JP3362443B2 - Continuous annealing line operation method - Google Patents

Continuous annealing line operation method

Info

Publication number
JP3362443B2
JP3362443B2 JP11248993A JP11248993A JP3362443B2 JP 3362443 B2 JP3362443 B2 JP 3362443B2 JP 11248993 A JP11248993 A JP 11248993A JP 11248993 A JP11248993 A JP 11248993A JP 3362443 B2 JP3362443 B2 JP 3362443B2
Authority
JP
Japan
Prior art keywords
steel strip
cooling
equipment
heating furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11248993A
Other languages
Japanese (ja)
Other versions
JPH06306486A (en
Inventor
雅之 山崎
宏次 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP11248993A priority Critical patent/JP3362443B2/en
Publication of JPH06306486A publication Critical patent/JPH06306486A/en
Application granted granted Critical
Publication of JP3362443B2 publication Critical patent/JP3362443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、鋼帯の連続処理装置
における連続焼鈍ライン操業方法に関する。 【0002】 【従来の技術】近年、自動車用鋼板や家電用鋼板等の鋼
帯を処理する連続焼鈍炉では、鋼帯を還元加熱できる
能力及び鋼帯サイズ変更時の熱応答性が良好なことが
要請され、更に鋼帯材質不安定部を急速加熱すること
で蛇行防止を図る等の目的から、直火加熱炉が採用され
るようになり、また省エネルギー面からロールクェンチ
冷却方式と組み合わせた設備構成が提案されている。特
開昭62ー54033号ではそのような鋼帯1の連続焼
鈍設備が提案されおり、図8に示されるように、入側ク
リーニング設備5の後方に、その加熱構成として予熱炉
11、直火式還元加熱炉12、ラジアントチューブ式加
熱炉13及び同均熱炉14が備えられ、またその冷却構
成としてはガスジェット冷却設備15とロール冷却設備
20が設けられており、加えてその後方に過時効処理帯
21a、21b、急冷炉22、更にその後方には調質圧
延機26が備えられた構成の提案がなされている。 【0003】一方自動車用鋼板を中心として一般材のハ
イテン化が進み、且つ鋼帯の薄物化が進む傾向にある
が、この種の鋼板材料中にはMn、Si、P等の元素を
含んでおり、バッチ式箱型焼鈍炉で焼鈍された鋼板であ
っても燐酸塩処理性に問題を生じており、連続焼鈍設備
の場合には、尚一層燐酸塩処理性が悪くなるといった問
題があった。そのため、特公昭58−37391号で
は、急冷炉の後方に、金属塩、主にNi或いはNi−P
を含む水溶液中で電気鍍金することで燐酸塩処理性を向
上させる電気鍍金設備を設けた構成が示されている。 【0004】 【発明が解決しようとする課題】これに対し、鋼帯の薄
物化が進む傾向にある中で形状の乱れが問題になってき
ているが、特に直火式還元加熱炉とロール冷却設備を備
えた連続焼鈍ラインでは、原板形状が不良の場合、直火
式還元加熱炉では鋼帯のバタツキによる酸化の問題を生
じ、それがひどければ、後のNi、Ni−P鍍金処理後
にもその影響が残ることになる。冷間圧延機では適正な
形状矯正を行うことが困難な場合がある。 【0005】また原板形状の不良は均熱炉でかなり改善
可能であるが、板幅方向中心と板端の間のクォーター部
の形状はあまり改善されず、それが均熱炉の後のガスジ
ェット冷却設備における鋼帯の絞り発生を誘発し、更に
ロール冷却設備における冷却が不均一となる等、材質や
通板性に大きな問題を生じていた。 【0006】更に、このような形状不良が発生すると、
Ni、Ni−Pを含む水溶液中で電気鍍金する後続の電
気鍍金設備でも、鋼帯が電極と接触する等、ライン停止
につながり、操業上大きな支障を生じていた。これを解
決するため、鋼帯と電極間距離を十分大きく取ることも
考えられるが、コスト、技術面で工業的に困難であっ
た。 【0007】本発明は従来技術の以上のような問題に鑑
み創案されたもので、安定したライン操業が実施でき、
燐酸塩処理性に優れ且つ鋼帯の形状不良や酸化部分の発
生もない品質面で優れた製品が得られる鋼帯の熱処理装
における連続焼鈍ライン操業方法を提供せんとするも
のである。 【0008】 【課題を解決するための手段】そのため本発明に係る鋼
帯の熱処理設備における連続焼鈍ライン操業方法は、直
火式還元加熱炉と、ロール冷却設備とを有した鋼帯の熱
処理装置における連続焼鈍ライン操業方法であって、前
