帯における熱損
失を防止し、その制御精度を安定確保する。又、圧損抵
抗体にガス噴出ノズルを設けて加熱帯からの排ガスを鋼
板に噴出させることにより、鋼板の振動(バタツキ)を
抑制して通板を円滑化し、めっき膜の損傷を防止する。
Further, a gas seal structure using exhaust gas of the heating zone is provided on the steel plate entrance side of the heating zone to suppress atmospheric intrusion into the furnace, thereby preventing heat loss in the heating zone and the retaining zone. Stable control accuracy is ensured. Further, a gas ejection nozzle is provided in the pressure loss resistor to eject the exhaust gas from the heating zone onto the steel sheet, thereby suppressing vibration (fluttering) of the steel sheet, smoothing the passage of the steel sheet, and preventing damage to the plating film.

【0018】本発明者は、2相反応が平均的熱処理温度
と時間領域において効果的に生成する条件を見い出し、
これらの条件温度を効率的にかつ安定的に確保する上で
適性の高い合金化炉を開発した。
The present inventor found out the conditions under which the two-phase reaction is effectively generated in the average heat treatment temperature and time region,
We have developed an alloying furnace that is highly suitable for securing these temperature conditions efficiently and stably.

【0019】即ち、特にδ1 相を適度に生成し、Γ相の
生成を効果的に抑制するためには、まず、図3に示すよ
うに、浴中および浴外での地鉄粒界に生成するAl濃化
層(アルミバリヤー層)の反応潜伏期間内にζ相を生成
する470℃以下の低温域から470℃以上の好ましい
δ1 相生成促進温度域に急速昇温する必要がある。この
ためには、極めて短い加熱距離内で極めて高い熱伝達係
数が必要となる。これは、良好な合金化層の生成を阻害
するζ相の抑制に必要な条件であり、合金化完了に必要
な等価平均温度と時間を満たすには、470℃より更に
高温に加熱した後保定する事が有利である。そこで、本
発明においては、加熱帯に急速加熱を可能とする直火輻
射バーナー等の直火式加熱手段を設けることとした。
That is, in order to appropriately generate the δ 1 phase and effectively suppress the generation of the Γ phase, as shown in FIG. 3, first, as shown in FIG. It is necessary to rapidly raise the temperature from a low temperature range of 470 ° C. or lower at which the ζ phase is generated to a preferable δ 1 phase formation promoting temperature range of 470 ° C. or higher within the reaction incubation period of the Al concentrated layer (aluminum barrier layer) to be generated. This requires a very high heat transfer coefficient within a very short heating distance. This is a condition necessary for suppressing the ζ phase that inhibits the formation of a good alloyed layer, and in order to satisfy the equivalent average temperature and the time required for the completion of alloying, after heating to a temperature higher than 470 ° C. It is advantageous to do Therefore, in the present invention, the heating zone is provided with a direct-fired heating means such as a direct-fire radiant burner that enables rapid heating.

【0020】つぎに、520℃以上になるとΓ相が過剰
生成するので、このΓ相の過剰生成を抑制する必要があ
り、このためには加熱帯からの高温で大量の排ガスの保
定帯への流入を抑制する必要がある。又、排ガスドラフ
ト量が大きく変動すると、通常大気に対して負圧である
合金化炉下部の圧力が低下し、又下部の開口部からの侵
入空気量も増大し、熱効率の低下や急速加熱帯の熱伝達
への外乱となり、安定な合金化反応が生成されなくな
る。
Next, since the Γ phase is excessively generated at 520 ° C. or higher, it is necessary to suppress the excessive generation of the Γ phase. For this purpose, a large amount of exhaust gas is retained in the retention zone at a high temperature from the heating zone. It is necessary to control the inflow. Also, if the exhaust gas draft amount fluctuates greatly, the pressure in the lower part of the alloying furnace, which is a negative pressure with respect to the normal atmosphere, also decreases, and the amount of air entering from the opening in the lower part also increases, resulting in a decrease in thermal efficiency and rapid heating zone. As a result, the stable alloying reaction will not be generated.

