JPS6146526B2 - - Google Patents

Info

Publication number
JPS6146526B2
JPS6146526B2 JP17809080A JP17809080A JPS6146526B2 JP S6146526 B2 JPS6146526 B2 JP S6146526B2 JP 17809080 A JP17809080 A JP 17809080A JP 17809080 A JP17809080 A JP 17809080A JP S6146526 B2 JPS6146526 B2 JP S6146526B2
Authority
JP
Japan
Prior art keywords
strip
steel sheet
static pressure
wiping
annealing furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17809080A
Other languages
Japanese (ja)
Other versions
JPS57101620A (en
Inventor
Hajime Hinoto
Kango Sakai
Yasuo Shimokawa
Katsushi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17809080A priority Critical patent/JPS57101620A/en
Publication of JPS57101620A publication Critical patent/JPS57101620A/en
Publication of JPS6146526B2 publication Critical patent/JPS6146526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating Apparatus (AREA)
  • Chemically Coating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は表面処理鋼板の製造方法、特に板厚の
薄い鋼ストリツプを高速で水溶液に通し引き続き
熱処理工程に導入して得られる表面処理鋼板の製
造方法に関するものである。 例えば、製缶用材料として用いる表面処理鋼板
を製造する場合、最近では第1図に示す連続焼鈍
ラインが知られている。図示するように脱脂した
鋼ストリツプ1は、Ni++を含む酢酸ニツケル水
溶液又はPO4 ---を含むリン酸アンモニウム水溶
液を収容する浸漬槽2内を浸漬通過して上方に引
き出された後、エアーを噴射するワイピングノズ
ル3によつてその付着量を薄く制御され、次いで
乾燥炉4にて乾燥された後、加熱帯、均熱帯、冷
却帯および過時効帯からなる連続焼鈍炉5を通つ
て焼鈍される。この焼鈍によつてストリツプ1表
面には良好なNi拡散層あるいはFe―P層からな
る薄い皮膜が形成される。 しかして、上記表面処理鋼板の製造工程におい
ては、供給される鋼板が薄く(0.3〜0.15m/
m)かつラインスピードが高速(最大500m/
分)であることから、浸漬槽2と乾燥炉4間のス
トリツプ1には振動および巾方向反り(C反り)
が生じ易く、ワイピングノズル3とストリツプ1
面との間隔に変動があり、不均一な付着量となる
問題点がある。一方、このような表面処理鋼板の
場合、処理液の付着厚みは可及的に薄くしなけれ
ばならず、そのためワイピングノズル3の噴射圧
力は1.0〜2.0Kg/cm2という如く高圧ワイピングと
し、かつノズル先端はストリツプ面に近接化する
ことが要求される。しかし、高圧および近接ワイ
ピングとすると、スプラツシユが増大すると共に
ストリツプの振動によりノズル先端とストリツプ
との接触という好ましからざる事態を招くおそれ
もある。 本発明は以上の点を考慮し高速で走行し水溶液
中に浸漬されワイピングされる鋼板の振動および
C反りを効果的抑止し、連続焼鈍後に鋼板長手方
向および巾方向に均一な皮膜を形成することがで
きる表面処理鋼板の製造方法を提供することを目
的とする。また、本発明の他の目的はコントロー
ルされた所定の薄厚の皮膜を付与することができ
る表面処理鋼板の製造方法を提供することにあ
る。 以下本発明の内容を図面にしたがつて説明す
る。 本発明は連続焼鈍の前工程において水溶液を塗
布するに際しての振動防止およびC反り矯正のた
めワイピングノズルの上方に近接して流体圧パツ
ドを設置し、ストリツプを非接触状態にて支持せ
しめることを特色としている。即ち、第2図〜第
4図は連続焼鈍工程前における水溶液浸漬槽2か
ら引き出されるストリツプ1の走行ラインにそつ
て静圧パツド6を配置した各例を示すものであ
る。 第2図の配置例では、ワイピングノズル3の上
方位置に、ストリツプ1をはさんで対称になる如
く一対の静止パツド6を配置したものである。ま
た、第3図はワイピングノズル3の上方位置に、
一対の静圧パツド6を配置した点は第2図と同様
であるが、浸漬槽2の浴面直上又は浴面に接する
位置にストリツプ1を挾持する予備ワイピングロ
ール7を設け、該予備ワイピングロール7によつ
てストリツプに対する付着量を予備的に抑え、よ
り薄目付の皮膜が得られるようにしたものであ
る。さらに、第4図の例は、ワイピングノズル3
の配置を対向とせずに、千鳥状に設け、各ワイピ
ングノズル3と対向する位置に、それぞれ静圧パ
ツド8を配設すると共に、その上方に一対の静圧
パツド6を設けた構成である。この例ではワイピ
ング位置で、ストリツプの片側を静圧支持するこ
とでワイピングノズルをストリツプに対し近接す
ることが容易になる。 静圧パツド6は一対設置した例を示したが、本
発明では一対のみならず必要な場合には二対以上
配置してもよく、また、ワイピングノズル3から
の噴出流体の流れがストリツプ1面上に存在する
範囲内に静圧パツド6を設置すると、この流体流
れが静圧パツド6内に封じ込められ、静圧パツド
6の流体との相乗効果によつて本来の静圧力以上
の支持力が得られるので、出来るだけ静圧パツド
はワイピングノズル3に近接することが望まし
い。 更に、焼鈍炉内に大気の侵入を防ぐ目的で第5
図、第6図、第7図に示す如く静圧パツド6を乾
燥炉4の入側に近接(第5図)内蔵(第6図)入
側組込み(第7図)することも可能である。いず
れも不活性ガス例えば窒素ガスを用いれば乾燥炉
4および焼鈍炉5への大気の侵入をガスカーテン
効果によつて防止することが出来る。 又、ストリツプ1を非接触支持する静圧パツド
6の構造としては、効率良く静圧力をストリツプ
に作用せしめることが必要であり、例えば第8図
の如き構造のものが良い。例えば、第8図に示す
ように中心に向つて傾斜させた流体吹出しスリツ
ト9を形成したノズル板10を前面に有するパツ
ド本体11は中空ボツクス状で流体のサージタン
ク12としての作用をもち、その背面には流体供
給源に続くフレキシブルホース13が取付けられ
ている。ノズル板10に設けたスリツト9のギヤ
ツプおよび角度は静圧力に関係して適宜決めれば
よいし、また、スリツト9の構成についてもスト
リツプの巾方向に二対以上のスリツトを設けた
り、あるいは巾方向にスリツトを分割したりある
いは同心的に二以上の多重スリツトに形成するこ
とも可能である。さらに、ノズルボツクスについ
ても分割又は多重型ノズルを用いる場合には、仕
切り板を設けて各スリツト毎に流体量を制御して
効率的にストリツプの振動の防止およびC反り矯
正を達成できるようにしてもよい。本発明ではス
トリツプのライン特性、ストリツプのサイズ等を
考慮して最適な構造の静圧パツドを選択すればよ
い。 次に、本発明の作用を第1図に示す水溶液処理
および連続焼鈍効工程を例にして説明する。 鋼ストリツプ1を表面清浄工程において脱脂し
た後、水溶液槽2内に導入して浸漬しほぼ垂直方
向に引き上げ、ワイピングノズル3から高圧でエ
アーをストリツプ面に吹き付けワイピングする。
この場合第2図に示すようにワイピングノズル3
上方に近接して少くとも一対の静圧パツド6が設
けられているため、その静圧力(第8図のの区
域に静圧力は生じる)によつてストリツプ1は所
定の走行ラインに保持され振動を生じない。ま
た、ストリツプ1にC反りが生じてもこれを矯正
する方向に力がストリツプに作用し直線的に矯正
する。したがつて、ストリツプ1は所定のライン
に沿つて安定して走行されることになり、ワイピ
ングノズル先端をストリツプ面に接近させても接
触するおそれはなく、ワイピング能力を向上させ
ることができ、コントロールした薄膜を得ること
ができる。また、常にワイピングノズルとストリ
ツプ間の距離を一定に維持できかつストリツプ巾
方向にもC反りが矯正されるので、皮膜厚みにバ
ラツキが生ぜずストリツプ全面にわたつて均一な
皮膜が形成でき、製品の品質の向上が図られる。 従来の方式ではストリツプの振動を予測してワ
イピングノズルは余り近接できず、そのため薄厚
の皮膜を得るためにはワイピング圧力を高圧にし
なければならなかつたが、高圧にするとスプラツ
シユが増大すると共に騒音が大きくなる。これに
対し本発明ではストリツプの振動が防止されるた
め、ワイピングノズルを可及的に近接でき、従来
と同一皮膜厚みを得るにはより低いワイピング圧
力で足り、上記問題点は低減されるし、また従来
では対策のなかつたC反りの矯正にも有効とな
る。しかも、従来と同一のワイピング圧力ではよ
り薄い皮膜にコントロールすることも可能とな
る。なお、この場合にはワイピング付近をボツク
スで包囲し、スプラツシユの飛散および騒音防止
を図ることが好ましい。 第3図の例では予備ワイピンググロール7であ
らかじめ付着量をある程度しぼることができるの
で、結果的に皮膜厚みをより薄くすることが可能