記直火式還元加熱炉の入り側に鋼帯の形状矯正機を備え
させるとともに、前記ロール冷却設備に背面冷却手段を
備えさせ、前記直火式還元加熱炉に設置される上下ロー
ルの間隔が20m以上ある場合、前記形状矯正機におい
て、鋼帯の歪量を30mm以下に矯正した後、鋼帯を直
火式還元加熱炉に通板させるとともに、前記ロール冷却
設備を通板させる際、前記背面冷却手段により、冷却ロ
ールと接触する鋼帯の背面に冷媒を吹き付けてロール冷
却と同時に背面冷却も行わせることを基本的特徴として
いる。 【0009】 【作用】以上の本発明の構成は、本発明者等の推論とそ
れを基にした実験結果から創案されたもので、以下その
推論と実験の経緯につき説明する。 【0010】まず直火式還元加熱炉における酸化発生の
メカニズムにつき、本発明者等は次の様に考えてみた。
即ち直火式還元加熱炉において形成されるバーナ炎には
鋼帯の還元加熱に適した範囲の限定があり、その特定範
囲において鋼帯と接触しないと還元できるどころか、酸
化が行われる。一方、直火式還元加熱炉において直火還
元を1パス又は2パスで達成するためには、該炉内に備
えられる上下ロールの間隔が少なくとも20m以上必要
であり、このように炉長が長いとそこを通る鋼帯がその
ロール間でバタツクことになる。また鋼帯の形状には、
その中央部に凹凸や中伸び、端部に耳波等の形状不良が
発生することがあり、鋼帯断面中央部浮上がりの程度を
示す鋼帯歪量aに対する鋼帯幅wの比で示される急峻度
a/wが大きくなると、この形状不良は著しくなる。そ
の場合、炉内に備えられる上下ロールの間隔が少なくと
も20m以上あると上述のようにバタツク上に、燃焼時
にバーナ圧力を受けて、該鋼帯は大きくうねることにな
る。このような鋼帯のうねりがあると、それによってバ
ーナ炎の前記適正範囲内で鋼帯が該バーナ炎と接触しな
くなり、局所的な酸化の問題を発生するというものであ
る。そのため、従来の直火式還元加熱炉では、還元バー
ナの増強や該直火炉以降のラジアントチューブ式の加熱
炉での還元性向上のために雰囲気ガス中のH2ガス濃度
アップ等の必要があり、設備費の増大及びH2ガス使用
量の増大を余儀なくされていた。 【0011】一方ガスジェット冷却設備における絞り発
生の問題やロール冷却設備における不均一冷却の問題
も、やはり鋼帯の形状不良に原因があると本発明者等は
考えた。一般に鋼帯の若干の形状不良は、一定の張力が
掛けられた状態で炉内において均一加熱されると改善さ
れることが知られている。しかし前記クォーター部の形
状不良に関してはなかなか直らず、そのままガスジェッ
ト冷却設備に通板されると、そこで絞りを生じ、またロ
ール冷却設備に運ばれた場合、該形状不良の部分がロー
ル表面に十分接触しないか或いは非接触の状態となり、
最終冷却後の板幅方向の温度分布を均一化することが困
難になって、板幅方向の材質のバラツキや絞り・蛇行発
生を生じているものと推測される。 【0012】更にNi又はNi−Pを含む溶液中で電気
鍍金する電気鍍金設備における電極との接触の問題もや
はり鋼帯の形状不良が原因であり、その場合、前記ガス
ジェット冷却設備やロール冷却設備で発生した絞り等に
より助長された形状不良が引き金となったものと考えら
れる。 【0013】以上の様なことが原因となって上記の問題
が発生しているのならば、これらの熱処理設備の直前に
該鋼帯の形状矯正機を設け、それによって形状矯正のな
された鋼帯を夫々熱処理することでこれらの問題は解決
されることになると、本発明者等は考えた。そこで実際
に実施してみたところ、直火式還元加熱炉の直前で一度
鋼帯の形状矯正を行えば、後続の設備では上述のような
各問題の発生がなくなることが更に明かとなった。但し
ロール冷却設備ではこのような形状矯正を一度行っただ
けでは鋼帯板幅方向の温度分布の均一化を達成すること
は困難であるので、本発明の構成では冷却ロールと接触
している鋼帯の背面から冷媒を吹き付ける背面冷却もロ
ール冷却と併せて実施することにした。これによって鋼
帯1の絞り、蛇行の大幅な改善が図られ、後続の電気鍍
金設備における電極との接触事故も完全に防止される。
この背面冷却を行う場合も冷媒の吹き付けに当たって
は、該冷却ロールに巻き付いた鋼帯の背面近傍に吹付ノ
ズルを十分近づけて行うのが通常であり、従前に鋼帯の
形状矯正が行われているため、該ノズルとの接触の心配
はない。 【0014】また、本発明者等は直火式還元加熱炉にお
ける鋼帯の酸化の状態が製品の品質を左右する大きな要
素となるため、これをより高い効率で防止できる方法を
検討した。まず最初に直火炉非還元バーナの出側での酸
化膜の状態を調べ、鋼帯の形状不良と該酸化膜の最大膜
厚との間には相関関係があること突き止めた。即ち直火
炉12内の鋼帯1に図5に示すような形状歪がある場合
は、図6に示されるように、鋼帯・バーナ間距離hは、
ある点(h1)を中心にそれより小さくなっても、或い
はそれより大きくなっても酸化膜厚bは厚くなってい
る。従って、還元バーナによる鋼帯の還元加熱では、な
おさらこの鋼帯・バーナ間距離hが、その還元効果を左
右するものであるとの推測の基にその適正距離を求めた
ところ、150〜350mmの範囲でなければ、十分な
還元効果が得られないことが分かった。これはそのよう
な離間距離に保てなければ、還元加熱に適したバーナ炎
の範囲で鋼帯が該バーナ炎に接触できないことを意味し
ている。 【0015】前記急峻度a/wのうち、鋼帯断面中央部