【0021】そこで、本発明においては加熱帯と保定帯
間に冷風を吸込み、加熱帯から保定帯に導入するガス温
度を降下させて保定帯の温度を520℃以下に管理し、
Γ相の過剰生成を防止する。又、炉下部からの空気侵入
を抑制するため、調整帯から保定帯に至る上昇ガス流通
路に上昇ガス流に対してドラフトに匹敵する圧損を生起
可能な圧損抵抗体を設ける。
Therefore, in the present invention, cold air is sucked between the heating zone and the retaining zone, and the temperature of the gas introduced from the heating zone to the retaining zone is lowered to control the temperature of the retaining zone to 520 ° C. or lower.
Prevents overproduction of the Γ phase. Further, in order to suppress the invasion of air from the lower part of the furnace, a pressure loss resistor capable of causing a pressure loss comparable to a draft with respect to the rising gas flow is provided in the rising gas flow passage from the adjustment zone to the retention zone.

【0022】なおこの場合、圧損抵抗体と鋼板との間隙
が小さい程上昇ガス流に対する圧損効果が大きくなるた
め、圧損抵抗体を鋼板に近接させた場合には鋼板が振動
して圧損抵抗体に接触、損傷し、品質が低下するおそれ
があるので、これの防止対策として圧損抵抗体にガス吹
込みノズルを設け、このノズルから鋼板に対してガスを
噴射しバタツキを抑制して圧損抵抗体と鋼板との接触を
防止するとよい。この場合用いるガスとしては、鋼板に
対する温度影響を少なくする上で温度調整された保定帯
のガスが適性が高い。
In this case, the smaller the gap between the pressure loss resistor and the steel sheet, the greater the pressure loss effect on the rising gas flow. Therefore, when the pressure loss resistor is brought close to the steel sheet, the steel sheet vibrates and becomes a pressure loss resistor. Since there is a risk of contact, damage, and deterioration of quality, a gas injection nozzle is provided in the pressure loss resistor as a measure to prevent this, and gas is injected from this nozzle to the steel plate to suppress flapping and to function as a pressure loss resistor. It is better to prevent contact with the steel plate. As the gas used in this case, a gas in a retention zone whose temperature is adjusted is highly suitable for reducing the temperature effect on the steel sheet.

【0023】さらに、ワイピンク終了後直火式加熱手段
までのわずか2m弱の長さの帯域において、大気に接触
することによって鋼板の温度降下が生じ、この温度降下
は急速加熱に不利となる。本発明においては、圧損抵抗
体で炉内への空気侵入の抑制を計ってはいるが、加熱帯
入側開口部よりの空気侵入防止は完全とはいえない。こ
の空気侵入は、鋼板温度を低下させるだけでなく炉内に
おける熱効率を下げることになるので、鋼板入側での空
気侵入を極力防止することが望ましい。
Further, after the completion of the Waipink, in the zone of a length of only a little less than 2 m to the direct heating type heating means, the temperature of the steel sheet drops due to contact with the atmosphere, and this temperature drop is disadvantageous to the rapid heating. In the present invention, although the pressure loss resistor is used to suppress the invasion of air into the furnace, it cannot be said that the air intrusion from the heating zone entrance side opening is completely prevented. This air entry not only lowers the temperature of the steel sheet but also lowers the thermal efficiency in the furnace, so it is desirable to prevent air entry on the steel sheet entry side as much as possible.

【0024】そこで、加熱帯の入側にシールガス噴出ノ
ズルを設け、このノズルからガスを噴射することによっ
て侵入空気を低減するとよい。この噴射ガスとしては、
鋼板の温度を上昇させ加熱帯の加熱効率を向上させる意
味で加熱ガスが好ましく、例えば加熱帯の排ガスを温度
調整して用いることが有効である。温度調整帯あるいは
保定帯の排ガスを用いても良い。このシールガス噴出ノ
ズルは、熱効率の向上を計るため重要な合金化炉構成要
素であるが、合金化鋼板の製造において欠くべからざる
要素ではなく、省略することも出来る。
Therefore, it is advisable to provide a seal gas ejection nozzle on the inlet side of the heating zone and inject air from this nozzle to reduce the invading air. As this jet gas,
A heating gas is preferable in the sense that the temperature of the steel sheet is raised and the heating efficiency of the heating zone is improved. For example, it is effective to adjust the temperature of the exhaust gas in the heating zone before use. Exhaust gas in the temperature adjustment zone or the retention zone may be used. This seal gas ejection nozzle is an important alloying furnace constituent element for improving the thermal efficiency, but it is not an essential element in the production of alloyed steel sheet and can be omitted.

【0025】[0025]

【実施例】図1に本発明の合金化炉の実施例を示す。EXAMPLE FIG. 1 shows an example of the alloying furnace of the present invention.