となる。また、第4図の例では、ワィピングノズ
ル3位置で対向する静圧パツド8の静圧力が作用
し、ストリツプの振動防止により一層効果的と言
える。 ワイピングされて上昇してきたストリツプ1は
乾燥炉4内に入つてその表面を乾燥され、引き続
き連続焼鈍炉5へ送られ、所定温度に加熱、均熱
された後、所要の冷却速度で冷却されて焼鈍処理
を施される。焼鈍炉5を出たストリツプ1はその
まま次工程(例えばメツキ工程)へと送られる。 以上のように水溶液処理を行つて連続焼鈍工程
へ移行させることによつて鋼板の表面には例えば
Ni拡散層あるいはFe―P層が付与される。 以上述べた如く本発明の方法によれば、従来の
水溶液処理時に大きな問題となつていたストリツ
プの振動およびC反りを効率よく防止かつ矯正す
ることができ、熱処理後のストリツプ表面に所望
のコントロールされた皮膜を均一に付与すること
が可能となり、良質の表面処理鋼板が得られる。
従つて、その工業的および実用的メリツトはきわ
めて大きい。 実施例 1 冷延鋼板の連続焼鈍炉前面で電解脱脂した3フ
イート巾ストリツプに酢酸ニツケル10%水溶液を
塗布し、乾燥工程を経て焼鈍を行いニツケル拡散
層を有する表面処理鋼板を製造した。塗布方法と
してエアーワイピング(AJC)、静圧パツド付エ
アーワイピング(P―AJC)、絞りロール法
(RC)を比較した。ストリツプの巾方向(右、
中、左)に3ケ所試料を切出しNi付着量を測定
した。ストリツプのスピードは300m/分で行つ
た。結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a surface-treated steel sheet, and more particularly to a method for manufacturing a surface-treated steel sheet obtained by passing a thin steel strip through an aqueous solution at high speed and subsequently introducing it into a heat treatment step. For example, when manufacturing surface-treated steel sheets used as can manufacturing materials, a continuous annealing line shown in FIG. 1 has recently been known. As shown in the figure, a degreased steel strip 1 is passed through an immersion bath 2 containing an aqueous nickel acetate solution containing Ni ++ or an aqueous ammonium phosphate solution containing PO 4 --- , and then pulled upward. The amount of adhesion is controlled to be thin by a wiping nozzle 3 that injects air, and then dried in a drying furnace 4, and then passed through a continuous annealing furnace 5 consisting of a heating zone, a soaking zone, a cooling zone, and an overaging zone. Annealed. By this annealing, a thin film consisting of a good Ni diffusion layer or Fe--P layer is formed on the surface of the strip 1. However, in the manufacturing process of the above-mentioned surface-treated steel sheets, the supplied steel sheets are thin (0.3 to 0.15 m/
m) and high line speed (maximum 500m/
Since the strip 1 between the dipping tank 2 and the drying oven 4 is subject to vibration and warping in the width direction (C warping),
Wiping nozzle 3 and strip 1
There is a problem that the distance from the surface varies, resulting in uneven adhesion amount. On the other hand, in the case of such a surface-treated steel sheet, the thickness of the treatment liquid deposited must be as thin as possible, and therefore the jetting pressure of the wiping nozzle 3 is high-pressure wiping, such as 1.0 to 2.0 kg/ cm2 , and The nozzle tip is required to be close to the strip surface. However, high pressure and close wiping increase the amount of splash and may cause undesirable contact between the nozzle tip and the strip due to vibration of the strip. In view of the above points, the present invention effectively suppresses vibrations and C warping of a steel plate that is run at high speed, immersed in an aqueous solution, and wiped, and forms a uniform film in the longitudinal and width directions of the steel plate after continuous annealing. The purpose of the present invention is to provide a method for manufacturing surface-treated steel sheets that allows for the production of surface-treated steel sheets. Another object of the present invention is to provide a method for manufacturing a surface-treated steel sheet that can provide a coat with a controlled and predetermined thin thickness. The contents of the present invention will be explained below with reference to the drawings. The present invention is characterized in that a fluid pressure pad is installed close to the top of the wiping nozzle to prevent vibration and correct C warpage when applying an aqueous solution in the process before continuous annealing, and to support the strip in a non-contact manner. It is said that That is, FIGS. 2 to 4 show examples in which static pressure pads 6 are arranged along the running line of the strip 1 drawn out from the aqueous solution immersion tank 2 before the continuous annealing process. In the arrangement example shown in FIG. 2, a pair of stationary pads 6 are arranged above the wiping nozzle 3 so as to be symmetrical with the strip 1 in between. In addition, in FIG. 3, at the upper position of the wiping nozzle 3,