浮上がりの程度を示す鋼帯歪量aと、前記図5で示され
た鋼帯・バーナ間距離hの間には、図7(a)(b)に
示されるような関係があることが分かった。即ち、同図
(a)では直火加熱炉内に備えられた上下ロール間距離
が18mの場合における両者の関係を示しており、これ
によれば鋼帯形状歪量aが80mm近くになっても鋼帯
・バーナ間距離hは150〜350mmの範囲内に納ま
っている(図中斜線の部分は鋼帯のバタツキの範囲を示
している)。これに対し、同図(b)は前記上下ロール
間距離が25mの場合における両者の関係を示してお
り、この場合は鋼帯形状歪量aが30mm以下でなけれ
ば鋼帯・バーナ間距離hは150〜350mmの範囲内
に納まらないことが分かったものである。従って本発明
の構成では、この新たな知見に基づき、上下ロール間距
離が20m以上ある直火式還元加熱炉の場合に、その直
前で形状矯正機により原板形状歪量aを30mm以下
矯正するものとした。 【0016】 【実施例】以下、本発明の具体的実施例につき詳述す
る。図1は、本発明の熱処理装置の一実施例構成を備え
た鋼帯1の連続焼鈍炉ライン構成を示す概略図である。 【0017】本実施例構成では、鋼帯1はペイオフリー
ル2によって巻戻され、入側剪断機3によって剪断され
た後、溶接機4によってその先行コイルと後行コイルと
が接続される。次に入側クリーニング設備5で電解脱脂
された後、入側ルーパ10を経て、予熱炉11及び直火
式還元加熱炉12に供給されて600℃〜750℃に昇
温され、ラジアントチューブ式加熱炉13及びラジアン
トチューブ式均熱炉14で所定の温度まで加熱後そのま
ま均熱され、ガスジェット冷却設備15で例えば600
℃まで冷却されて、更にロール冷却設備20で350℃
まで冷却する。続いて過時効処理帯21及び急冷炉22
を経て、電気鍍金設備23で化成処理性及びプレス性改
善のためにNi(若しくはNi−P)を含む水溶液中で
電気鍍金を行い、乾燥設備24で乾燥され、出側ルーパ
25を経た後、調質圧延機26で板表面の調質処理がな
され、表面欠陥計27及び塗油機28で検査・塗油され
て、出側剪断機29で所定の長さに切断された後、テン
ションリール30によって巻取られる。そのうち直火式
還元加熱炉12の手前には入側ルーパ10と予熱炉11
とをその間に介在させて板形状矯正機たるテンションレ
ベラ8が設置されている。またこの直火式還元加熱炉1
2内に備えられた上下ロール間の距離は25mである。 【0018】このような鋼帯1の形状矯正に当たって
は、入側クリーニング設備5で表面に付着した油分を洗
い落とした直後に行なうのが望ましく、そのため本実施
例では該入側クリーニング設備5と前記予熱炉11との
間に上記テンションレベラ8を設置した(実際の設備構
成ではこのテンションレベラ8の直前に2ロールタイプ
のステアリングロール6が配され、また7及び9は該テ
ンションレベラ8の入側及び出側のブライドルロールで
ある)。一方入側ルーパ10内における蛇行を防止する
観点より鋼帯1の形状矯正はその直前で行っていた方が
良く、また該ルーパ10内のロール取り替えの煩雑さも
考慮して、このテンションレベラ8は該入側ルーパ10
の直前に設置することにした。尚、入側クリーニング設
備5は該テンションレベラ5の直上に設置されていなく
ても良い。 【0019】本実施例構成において使用されたロール冷
却設備20の構成は、鋼帯1に回転しながら接触して連
続的に冷却する少なくとも1つ冷却用ロールを有してお
り、この冷却用のロールは少なくとも鋼帯1の板幅と同
じ胴長を有し、且つ冷却液がロール内部を流れて連続的
にこれを冷却すると共に、該鋼帯1の移動方向に略直交
する方向に移動してその接触面積が制御可能(即ちその
冷却長が制御可能)な構成を有している。 【0020】またロール冷却設備20の構成には、図2
に示されるように、その入側と出側には夫々少なくとも
2つのロール16a乃至16dからなる張力調整機が設
置されている。更に冷却ロール17a乃至17eと接触
している鋼帯1の背面から冷却ガスを吹き付けるガス吹
付ヘッダ18a乃至18eが設けられており、冷却ロー
ル17a乃至17eによるロール冷却を実施すると共
に、その背面からの冷却ガスの吹き付けで、鋼帯1の浮
き上がりを防止しながら板幅方向に均一に冷却ができる
ようにしている。但し前述のように、冷却ロール17a
乃至17eは鋼帯1との接触長の調整のため、該鋼帯1
の移動方向に略直交する方向に動くことができるように
なっており、このためガス吹付ヘッダ18a乃至18e
も同時に同方向に移動できるようになっている。一方本
ロール冷却設備20の出側には鋼帯1の両表面から所定
の間隔を開けて後段ガス冷却ヘッダ19が設置されてい
る。これらのヘッダ19は、図3に示されるように、各
板幅方向に夫々3つに分割された状態で設置(一方の面
は19a乃至19cの3つが示され、他側は19dのみ
示されている)されており、これらから鋼帯1表面に吹
き出される冷却ガスの流量及び/又は流速を夫々別個に
制御することで、最終冷却後の鋼帯1板幅方向における
温度分布が均一にできるようにしている。 【0021】以上の構成からなる本実施例の連続焼鈍ラ
インでは、テンションレベラ8を直火式還元加熱炉12
の上流側に配置したことによって、該加熱炉12内にお
ける鋼帯1の通板性が改善されると共に、後述する実験
から明らかなように、該直火式還元加熱炉12における