【0026】この実施例においては、図7に示した従来
例と同様酸洗された鋼板1を溶融亜鉛めっき浴2に浸漬
し、鋼板1に溶融亜鉛をめっきし、シンクロール3を介
して引上げ、ワイピングノズル4によりガスワイピング
後、合金化炉に導入して急速加熱、保定、冷却して合金
化亜鉛めっき鋼板を製造する。
In this embodiment, similarly to the conventional example shown in FIG. 7, a pickled steel plate 1 is immersed in a hot dip galvanizing bath 2, the steel plate 1 is plated with hot dip zinc, and pulled up through a sink roll 3. After the gas wiping with the wiping nozzle 4, it is introduced into an alloying furnace and rapidly heated, retained and cooled to produce an alloyed galvanized steel sheet.

【0027】本発明においては、加熱帯5を第1加熱帯
と第2加熱帯50 により形成し、この両加熱帯にはそれ
ぞれ図4に示すような直火式バーナー60 、61 を、そ
れぞれ鋼板1を挟んで鋼板1に近接して対向配置し、鋼
板1をその両面からバーナー火炎によって直接加熱し
て、急速加熱できるようになっている。バーナー60
1 の構造は、火炎吹出口62 がスリット状になってお
り、吹出口62 端から外方に対して面積が拡大する火炎
拡散路63 が形成されている。そして、拡散路63 端に
おいて鋼板1の搬送方向と平行な平行面64 が形成さ
れ、バーナー60 からの火炎が鋼板1の表面に沿って層
状に流れ、鋼板1を充分に加熱できるようになってい
る。
[0027] In the present invention, the heating zone 5 is formed by a first heating zone second heating zone 5 0, the direct heat as the two heating zones are shown in FIG. 4 respectively burner 6 0, 6 1 The steel plates 1 are arranged so as to be close to and face each other with the steel plate 1 interposed therebetween, and the steel plates 1 can be directly heated from both sides thereof by a burner flame for rapid heating. The burner 6 0,
Structure of 6 1 flame outlet 6 2 has become a slit-shaped, flame diffusion path 6 3 to increase the area relative to the outer from the air outlet 6 second end is formed. The diffusion path 6 3 parallel to the conveying direction parallel to surface 6 4 of the steel plate 1 at the end is formed, it flows in laminar flame from the burner 6 0 along the surface of the steel sheet 1, so that it can sufficiently heat the steel plate 1 It has become.

【0028】第2加熱帯50 と保定帯7の間には、冷風
を混合して第2加熱帯50 からの鋼板1が過剰昇温する
のを抑制するための温度調整帯12を設ける。この温度
調整帯12には、冷風の混合が充分に行われるように複
数の冷風吹込口を間隔をおいて配置する。
[0028] Between the second heating zone 5 0 and Hojotai 7, providing a temperature adjusting zone 12 for the steel plate 1 from the second heating zone 5 0 a mixture of cold air can be inhibited from excessive Atsushi Nobori .. In this temperature adjustment zone 12, a plurality of cold air blowing ports are arranged at intervals so that the cold air is sufficiently mixed.

【0029】この温度調整帯12と保定帯7との間には
圧損抵抗体13を設け、温度調整体12からのガス流に
対して圧損抵抗を与える。これにより、鋼板1は冷風吹
込みによるガスの温度調整が充分行われて保定帯7内に
入る。さらに、保定帯7へのガス温度を適温に安定維持
し、かつ保定帯7からのドラフトを抑制して図5(a)
に示すように保定帯7でガスを充分滞留させて率利用率
を高め、熱損失を軽減できる。
A pressure loss resistor 13 is provided between the temperature adjusting zone 12 and the retaining zone 7 to provide pressure loss resistance to the gas flow from the temperature adjusting element 12. As a result, the steel plate 1 enters the retaining band 7 after the temperature of the gas is sufficiently adjusted by blowing cold air. Further, the gas temperature to the restraining zone 7 is stably maintained at an appropriate temperature, and the draft from the restraining zone 7 is suppressed, as shown in FIG.
As shown in (3), the gas can be sufficiently retained in the retention zone 7 to increase the utilization factor and reduce heat loss.