The arrangement of the pair of static pressure pads 6 is the same as in FIG. 2, but a preliminary wiping roll 7 for sandwiching the strip 1 is provided at a position directly above or in contact with the bath surface of the dipping tank 2, and the preliminary wiping roll 7, the amount of adhesion to the strip is preliminarily suppressed so that a film with a thinner basis weight can be obtained. Furthermore, in the example of FIG. 4, the wiping nozzle 3
are arranged in a staggered manner instead of facing each other, and a static pressure pad 8 is provided at a position facing each wiping nozzle 3, and a pair of static pressure pads 6 are provided above the pads. In this example, static pressure support on one side of the strip at the wiping position makes it easier to move the wiping nozzle closer to the strip. Although an example is shown in which a pair of static pressure pads 6 are installed, in the present invention, not only one pair but also two or more pairs may be installed if necessary. When the static pressure pad 6 is installed within the area above the static pressure pad 6, this fluid flow is confined within the static pressure pad 6, and the synergistic effect with the fluid of the static pressure pad 6 creates a supporting force greater than the original static pressure. Therefore, it is desirable that the static pressure pad be as close to the wiping nozzle 3 as possible. Furthermore, in order to prevent air from entering the annealing furnace, a fifth
As shown in Figures 6 and 7, it is also possible to install the static pressure pad 6 close to the entrance side of the drying oven 4 (Fig. 5), built-in (Fig. 6), or built into the entrance side (Fig. 7). . If an inert gas such as nitrogen gas is used in either case, it is possible to prevent atmospheric air from entering the drying furnace 4 and annealing furnace 5 due to the gas curtain effect. Furthermore, the structure of the static pressure pad 6 that supports the strip 1 in a non-contact manner needs to be able to efficiently apply static pressure to the strip, and for example, a structure as shown in FIG. 8 is preferable. For example, as shown in FIG. 8, a pad main body 11 having a nozzle plate 10 on the front surface with a fluid blowing slit 9 inclined toward the center has a hollow box shape and functions as a fluid surge tank 12. A flexible hose 13 leading to a fluid supply source is attached to the back. The gap and angle of the slit 9 provided in the nozzle plate 10 may be appropriately determined in relation to the static pressure, and the configuration of the slit 9 may be such that two or more pairs of slits are provided in the width direction of the strip, or two or more pairs of slits are provided in the width direction of the strip. It is also possible to divide the slit into two or to form two or more multiple slits concentrically. Furthermore, when using split or multiple nozzles for the nozzle box, a partition plate is provided to control the fluid volume for each slit to efficiently prevent strip vibration and correct C warpage. Good too. In the present invention, a static pressure pad with an optimal structure may be selected by considering the line characteristics of the strip, the size of the strip, etc. Next, the operation of the present invention will be explained using the aqueous solution treatment and continuous annealing process shown in FIG. 1 as an example. After the steel strip 1 is degreased in a surface cleaning step, it is introduced into an aqueous solution tank 2, immersed, and pulled up in a substantially vertical direction, and air is blown at high pressure from a wiping nozzle 3 onto the strip surface for wiping.
In this case, as shown in Fig. 2, the wiping nozzle 3
