JPH0627314B2 - Manufacturing method of zero spangle steel sheet - Google Patents

Manufacturing method of zero spangle steel sheet

Info

Publication number
JPH0627314B2
JPH0627314B2 JP63318076A JP31807688A JPH0627314B2 JP H0627314 B2 JPH0627314 B2 JP H0627314B2 JP 63318076 A JP63318076 A JP 63318076A JP 31807688 A JP31807688 A JP 31807688A JP H0627314 B2 JPH0627314 B2 JP H0627314B2
Authority
JP
Japan
Prior art keywords
steel sheet
width direction
nozzle
chemical liquid
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63318076A
Other languages
Japanese (ja)
Other versions
JPH02163358A (en
Inventor
道春 播木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63318076A priority Critical patent/JPH0627314B2/en
Publication of JPH02163358A publication Critical patent/JPH02163358A/en
Publication of JPH0627314B2 publication Critical patent/JPH0627314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、均一外観を有する美麗なゼロスパングル溶
融亜鉛メッキ鋼板(ゼロスパングル鋼板)の製造方法に関
するものである。
The present invention relates to a method for producing a beautiful zero spangle hot-dip galvanized steel sheet (zero spangle steel sheet) having a uniform appearance.

〈従来技術とその課題〉 溶融亜鉛メッキ鋼板の高級品に数えられるゼロスパング
ル鋼板は、第3図に示されるように、被メッキ鋼板1を
亜鉛ポット2内の溶融亜鉛浴3に浸漬した後、シンクロ
ール4で方向を変えて溶融亜鉛浴3から引き上げ、続い
てガイドロール5の直上にあるワイピングノズル6から
の昇圧ガスにて目付量調整を行った後、表層の付着亜鉛
が未凝固の状態のうちに“リン酸アンモニウムを主体と
する薬液”を昇圧空気と共に薬液ノズル7から吹付けて
表層亜鉛が冷却凝固する際のデンドライト平均粒径(ス
パングル径)を視認できない程度にまで小さく抑える工
程を経て製造されている。
<Prior Art and Its Problems> Zero spangle steel sheets, which are counted as high-grade hot-dip galvanized steel sheets, have a steel sheet to be plated 1 immersed in a hot-dip zinc bath 3 in a zinc pot 2 as shown in FIG. After changing the direction with the sink roll 4 and pulling it up from the molten zinc bath 3, and then adjusting the basis weight with the pressurized gas from the wiping nozzle 6 directly above the guide roll 5, the zinc adhered to the surface layer has not been solidified. Among them, a step of spraying "a chemical solution mainly composed of ammonium phosphate" together with pressurized air from the chemical solution nozzle 7 to suppress the average dendrite particle diameter (spangle diameter) when the surface zinc is cooled and solidified to the extent that it cannot be visually recognized. It has been manufactured through.

ところで、このような連続溶融亜鉛メッキ処理において
は鋼板の板幅方向端部が中央部よりも厚目付となる“エ
ッジオーバーコート”が発生し易いため、その対策とし
て、通常は第4図に示したような“スリット8の鋼板エ
ッジ対向位置に幅広スリット部8′,8′を有したスリ
ットノズル”が用いられている。
By the way, in such a continuous hot dip galvanizing process, since an "edge overcoat" in which the end portion in the plate width direction of the steel sheet is thicker than the center portion is more likely to occur, as a countermeasure against that, it is usually shown in FIG. Such a "slit nozzle having wide slit portions 8 ', 8'at the position of the slit 8 facing the steel plate edge" is used.

しかしながら、前記第4図に示したスリットノズルを用
いて鋼板エッジ部に吹付けるガス量を多くすることは鋼
板の板幅方向端部における付着亜鉛の冷却凝固を促進す
ることにつながり、板幅方向中央部を基準に適正な薬液
処理を施そうとすると端部の処理が間に合わずに未処理
状態となって、外観が均一なゼロスパングル鋼板が得ら
れないと言う問題があった。
However, increasing the amount of gas blown to the steel plate edge portion using the slit nozzle shown in FIG. 4 leads to promotion of cooling and solidification of adhered zinc at the end portion of the steel sheet in the plate width direction. If an attempt is made to perform an appropriate chemical treatment based on the central portion, the treatment of the end portions will not be in time and the untreated state will not be obtained, and there is a problem that a zero spangle steel sheet having a uniform appearance cannot be obtained.