【0030】この圧損抵抗体13は、図5(a)、
(b)に示すように、鋼板1を挟んで対設され、対設間
隔lが調整自在な抵抗体131 と132 からなってい
る。この抵抗体131 、132 には、図6(a)、
(b)に示すように鋼板1面に対してガスを噴射する複
数のスリット状のガス噴出ノズル14、141 、142
が夫々設けられており、ノズル14、141 、142
らは、ブロワー15により保定帯7から吸引した排ガス
を鋼板1の両面側に噴射することによってバタツキを抑
制して圧損抵抗体13と鋼板1との接触を防止する。こ
こで噴射されるガスは、温度調整された保定帯7からの
燃焼温ガスであり、鋼板品質への悪影響はない。
This pressure loss resistor 13 is shown in FIG.
As shown in (b), it is made up of resistors 13 1 and 13 2 that are opposed to each other with the steel plate 1 sandwiched therebetween, and the installation interval l is adjustable. The resistors 13 1 and 13 2 have a structure shown in FIG.
As shown in (b), a plurality of slit-shaped gas ejection nozzles 14, 14 1 , 14 2 for injecting gas onto the surface of the steel plate 1
The exhaust gas sucked from the retaining band 7 by the blower 15 is injected from the nozzles 14, 14 1 and 14 2 to both sides of the steel plate 1 to suppress flapping and to suppress the pressure loss resistor 13 and the steel plate. Prevent contact with 1. The gas injected here is combustion temperature gas from the temperature-controlled retention zone 7, and has no adverse effect on the steel plate quality.

【0031】又、ガスワイピング後の鋼板1を導入する
加熱帯5の鋼板入側にはシールガス噴出ノズル16が配
設されており、この噴出ノズル16から、調整帯12か
らブロワー17で吸引して得られる排ガスを噴射して、
加熱帯5の鋼板入側からの空気侵入を抑制する。
Further, a seal gas jet nozzle 16 is arranged on the steel plate entrance side of the heating zone 5 for introducing the steel sheet 1 after gas wiping. From this jet nozzle 16, suction is made by the blower 17 from the adjusting zone 12 Inject the exhaust gas obtained by
Air intrusion from the steel plate entrance side of the heating zone 5 is suppressed.

【0032】この実施例における主要仕様および設定値
は表1に示す通りであり、又、この実施例におけるヒー
トサイクルは図2に従来のヒートサイクルと併せて示す
通りである。
The main specifications and set values in this embodiment are shown in Table 1, and the heat cycle in this embodiment is shown in FIG. 2 together with the conventional heat cycle.

【0033】[0033]

【表1】 [Table 1]

【0034】本実施例において、シール部に500℃の
温度のシールガスを噴射して鋼板1の加熱を開始し、鋼
板1を第1加熱帯で470℃まで急速加熱し、第2加熱
帯で504℃まで抑制加熱後、温度調整帯12と圧損抵
抗体13の作用で保定帯7でδ1 相とΓ相が効果的に生
成される適温領域である470〜520℃に入る504
℃で保定後、冷却して合金化鋼板を製造した。
In this embodiment, the sealing gas having a temperature of 500 ° C. is injected into the seal portion to start heating the steel sheet 1, the steel sheet 1 is rapidly heated to 470 ° C. in the first heating zone, and the second heating zone is heated. After being suppressed and heated to 504 ° C., the temperature adjustment zone 12 and the pressure loss resistor 13 act to enter 470 to 520 ° C., which is an appropriate temperature region where the δ 1 phase and the Γ phase are effectively generated in the retention zone 7 504
After being held at ℃, it was cooled to produce an alloyed steel sheet.

【0035】その結果、60g/m2 のめっき厚の溶融
亜鉛めっき鋼板でΓ≦0.8μ、ζ相ゼロとすることが
でき、表面特性、合金化生成共に良好で加工性に優れた
合金化亜鉛めっき鋼板を所期の目標の94t/Hrの処
理能力で製造することができた。又、熱効率も25%程
度向上させることができた。
As a result, in a hot-dip galvanized steel sheet having a coating thickness of 60 g / m 2 , Γ ≦ 0.8 μ and ζ phase zero can be achieved, and the surface characteristics and alloying formation are good, and the alloying is excellent in workability. The galvanized steel sheet could be manufactured with a target processing capacity of 94 t / Hr. Also, the thermal efficiency could be improved by about 25%.