還元加熱特性も安定して得られることになる。従って後
続の前記電気鍍金設備23の鍍金処理が実施されると、
鋼帯1の燐酸塩処理性が向上する。 【0022】また該テンションレベラ8によって鋼帯1
クォーター部の形状不良発生部分の形状矯正が可能とな
り、前記ガスジェット冷却設備15における絞り発生が
なくなると共に、ロール冷却設備20における絞り発生
及び不均一冷却が大幅に改善され、その結果該ラインに
おける鋼帯1の蛇行の発生がなくなり、且つ得られた製
品の品質が向上することになった。従って電気鍍金設備
23における電極との接触の問題も無くなった。更にガ
スジェット冷却設備15におけるガスジェットノズルと
の接触、ロール冷却設備20における背面ガス吹付ヘッ
ダ18a乃至18eや後段ガス冷却ヘッダ19との接触
の問題もなくなり、安定した操業が可能となった。 【0023】図4は、本実施例のようなテンションレベ
ラ8の設置がなかった場合の実験結果から得られた鋼帯
歪量aと、鋼帯・バーナ間距離hの相関関係を示すもの
で、同図においてmin値は一定の長さの鋼帯1で測定
された該歪量aのうちの最小値を、またmax値はその
反対の最大値を各示しており、この図によれば、鋼帯1
の最小歪量aが30mmを超す形状不良がある場合は鋼
帯・バーナ間距離hが150mmを割ることになるた
め、還元加熱には適さなくなる(なお以上の歪量臨界値
を急峻度に換算すると1.8%になる)。 【0024】従って本実施例では、上記歪量が30mm
以下となるように、テンションレベラ8で原板の形状矯
正を行なってから予熱炉11、直火式還元加熱炉12へ
該鋼帯1を導入するようにした。その結果該直火式還元
加熱炉12では安定した還元加熱が行われ、局所的な表
面酸化の発生の問題はなくなった。 【0025】尚、本実施例では直火式還元加熱炉12と
その後方のラジアントチューブ式均熱炉14との間に、
ラジアントチューブ式加熱炉13を配置した構成となっ
ているが、これは前記均熱炉14の熱追随性が低いこと
から設けられた構成である。即ち該均熱炉14の加熱方
式がラジアントチューブ式であるため(電熱ヒータ加熱
方式でも同じ)、その手前の直火式還元加熱炉12と比
べて温度変更時の昇温速度や降温速度が遅く、加熱終了
温度(均熱温度)を変更する際には、追随性の面からそ
の間にラジアントチューブ式加熱炉13を設けた方が望
ましいことによる。従って本実施例のように間にラジア
ントチューブ式加熱炉13を設けたことで、直火式還元
加熱炉12の熱応答性の速さが有効に生かせることにな
る。また本実施例における電気鍍金設備23の設置位置
は、プレス成形性の向上を考慮して急冷炉22の後に
し、鍍金後乾燥させる必要から乾燥設備24の前にこれ
を設置しており、更にライン速度の変動や停止がないこ
とから出側ルーパ25の前に設けておく必要がある。 【0026】また本実施例ではテンションレベラ8を鋼
帯1の形状矯正機として使用しているが、スキンパスミ
ルを用いても同様な効果が得られる。 【0027】 【発明の効果】以上詳述した本発明に係る鋼帯の熱処理
設備における連続焼鈍ライン操業方法によれば、安定し
たライン操業が実施でき、直火式還元加熱炉における酸
化の問題がなくなり、従ってNi又はNi−Pを含む水
溶液中で電気鍍金した後における鋼帯の燐酸塩処理性が
向上することになる。また鋼帯クォーター部分の形状不
良や絞りの発生がなく且つ冷却時に均一冷却が可能であ
るため、品質面でも優れた製品が得られ、更に上記電気
鍍金時における電極との接触の問題もなくなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for continuously treating steel strip.
And a method of operating a continuous annealing line . 2. Description of the Related Art In recent years, continuous annealing furnaces for treating steel strips such as steel sheets for automobiles and household electric appliances have been required to have good ability to reduce and heat the steel strips and good thermal responsiveness when the steel strip size is changed. Direct heating furnaces have been adopted for the purpose of preventing meandering by rapidly heating the unstable part of the steel strip material, and the equipment configuration combined with the roll quench cooling system from the viewpoint of energy saving. Has been proposed. Japanese Patent Application Laid-Open No. Sho 62-54033 proposes such