〈課題を解決するための手段〉 そこで、本発明者等は、エッジオーバーコートを生じる
ことなく、しかも板幅方向において均一で美麗なゼロス
パングル鋼板を安定製造する方法を提供すべく様々な実
験を繰り返しながら研究を重ねた結果、次の(a)乃至(b)
に示すような知見を得るに至った。即ち、 (a)“ワイピングノズルから吹付けられメッキ鋼板面沿
いに流れる昇圧ガス”によるワイピングノズル直下から
薬液ノズルにかけてのメッキ鋼板への熱伝達率(抜熱率)
は、板幅方向中央部では、第5図に示す如くノズル直下
において非常に大きいがメッキ鋼板の走行方向に進むに
従って急激に減衰する。これは、周囲からの同伴流(巻
込み空気流)によって流速の低下が起こり、熱伝達率が
落ちることによるものである。
<Means for Solving the Problems> Therefore, the present inventors have conducted various experiments to provide a method for stably producing a beautiful and beautiful zero spangle steel sheet in the sheet width direction without causing an edge overcoat. As a result of repeated research, the following (a) to (b)
We have come to the knowledge as shown in. That is, (a) The heat transfer coefficient (heat removal rate) from directly under the wiping nozzle to the chemical liquid nozzle by the "pressurized gas sprayed from the wiping nozzle and flowing along the surface of the plated steel sheet".
In the center portion in the plate width direction, as shown in FIG. 5, it is very large immediately below the nozzle, but it attenuates sharply as it goes in the running direction of the plated steel plate. This is because the flow velocity is reduced due to the entrained flow (entrained air flow) from the surroundings, and the heat transfer coefficient is reduced.

(b)これに対して板幅方向端部では、ワイピングノズル
のスリット間隔が中央部よりも大きくなっていて昇圧ガ
ス流量が多い上、メッキ鋼板表面に衝突した昇圧ガスは
中央部から端部方向に向かって排出される傾向が高いた
め、この部分でのガス流の勢いが強くてガス流速の低下
は殆んど起きず、従って板幅方向中央部よりも熱伝達率
(抜熱率)の減衰が小さい(第5図参照)。
(b) On the other hand, at the edge in the plate width direction, the slit spacing of the wiping nozzle is larger than that in the central part, and the flow rate of boosted gas is large. Since the gas tends to be discharged toward the side, the momentum of the gas flow in this part is strong, and the gas flow velocity hardly decreases. Therefore, the heat transfer coefficient (heat removal coefficient) Attenuation is small (see Fig. 5).

(c)このため、メッキ鋼板端部は板幅方向中央部に比し
て過冷状態となって(例えば板幅中央部が420℃で端
部が410℃と言った温度分布となる)デンドライトの
成長が起こり始め、メッキ鋼板の板幅方向中央部に照準
を定めて薬液噴霧のタイミングを決めた場合には薬液処
理効果が得られなくなってしまう。
(c) For this reason, the dendrites of the plated steel plate end portions are undercooled compared to the plate width direction central part (for example, the temperature distribution is 420 ° C at the plate width central part and 410 ° C at the end parts). Growth begins to occur, and when the aim is set at the center of the plated steel sheet in the plate width direction and the timing of spraying the chemical liquid is determined, the chemical liquid treatment effect cannot be obtained.