【0036】[0036]

【発明の効果】本発明によれば、加熱帯においてガスワ
イピング後の鋼板を急速加熱すると共に、保定帯に対す
る導入ガス流量、温度を良好な合金化生成のためのΓ
相、δ1相を効果的に生成できる適温領域に効率的に調
整でき、かつ、空気侵入を抑制することによって熱損失
を減少させることができ、合金化めっき厚が30g/m
2以上の加工性に優れた合金化亜鉛めっき鋼板を高生産
性でかつ低コストで安定製造することができる。
According to the present invention, the steel sheet after gas wiping is rapidly heated in the heating zone, and the flow rate of introduced gas to the retaining zone and the temperature for producing good alloying are set to Γ.
Phase, δ 1 phase can be efficiently adjusted to an appropriate temperature range, and heat loss can be reduced by suppressing air intrusion, and alloying plating thickness is 30 g / m
It is possible to stably manufacture an alloyed galvanized steel sheet having excellent workability of 2 or more with high productivity and low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す縦断平面説明図であ
る。
FIG. 1 is a vertical plane explanatory view showing an embodiment of the present invention.

【図2】本発明の一実施例と従来例におけるヒートパタ
ーン例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a heat pattern in one example of the present invention and a conventional example.

【図3】合金化亜鉛めっきにおける加熱速度と合金化反
応に影響を与えるAlバリアーの関係を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a relationship between a heating rate in alloying zinc plating and an Al barrier that affects an alloying reaction.

【図4】本発明で用いる直火式のバーナーの例を示す図
であり、同図(a)は断面説明図、同図(b)は正面説
明図である。
FIG. 4 is a diagram showing an example of a direct-fired burner used in the present invention, FIG. 4 (a) is a sectional explanatory view, and FIG. 4 (b) is a front explanatory diagram.

【図5】本発明における圧損抵抗体の配置例を示す図で
あり、同図(a)は一部縦断面説明図、同図(b)は同
図(a)のA−A’矢視断面説明図である。
5A and 5B are views showing an arrangement example of pressure drop resistors according to the present invention, FIG. 5A is a partial vertical cross-sectional explanatory view, and FIG. 5B is a view taken along the line AA 'in FIG. 5A. It is a section explanatory view.

【図6】同図(a)は本発明の圧損抵抗体の鋼板側から
見た正面説明図であり、同図(b)は同図(a)のB−
B’矢視断面説明図である。
FIG. 6 (a) is a front explanatory view of the pressure loss resistor of the present invention as seen from the steel plate side, and FIG. 6 (b) is a B- of FIG. 6 (a).
FIG. 9B is a cross-sectional view taken along the arrow B ′.

【図7】従来の合金化炉の例を示す縦断平面説明図であ
る。
FIG. 7 is a vertical plane explanatory view showing an example of a conventional alloying furnace.

【符号の説明】[Explanation of symbols]