Since at least one pair of static pressure pads 6 are provided close to the top, the strip 1 is held in a predetermined running line by its static pressure (the static pressure occurs in the area of FIG. does not occur. Further, even if a C warp occurs in the strip 1, a force is applied to the strip in the direction to correct it, and the warp is linearly corrected. Therefore, the strip 1 runs stably along a predetermined line, and there is no risk of contact even when the tip of the wiping nozzle approaches the strip surface, improving the wiping ability and improving control. A thin film can be obtained. In addition, since the distance between the wiping nozzle and the strip can be maintained constant at all times, and C warpage is corrected in the strip width direction, a uniform film can be formed over the entire surface of the strip without any variation in film thickness. Quality will be improved. In the conventional method, the wiping nozzle could not be placed too close to the strip in anticipation of vibrations, and therefore the wiping pressure had to be high in order to obtain a thin film, but increasing the pressure increased splash and noise. growing. On the other hand, in the present invention, since vibration of the strip is prevented, the wiping nozzle can be placed as close as possible, and a lower wiping pressure is sufficient to obtain the same film thickness as in the past, reducing the above problems. It is also effective in correcting C-curvature, for which no countermeasures have been taken in the past. Moreover, it is also possible to control a thinner film using the same wiping pressure as before. In this case, it is preferable to surround the wiping area with a box to prevent splashing and noise. In the example shown in FIG. 3, since the amount of adhesion can be reduced to some extent with the preliminary wiping roll 7, the thickness of the coating can be made even thinner as a result. Furthermore, in the example shown in FIG. 4, the static pressure of the static pressure pads 8 that face each other at the wiping nozzle 3 position acts, which can be said to be even more effective in preventing vibration of the strip. The strip 1 that has been wiped and raised enters the drying furnace 4, where its surface is dried, and then sent to the continuous annealing furnace 5, where it is heated to a predetermined temperature, soaked, and then cooled at a required cooling rate. Annealing treatment is applied. The strip 1 leaving the annealing furnace 5 is directly sent to the next process (for example, plating process). As described above, by performing the aqueous solution treatment and moving to the continuous annealing process, the surface of the steel plate, for example,
A Ni diffusion layer or a Fe--P layer is applied. As described above, according to the method of the present invention, it is possible to efficiently prevent and correct the vibration and C warping of the strip, which were major problems during conventional aqueous solution processing, and the strip surface after heat treatment has the desired controlled appearance. This makes it possible to uniformly apply a coated film, resulting in a high-quality surface-treated steel sheet.
Therefore, its industrial and practical merits are extremely large. Example 1 A 10% aqueous solution of nickel acetate was applied to a 3-foot-wide strip that had been electrolytically degreased in front of a continuous annealing furnace for cold-rolled steel sheets, followed by a drying process and annealing to produce a surface-treated steel sheet having a nickel diffusion layer. We compared the application methods of air wiping (AJC), air wiping with static pressure pad (P-AJC), and squeeze roll method (RC). Strip width direction (right,
Samples were cut out at three locations (middle, left) and the amount of Ni deposited was measured. The strip speed was 300 m/min. The results are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用するに適した鋼ストリツ
プの連続焼鈍ラインを略示した概略説明図、第2
図、第3図、第4図、第5図、第6図、第7図は
本発明方法を実施するための各種設備態様を示す
要部詳細図、第8図は本発明において用いる静圧
パツドの一例を示す断面図。 1……鋼ストリツプ、2……浸漬槽、3……ワ
イピングノズル、4……乾燥炉、5……連続焼鈍
炉、6,8……静圧パツド、7……予備ワイピン
グロール、9……スリツト、10……ノズル板、
11……パツド本体、12……サージタンク、1
3……フレキシブルホース。
Fig. 1 is a schematic explanatory diagram illustrating a continuous annealing line for a steel strip suitable for applying the present invention;
Figures 3, 4, 5, 6, and 7 are detailed views of main parts showing various types of equipment for carrying out the method of the present invention, and Figure 8 is the static pressure used in the present invention. A sectional view showing an example of a pad. 1...Steel strip, 2...Immersion tank, 3...Wiping nozzle, 4...Drying furnace, 5...Continuous annealing furnace, 6, 8...Static pressure pad, 7...Preliminary wiping roll, 9... Slit, 10... Nozzle plate,
11...pad body, 12...surge tank, 1
3...Flexible hose.