(d)ところが、ワイピングノズル下流の薬液ノズル位置
の前にメッキ鋼板の表面部分を伝うガス流の吸引装置を
配置し、更にその直後に鋼板面を強制冷却する衝風冷却
装置を併設して、前記ガス流吸引装置で昇圧ガス流を強
制的に鋼板表面から排出すると共に、これに引き続き衝
風冷却装置にて鋼板面に冷却用ガスを吹付けると、ワイ
ピングノズルからメッキ鋼板面に沿ってガス流吸引装置
に向かう昇圧ガスの極めて円滑な流れが生じ、板幅方向
中央部での同伴流による流速低下の影響が極力抑えられ
る上、板幅方向中央部から端部に向かって排出される昇
圧ガス流も極力減少し、昇圧ガスによる熱伝達率(抜熱
率:冷却能力)が板幅方向で等しくなって温度分布の均
一化が達成できる。しかも、これに加えて衝風冷却装置
の風量調節により薬液処理時の鋼板面温度調整も容易と
なるため、板幅方向で均一な薬液処理効果が確保できる
ようになる。
(d) However, in front of the chemical liquid nozzle position downstream of the wiping nozzle, a suction device for the gas flow propagating along the surface of the plated steel sheet is arranged, and immediately after that, an airflow cooling device for forcibly cooling the steel sheet surface is provided. When the pressurized gas flow is forcibly discharged from the steel plate surface by the gas flow suction device, and then a cooling gas is blown to the steel plate surface by the blast cooling device, the gas flows from the wiping nozzle along the plated steel plate surface. An extremely smooth flow of the pressurized gas toward the flow suction device is generated, the influence of the flow velocity decrease due to the entrained flow in the central portion in the plate width direction is suppressed as much as possible, and the pressure is discharged from the central portion in the plate width direction toward the end. The gas flow is also reduced as much as possible, and the heat transfer coefficient (heat removal rate: cooling capacity) due to the boosted gas becomes equal in the plate width direction, so that uniform temperature distribution can be achieved. Moreover, in addition to this, the temperature control of the steel plate surface during the chemical solution treatment is facilitated by adjusting the air flow rate of the blast cooling device, so that a uniform chemical solution treatment effect can be secured in the plate width direction.

本発明は、上記知見等に基づいてなされたものであり、 「連続的に溶融亜鉛浴中を通過させた鋼板面に昇圧ガス
を吹付けて目付量調整を行い、引き続いてスパングル調
整薬液を吹付けることによりゼロスパングル鋼板を製造
する方法において、第1図及び第2図で例示する如く、
前記昇圧ガス噴射ノズル部(ワイピングノズル6)と薬液
噴射ノズル部(薬液ノズル7)間にガス流吸引装置9と衝
風冷却装置10とをこの順序で、かつ薬液噴射ノズル部に
近接させて配設し、これによってノズルから噴射され鋼
板表面に衝突した後の昇圧ガス流を該鋼板表面に沿わせ
てその走行方向に導き、溶融亜鉛目付後鋼板の幅方向温
度差の発生を抑制しつつ積極的な冷却を行うことで、薬
液ノズル部での板幅方向温度分布を均一化してムラの無
い美麗なゼロスパングル鋼板を安定製造し得るようにし
た点」 に特徴を有するものである。
The present invention has been made on the basis of the above findings and the like. “The pressure of the pressurizing gas is continuously sprayed onto the surface of the steel sheet that has passed through the molten zinc bath to adjust the basis weight, and then the spangle adjusting chemical liquid is sprayed. In the method of manufacturing a zero spangle steel sheet by attaching, as illustrated in FIG. 1 and FIG.
A gas flow suction device 9 and a blast cooling device 10 are arranged between the boosting gas jet nozzle portion (wiping nozzle 6) and the chemical liquid jet nozzle portion (chemical liquid nozzle 7) in this order and close to the chemical liquid jet nozzle portion. By this, the pressurized gas flow after being injected from the nozzle and colliding with the surface of the steel sheet is guided along the surface of the steel sheet in the running direction thereof, and positively while suppressing the occurrence of the temperature difference in the width direction of the steel sheet after the molten zinc is weighted. The effective cooling enables uniform temperature distribution in the plate width direction at the chemical solution nozzle part to stably manufacture a beautiful zero spangle steel plate with no unevenness. "

ここで、衝風冷却装置としては、第2図で示したような
鋼板幅方向に区画された複数のスリットから空気等の冷
却気体を吹き出すものや、多数の円形ノズル孔から冷却
気体を吹き出すもの等、一般的なもので十分である。
Here, as the blast cooling device, a device that blows out a cooling gas such as air from a plurality of slits defined in the steel sheet width direction as shown in FIG. 2 or a device that blows out a cooling gas from a large number of circular nozzle holes Etc., general ones are sufficient.