1 鋼板 10 合金化亜鉛めっき鋼板 2 溶融亜鉛めっき浴 3 シンクロール 4 ワイピングノズル 5 加熱帯 50 第2加熱帯 6 加熱手段 60 直火式バーナー 61 直火式バーナー 62 火炎吹出口 63 火炎拡散路 64 平行面 7 保定帯 8 冷却装置 9 搬送ローラー 10 煙道 11 ガスシール部 12 温度調整帯 13 圧損抵抗体 131 抵抗体 132 抵抗体 14 ガス噴出ノズル 141 ガス噴出ノズル 142 ガス噴出ノズル 15 ブロワー 16 シールガス噴出ノズル 17 ブロワーDESCRIPTION OF SYMBOLS 1 Steel plate 1 0 Alloyed galvanized steel plate 2 Hot dip galvanizing bath 3 Sink roll 4 Wiping nozzle 5 Heating zone 5 0 Second heating zone 6 Heating means 6 0 Direct flame burner 6 1 Direct flame burner 6 2 Flame outlet 6 3 Flame diffusion path 6 4 Parallel surface 7 Holding band 8 Cooling device 9 Conveying roller 10 Flue 11 Gas seal part 12 Temperature adjustment band 13 Pressure loss resistor 13 1 Resistor 13 2 Resistor 14 Gas ejection nozzle 14 1 Gas ejection nozzle 14 2 Gas ejection nozzle 15 Blower 16 Seal gas ejection nozzle 17 Blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大河内 敏博 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Okochi 5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Stock Company Nagoya Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板を溶融亜鉛めっき浴に浸漬後引上げ
てガスワイピングし、急速加熱、保定して合金化反応さ
せ、冷却して合金化亜鉛めっき鋼板を製造する竪型合金
化炉において、ガスワイピング後の鋼板を直火式加熱手
段により急速加熱する加熱帯と、この急速加熱後所定温
度領域で保定して合金化反応を生成する保定帯との間
に、加熱帯の排ガスに冷風を混合して保定帯の温度を合
金化反応生成のための適温領域に調整する温度調整帯を
配設すると共に、温度調整帯から保定帯に至る上昇ガス
流通路に該ガス流に対する圧損抵抗を調整自在な圧損抵
抗体を配設したことを特徴とする合金化亜鉛めっき鋼板
製造用竪型合金化炉。
1. A vertical alloying furnace for producing an alloyed zinc-plated steel sheet by immersing the steel sheet in a hot dip galvanizing bath, pulling it up, gas wiping, rapidly heating and retaining it to cause an alloying reaction, and cooling it to produce a galvannealed steel sheet. Cold air is mixed with the exhaust gas in the heating zone between the heating zone where the steel sheet after wiping is rapidly heated by the direct heating type heating means and the retaining zone where the alloying reaction is generated by holding the steel sheet in this temperature range after the rapid heating. A temperature adjustment zone for adjusting the temperature of the retention zone to an appropriate temperature range for alloying reaction generation is provided, and the pressure loss resistance to the gas flow can be adjusted in the rising gas flow passage from the temperature adjustment zone to the retention zone. Vertical alloying furnace for the production of galvannealed steel sheets, which is characterized by arranging various pressure loss resistors.
【請求項2】 加熱帯の上流の鋼板入側に炉内への空気
侵入を防止するためのシールガス噴出ノズルを配設し、
炉内の排ガスを該シールガス噴出ノズルを介して通板方
向と交叉方向に噴出するガスシール構造を設けたことを
特徴とする請求項1記載の合金化亜鉛めっき鋼板製造用
竪型合金化炉。
2. A seal gas injection nozzle for preventing air from entering the furnace is provided on the steel plate entrance side upstream of the heating zone,
2. A vertical alloying furnace for producing an alloyed galvanized steel sheet according to claim 1, further comprising a gas seal structure for ejecting exhaust gas in the furnace through the seal gas jet nozzle in a direction intersecting with a passage direction. ..
【請求項3】 圧損抵抗体にガス噴出ノズルを設け、炉
内の排ガスを該ガス噴出ノズルを介して鋼板に噴出する
鋼板の振動抑制構造を設けたことを特徴とする請求項1
または2記載の合金化亜鉛めっき鋼板製造用竪型合金化
炉。
3. A vibration suppressing structure for a steel plate, wherein the pressure drop resistor is provided with a gas ejection nozzle, and exhaust gas in the furnace is ejected to the steel plate through the gas ejection nozzle.
Alternatively, the vertical alloying furnace for producing the alloyed galvanized steel sheet according to 2.
JP8032692A 1992-03-03 1992-03-03 Vertical type galvannealing furnace for manufacturing galvannealed steel sheet Withdrawn JPH05247619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8032692A JPH05247619A (en) 1992-03-03 1992-03-03 Vertical type galvannealing furnace for manufacturing galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8032692A JPH05247619A (en) 1992-03-03 1992-03-03 Vertical type galvannealing furnace for manufacturing galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JPH05247619A true JPH05247619A (en) 1993-09-24