Claims (1)

【特許請求の範囲】 1 水溶液中を通して引き出された薄鋼板に対し
てワイピングノズルから高圧ガスを吹き付けて塗
布量を制御した後、該薄鋼板を熱処理する表面処
理鋼板の製造方法において、前記ワイピングノズ
ルに近接して静圧流体圧パツドを鋼板面に対して
設置して、該静圧流体圧パツドの静圧力によつて
鋼板の振動および巾方向反りを抑止して安定通板
せしめ、次いでこの安定した状態で鋼板を連続焼
鈍炉内に通板して熱処理と同時に鋼板表面に皮膜
を形成することを特徴とする表面処理鋼板の製造
方法。 2 連続焼鈍炉の鋼帯の導入口の外部近傍若しく
は内部近傍、あるいは導入口部に静圧流体圧パツ
ドを設けて鋼板を焼鈍炉に通板する特許請求の範
囲第1項記載の製造方法。
[Scope of Claims] 1. A method for producing a surface-treated steel sheet, in which a high-pressure gas is sprayed from a wiping nozzle onto a thin steel sheet drawn out through an aqueous solution to control the coating amount, and then the thin steel sheet is heat-treated. A hydrostatic fluid pressure pad is installed against the surface of the steel plate in the vicinity of the pad, and the static pressure of the hydrostatic fluid pressure pad suppresses vibration and warpage in the width direction of the steel plate to ensure stable plate threading. 1. A method for producing a surface-treated steel sheet, which comprises passing the steel sheet in a continuous annealing furnace in such a state as to form a film on the surface of the steel sheet at the same time as heat treatment. 2. The manufacturing method according to claim 1, wherein a hydrostatic fluid pressure pad is provided near the outside or near the inside of the steel strip inlet of the continuous annealing furnace, or at the inlet, and the steel sheet is passed through the annealing furnace.
JP17809080A 1980-12-18 1980-12-18 Manufacture of surface-treated steel plate Granted JPS57101620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17809080A JPS57101620A (en) 1980-12-18 1980-12-18 Manufacture of surface-treated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17809080A JPS57101620A (en) 1980-12-18 1980-12-18 Manufacture of surface-treated steel plate