〈作用〉 さて、前記第1図において、通常のゼロスパングル鋼板
製造時におけると同様に被メッキ鋼板1は溶融亜鉛浴3
に浸漬され、シンクロール4にて方向を変えられた後、
ガイドロール5,5で矯正されつつワイピングノズル6
からの昇圧ガスにて所定の目付量に調整される。
<Operation> In FIG. 1, the plated steel sheet 1 is the molten zinc bath 3 in the same manner as in the production of a normal zero spangle steel sheet.
After being dipped in and changed direction with sink roll 4,
Wiping nozzle 6 while being corrected by guide rolls 5 and 5
It is adjusted to a predetermined basis weight with pressurized gas from.

そして、鋼板表面に衝突した後の昇圧ガスは、鋼板表面
に衝突した後ガス流吸引装置9の吸引流に乗って、第1
図及び第2図(第1図の要部を鋼板面に直角の方向から
見た概略図)の矢印で示したような“鋼板表面に沿った
円滑な昇圧ガス流”を形成するが、ガス流吸引装置9の
後方に近接配置した衝風冷却装置10からの衝風冷却ガス
噴射流によりガス流吸引装置9のところで堰き止められ
これと共にガス流吸引装置9に吸引されるので、板幅方
向中央部の昇圧ガス流が端部方向に横切ることによる鋼
板端部の過冷を引き起こすことなくガス流吸引装置9か
ら系外に排出される。また、このとき昇圧ガス流の一部
がガス流吸引装置9の下を通過して鋼板の冷却に悪影響
を及ぼす懸念も確実に防止される。
Then, the pressurizing gas after colliding with the steel plate surface rides on the suction flow of the gas flow suction device 9 after colliding with the steel plate surface, and
A "smooth boosted gas flow along the steel plate surface" is formed as shown by the arrows in the drawings and in Fig. 2 (a schematic view of the main part of Fig. 1 viewed from the direction perpendicular to the steel plate surface). Since the airflow cooling gas jet from the airflow cooling device 10 arranged close to the rear of the airflow suction device 9 blocks the gas at the gasflow suction device 9 and sucks it together with the gasflow suction device 9, The pressurized gas flow in the central portion is discharged from the gas flow suction device 9 to the outside of the system without causing the supercooling of the steel sheet end portion due to the transverse crossing in the end direction. Further, at this time, it is possible to surely prevent the possibility that a part of the boosted gas flow passes under the gas flow suction device 9 and adversely affects the cooling of the steel sheet.

一方、メッキ鋼板はワイピングノズル6からの昇圧ガス
流によって均一に冷却されながらガス流吸引装置9を通
過したメッキ鋼板部位は、更に衝風冷却装置10から噴射
された衝風冷却ガスによって所定の温度まで冷却され
(操業条件に変更があった場合には衝風冷却ガスの噴射
量を調節して温度調整が行なわれる)、薬液ノズル7か
らの薬液吹付けを受ける。
On the other hand, the portion of the plated steel sheet that has passed through the gas flow suction device 9 while being uniformly cooled by the pressurized gas flow from the wiping nozzle 6 has a predetermined temperature due to the blast cooling gas injected from the blast cooling device 10. (When the operating conditions are changed, the injection amount of the blast cooling gas is adjusted to adjust the temperature), and the chemical solution is sprayed from the chemical solution nozzle 7.

この際、板幅方向に複数の温度計11を配置しておき、こ
の温度計11より信号変換器12を介して送られた板幅方向
の温度分布情報に対応した衝風冷却装置10のダンパー開
度を制御器13で決定し、衝風冷却ガス量を板幅方向で分
布を付けて噴射するようにすれば、薬液噴射ノズル7の
位置での板幅方向温度分布の均一性を一層確実なものと
することができる。
At this time, a plurality of thermometers 11 are arranged in the plate width direction, and a damper of the blast cooling device 10 corresponding to the temperature distribution information in the plate width direction sent from the thermometers 11 via the signal converter 12. If the opening degree is determined by the controller 13 and the blast cooling gas amount is distributed in the plate width direction and is injected, the uniformity of the plate width direction temperature distribution at the position of the chemical injection nozzle 7 is further ensured. It can be anything.