Family

ID=13715140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8032692A Withdrawn JPH05247619A (en) 1992-03-03 1992-03-03 Vertical type galvannealing furnace for manufacturing galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JPH05247619A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018245A1 (en) * 1993-12-24 1995-07-06 Centre De Recherches Metallurgiques - Centrum Voor Research In De Metallurgie Process and system for the continuous treatment of a galvanized steel strip
FR2726578A1 (en) * 1994-11-04 1996-05-10 Lorraine Laminage PROCESS FOR COATING A STEEL SHEET WITH A METAL LAYER BASED ON ALUMINUM OR ZINC
BE1011425A3 (en) * 1996-04-29 1999-09-07 Centre Rech Metallurgique Method of coating a steel strip by hot-dip galvanising
JP2002220651A (en) * 2001-01-29 2002-08-09 Nkk Corp Method for manufacturing hot-dip galvanized steel sheet
JP2002266060A (en) * 2001-03-07 2002-09-18 Nippon Steel Corp Vertical alloying furnace and operation method therefor
JP2008115462A (en) * 2006-10-13 2008-05-22 Nippon Steel Corp Apparatus and method for producing galvannealed steel sheet
WO2009145705A1 (en) * 2008-05-26 2009-12-03 Aga Ab Method for galvannealing steel materials
KR101505271B1 (en) * 2013-03-28 2015-03-24 현대제철 주식회사 Gas wiping apparatus and method of manufacturing galvannealed steel sheet using the same
CN110512161A (en) * 2019-09-29 2019-11-29 朱席 A kind of hot galvanizing furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018245A1 (en) * 1993-12-24 1995-07-06 Centre De Recherches Metallurgiques - Centrum Voor Research In De Metallurgie Process and system for the continuous treatment of a galvanized steel strip
US5628842A (en) * 1993-12-24 1997-05-13 Centre De Recherches Metallurgiques-Centrum Voor Research In De Metallurgie Method and apparatus for continuous treatment of a strip of hot dip galvanized steel
FR2726578A1 (en) * 1994-11-04 1996-05-10 Lorraine Laminage PROCESS FOR COATING A STEEL SHEET WITH A METAL LAYER BASED ON ALUMINUM OR ZINC
BE1011425A3 (en) * 1996-04-29 1999-09-07 Centre Rech Metallurgique Method of coating a steel strip by hot-dip galvanising
JP2002220651A (en) * 2001-01-29 2002-08-09 Nkk Corp Method for manufacturing hot-dip galvanized steel sheet
JP4631176B2 (en) * 2001-01-29 2011-02-16 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP2002266060A (en) * 2001-03-07 2002-09-18 Nippon Steel Corp Vertical alloying furnace and operation method therefor
JP4574040B2 (en) * 2001-03-07 2010-11-04 新日本製鐵株式会社 Vertical alloying furnace and operating method thereof
JP2008115462A (en) * 2006-10-13 2008-05-22 Nippon Steel Corp Apparatus and method for producing galvannealed steel sheet
WO2009145705A1 (en) * 2008-05-26 2009-12-03 Aga Ab Method for galvannealing steel materials
KR101505271B1 (en) * 2013-03-28 2015-03-24 현대제철 주식회사 Gas wiping apparatus and method of manufacturing galvannealed steel sheet using the same
CN110512161A (en) * 2019-09-29 2019-11-29 朱席 A kind of hot galvanizing furnace

Similar Documents

Publication Publication Date Title
EP1936000B1 (en) Continuous annealing and hot-dipping plating method and system for steel sheets containing silicon
US4330574A (en) Finishing method for conventional hot dip coating of a ferrous base metal strip with a molten coating metal
GB2048959A (en) Finishing Method and Apparatus for Conventional Hot Dip Coating of a Ferrous Base Metal Strip With a Molten Coating Metal
JPH05247619A (en) Vertical type galvannealing furnace for manufacturing galvannealed steel sheet
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
US4171392A (en) Process of producing one-side alloyed galvanized steel strip
JP2018515688A (en) Method and apparatus for reaction control
JP6740973B2 (en) Method for manufacturing hot-dip galvanized steel sheet
JPH0681093A (en) Hot dip metal coating equipment for strip
KR100362671B1 (en) Cooling method of alloyed hot-dip galvanized steel sheet and cooling apparatus used therein
JPS6240350A (en) Method for controlling plating deposition of molten metal
JPH10298730A (en) Apparatus for preventing black dot defect of galvannealed steel sheet
JP2848074B2 (en) Galvanizing steel strip alloying equipment
JP4044888B2 (en) Method for producing alloyed hot-dip galvanized steel sheet or cold-rolled steel sheet
JP3572983B2 (en) Continuous heat treatment furnace and cooling method in continuous heat treatment furnace
JP3814170B2 (en) Method and apparatus for cooling hot dipped steel sheet
JP2698012B2 (en) Operating method of alloying furnace for galvanizing and alloying furnace
US20240352569A1 (en) Method for manufacturing hot-dip metal-coated steel strip
KR101353547B1 (en) Cooling device of continuous galvanizing line
JPH0645852B2 (en) Method for producing alloyed hot-dip galvanized steel strip
JPS5931858A (en) Production of alloyed galvanized steel plate
JP3821093B2 (en) Continuous molten metal plating method and apparatus
JP6696495B2 (en) Method for manufacturing hot dip galvanized steel sheet
JPH0645854B2 (en) Manufacturing method of beautiful zero spangle steel sheet
JP2018178233A (en) Method and facility for manufacturing galvanized steel band with chemical conversion coating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518