Publications (2)

Publication Number Publication Date
JPS57101620A JPS57101620A (en) 1982-06-24
JPS6146526B2 true JPS6146526B2 (en) 1986-10-15

Family

ID=16042452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17809080A Granted JPS57101620A (en) 1980-12-18 1980-12-18 Manufacture of surface-treated steel plate

Country Status (1)

Country Link
JP (1) JPS57101620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11591519B2 (en) 2017-06-09 2023-02-28 Sumitomo Chemical Company, Limited Polymerizable liquid crystal composition and retardation plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247861A (en) * 1986-04-19 1987-10-28 Fuji Photo Film Co Ltd Coating method
JP2005232495A (en) * 2004-02-17 2005-09-02 Jfe Steel Kk Facility and method for heat-treating metal strip
KR101806033B1 (en) * 2016-07-19 2018-01-11 주식회사 프로텍 Adhesive Liquid Dispensing Apparatus and Adhesive Liquid Dispensing Method for Dust Trap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11591519B2 (en) 2017-06-09 2023-02-28 Sumitomo Chemical Company, Limited Polymerizable liquid crystal composition and retardation plate

Also Published As

Publication number Publication date
JPS57101620A (en) 1982-06-24

Similar Documents

Publication Publication Date Title
JPS6146526B2 (en)
EP0565272B1 (en) Stripping liquid coatings
JP3617473B2 (en) Method for producing hot dip galvanized steel sheet
KR100362671B1 (en) Cooling method of alloyed hot-dip galvanized steel sheet and cooling apparatus used therein
JPH042756A (en) Gas wiping method for continuous hot dipping
JPS6048587B2 (en) Melt plating equipment
JPH09184056A (en) Method for preventing vibration of galvanizing steel strip
JP2821823B2 (en) Coating weight control method for hot dip galvanizing
JP2820856B2 (en) Strip warping straightening apparatus and straightening method in continuous hot metal plating equipment
JPH03202451A (en) Method and device for hot dipping
JPH02163358A (en) Production of zero spangle steel sheet
JPS6314848A (en) Method for coating material onto steel sheet
JPS63111164A (en) Apparatus for regulating amount of molten metal adhering by hot dipping
JPH07102354A (en) Coating weight controlling device in hot-dip metal plating
JPS6161871B2 (en)
JPS6354782B2 (en)
JPS62205257A (en) Continuous hot dipping method
JPH02267252A (en) Production of continuously hot dipped steel sheet having attractive surface
JPH01177353A (en) Production of alloyed hot dip galvanized steel sheet
JPH06165962A (en) Coating method for metallic strip and its device
JPH0645854B2 (en) Manufacturing method of beautiful zero spangle steel sheet
JPH0941107A (en) Continuous hot dip metal plating equipment
JPS5811490B2 (en) Non-contact support method for strips
JPH0741924A (en) Device for preventing vibration of hot dip metal coating
JPH03232954A (en) Manufacture of hot dipping steel strip