なお、衝風冷却装置10としてスリットノズルタイプのも
のを用いる場合には、第2図で示すスリットギャップB
を7mm程度に、そしてノズル高さを鋼板面から30mm程
度に設定するのが良い。これによって、走行するメッキ
鋼板に“板反り”や“板振れ”が生じたとしても板幅方
向及び表裏面での均一温度分布確保が一段と容易かつ安
定化される。
When a slit nozzle type is used as the airflow cooling device 10, the slit gap B shown in FIG.
Is about 7 mm, and the nozzle height is about 30 mm from the steel plate surface. As a result, even if "plate warp" or "plate runout" occurs in the traveling plated steel plate, it is much easier and more stable to secure a uniform temperature distribution in the plate width direction and in the front and back surfaces.

その結果、通常では板幅方向両端部の過冷が起きがちな
メッキ鋼板は薬液ノズル7の直前で板幅方向に均一な温
度分布を有することとなってムラの無い薬液処理効果の
確保が可能となり、非常に美麗なゼロスパングル鋼板を
極めて安定に得ることができる。
As a result, the plated steel sheet, which is normally prone to overcooling at both ends in the plate width direction, has a uniform temperature distribution in the plate width direction immediately before the chemical liquid nozzle 7, so that a uniform chemical liquid treatment effect can be secured. Therefore, a very beautiful zero spangle steel plate can be obtained extremely stably.

次に、実施例によって本発明の効果を具体的に説明す
る。
Next, the effects of the present invention will be specifically described with reference to examples.

〈実施例〉 前記第1図及び第2図で示したようなゼロスパングル鋼
板製造設備を用い、第1表に示す条件でゼロスパングル
鋼板の製造を行った。
<Example> A zero spangle steel sheet was manufactured under the conditions shown in Table 1 using the zero spangle steel sheet manufacturing equipment as shown in FIGS. 1 and 2.

なお、本発明例として使用したワイピングノズルは第4
図で示したタイプで、中央部スリット間隔が1.0mm、端
部スリット間隔が1.5mmの極く一般的なものであった、
また、スリットノズルタイプの衝風冷却装置は、スリッ
トギャップB:7mm,スリットピッチ:100mm,鋼板
面とノズル間の距離:30mm,冷却面長さ:500mmの
もので、出口流速を20〜70m/secの間で変えること
によりメッキ鋼板の板幅方向及び表裏面に所定値の均一
な温度分布が達成できるよう努めた。
The wiping nozzle used as an example of the present invention is the fourth wiping nozzle.
In the type shown in the figure, the central slit spacing was 1.0 mm, the end slit spacing was 1.5 mm, which was very general,
Further, the slit nozzle type airflow cooling device has a slit gap B: 7 mm, a slit pitch: 100 mm, a distance between the steel plate surface and the nozzle: 30 mm, a cooling surface length: 500 mm, and an outlet flow velocity of 20 to 70 m /. We tried to achieve a uniform temperature distribution with a predetermined value in the width direction of the plated steel sheet and on the front and back surfaces by changing the interval between sec.

この時の、薬液ノズルの直前における板幅方向及び表裏
面の温度差(目標温度に対する差)を第1表に併せて示し
た。勿論、従来例の結果はガス吸引装置と衝風冷却装置
とを設置しない設備で得られたものであることは言うま
でもない。
Table 1 also shows the temperature difference between the plate width direction and the front and back surfaces (difference from the target temperature) immediately before the chemical liquid nozzle at this time. Of course, it goes without saying that the result of the conventional example was obtained by the equipment in which the gas suction device and the airflow cooling device are not installed.

第1表に示される結果からも明らかなように、本発明法
によると操業条件の異なる場合でも薬液ノズルの直前に
おいて板幅方向及び表裏面に均一 な温度分布を達成できることが分かる。そして、この状
態での薬液処理によって均一な外観を有する非常に美麗
なゼロスパングル鋼板が安定して得られることが確認さ
れた。
As is clear from the results shown in Table 1, according to the method of the present invention, even in the case where the operating conditions are different, even in the plate width direction and the front and back surfaces immediately before the chemical liquid nozzle. It can be seen that a wide temperature distribution can be achieved. Then, it was confirmed that a very beautiful zero spangle steel sheet having a uniform appearance can be stably obtained by the chemical treatment in this state.

〈効果の総括〉 以上に説明した如く、この発明によれば、通常のワイピ
ングノズルを変更することなく、そのエッジオーバーコ
ートの抑制効果を確保したままで板幅方向に均一な薬液
処理が達成できるため、非常に品質の高い美麗なゼロス
パングル鋼板を安定して製造することが可能となるな
ど、産業上極めて有用な効果がもたらされる。
<Summary of Effects> As described above, according to the present invention, it is possible to achieve uniform chemical treatment in the plate width direction while maintaining the effect of suppressing the edge overcoat without changing the normal wiping nozzle. Therefore, it is possible to stably produce a beautiful zero spangled steel sheet having a very high quality, which brings about an extremely useful effect in industry.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す概略説明図である。 第2図は、第1図の要部説明図である。 第3図は、従来法の概略説明図である。 第4図は、従来のワイピングノズルの斜視図である。 第5図は、従来法における昇圧ガス流の鋼板走行方向に
おける熱伝達率(抜熱率)を示したグラフである。 図面において、 1……被メッキ鋼板,2……亜鉛ポット, 3……溶融亜鉛浴,4……シンクロール, 5……ガイドロール,6……ワイピングノズル, 7……薬液ノズル,8……スリット, 8′……幅広スリット部,9……ガス流吸引装置, 10……衝風冷却装置,11……温度計, 12……信号変換器,13……制御器。
FIG. 1 is a schematic explanatory view showing an embodiment of the present invention. FIG. 2 is an explanatory view of a main part of FIG. FIG. 3 is a schematic explanatory view of the conventional method. FIG. 4 is a perspective view of a conventional wiping nozzle. FIG. 5 is a graph showing the heat transfer coefficient (heat removal coefficient) of the boosted gas flow in the running direction of the steel sheet in the conventional method. In the drawings, 1 ... Plated steel plate, 2 ... Zinc pot, 3 ... Molten zinc bath, 4 ... Sink roll, 5 ... Guide roll, 6 ... Wiping nozzle, 7 ... Chemical solution nozzle, 8 ... Slit, 8 '... Wide slit part, 9 ... Gas flow suction device, 10 ... Impulse cooling device, 11 ... Thermometer, 12 ... Signal converter, 13 ... Controller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連続的に溶融亜鉛浴中を通過させた鋼板面
に昇圧ガスを吹付けて目付量調整を行い、引き続いてス
パングル調整薬液を吹付けることによりゼロスパングル
鋼板を製造する方法において、前記昇圧ガス噴射ノズル
部と薬液噴射ノズル部間にガス流吸引装置と衝風冷却装
置とをこの順序で、かつ薬液噴射ノズル部に近接させて
配設し、これによってノズルから噴射され鋼板表面に衝
突した後の昇圧ガス流を該鋼板表面に沿わせてその走行
方向に導き、溶融亜鉛目付後鋼板の幅方向温度差の発生
を抑制しつつ積極的な冷却を行うことを特徴とする、美
麗なゼロスパングル鋼板の製造方法。
1. A method for producing a zero spangle steel sheet by spraying a pressurizing gas onto a steel sheet surface that has been continuously passed through a molten zinc bath to adjust the basis weight, and subsequently spraying a spangle adjusting chemical liquid, A gas flow suction device and a blast cooling device are arranged in this order between the boosting gas injection nozzle part and the chemical liquid injection nozzle part, and are arranged in close proximity to the chemical liquid injection nozzle part, whereby the steel plate surface injected from the nozzle is It is characterized in that the pressurized gas flow after the collision is guided along the surface of the steel sheet in the traveling direction thereof, and active cooling is performed while suppressing the occurrence of a temperature difference in the width direction of the steel sheet after the molten zinc is weighted. Of manufacturing a new zero spangle steel sheet.
JP63318076A 1988-12-16 1988-12-16 Manufacturing method of zero spangle steel sheet Expired - Lifetime JPH0627314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318076A JPH0627314B2 (en) 1988-12-16 1988-12-16 Manufacturing method of zero spangle steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318076A JPH0627314B2 (en) 1988-12-16 1988-12-16 Manufacturing method of zero spangle steel sheet

Publications (2)

Publication Number Publication Date
JPH02163358A JPH02163358A (en) 1990-06-22
JPH0627314B2 true JPH0627314B2 (en) 1994-04-13

Family

ID=18095205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318076A Expired - Lifetime JPH0627314B2 (en) 1988-12-16 1988-12-16 Manufacturing method of zero spangle steel sheet

Country Status (1)

Country Link
JP (1) JPH0627314B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726288B1 (en) * 1994-10-27 1997-01-17 Clecim Sa AIR BLADE DEVICE FOR ADJUSTING THE THICKNESS OF A DEPOSIT
DE10333766B4 (en) * 2003-07-23 2009-01-22 Thyssenkrupp Steel Ag Method and apparatus for hot dip coating of metal strip
JP5962209B2 (en) * 2012-05-25 2016-08-03 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
CN112322968A (en) * 2020-09-28 2021-02-05 日照钢铁控股集团有限公司 Thermal-base non-flower high-strength galvanized plate for photovoltaic support and preparation process thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324896A (en) * 1976-08-19 1978-03-08 Laurel Bank Machine Co Packaging paper selecting means for coin packaging machines
JPS5821024A (en) * 1981-07-31 1983-02-07 Omote Tekkosho:Kk Universal joint

Also Published As

Publication number Publication date
JPH02163358A (en) 1990-06-22

Similar Documents

Publication Publication Date Title
US4444814A (en) Finishing method and means for conventional hot-dip coating of a ferrous base metal strip with a molten coating metal using conventional finishing rolls
JPH0627314B2 (en) Manufacturing method of zero spangle steel sheet
JP3617473B2 (en) Method for producing hot dip galvanized steel sheet
JP2602757B2 (en) Continuous hot-dip galvanizing method
JPH0645854B2 (en) Manufacturing method of beautiful zero spangle steel sheet
JPH05247619A (en) Vertical type galvannealing furnace for manufacturing galvannealed steel sheet
JP3532549B2 (en) Method and apparatus for producing hot-dip galvanized steel strip
JPS6240350A (en) Method for controlling plating deposition of molten metal
JPH01230758A (en) Method for controlling amount of plated molten metal and gas injection nozzle
US4528935A (en) Differentially coated galvanized steel strip and method and apparatus for producing same
JP3637874B2 (en) Spungle refiner for hot-dip galvanized steel sheet and method for producing different spangled hot-dip galvanized steel sheet
JP3814170B2 (en) Method and apparatus for cooling hot dipped steel sheet
JP2004269930A (en) Method for manufacturing hot dip metal coated steel sheet
JPH0853742A (en) Transversely uniform and continuous hot dip plating method
JPH07102354A (en) Coating weight controlling device in hot-dip metal plating
JPS6146526B2 (en)
JPS63128160A (en) Continuous metal hot dip coating method
JP3632376B2 (en) Method for adjusting the coating amount of continuously molten metal-plated steel strip
JPS5937345B2 (en) Molten metal plating method
JP2535443Y2 (en) Continuous hot-dip metal plating equipment with reduced spangle pattern
JPH09195022A (en) Method for controlling coating weight of hot dip method coating
US4588658A (en) Differentially coated galvanized steel strip
JPH09195024A (en) Method for controlling coating weight of hot dip metal coating
JP2558402B2 (en) Surface treatment equipment for hot-dip galvanized steel strip
JPS62205257A (en) Continuous hot dipping method