a continuous annealing equipment for steel strip 1, and as shown in FIG. A reduction heating furnace 12, a radiant tube heating furnace 13, and a uniform heating furnace 14 are provided, and a gas jet cooling facility 15 and a roll cooling facility 20 are provided as cooling configurations thereof. There has been proposed a configuration in which the aging zones 21a and 21b, the quenching furnace 22, and a temper rolling mill 26 are further provided behind the aging zones 21a and 21b. [0003] On the other hand, high tensile strength of general materials has been progressing mainly in automotive steel sheets and thinning of steel strips has been progressing. However, such steel sheet materials contain elements such as Mn, Si, and P. However, even in the case of a steel sheet annealed in a batch box annealing furnace, there is a problem in phosphatability, and in the case of continuous annealing equipment, there is a problem that the phosphatability is further deteriorated. . Therefore, in Japanese Patent Publication No. 58-37391, a metal salt, mainly Ni or Ni-P
A configuration is provided in which an electroplating facility for improving phosphatability by performing electroplating in an aqueous solution containing is provided. [0004] On the other hand, the shape disorder has become a problem as the steel strip has been made thinner. In the continuous annealing line equipped with the equipment, if the shape of the original plate is poor, the direct-fired reduction heating furnace causes the problem of oxidation due to the flapping of the steel strip, and if it is severe, even after the subsequent Ni, Ni-P plating treatment. The effect will remain. In some cases, it is difficult to perform appropriate shape correction with a cold rolling mill. [0005] Further, although the defective shape of the original plate can be considerably improved by the soaking furnace, the shape of the quarter portion between the center in the width direction of the plate and the end of the plate is not so much improved. This has caused a serious problem in the material and the sheet passing property, for example, inducing the drawing of the steel strip in the cooling equipment and the unevenness of the cooling in the roll cooling equipment. Furthermore, when such a shape defect occurs,
Even in the subsequent electroplating equipment for performing electroplating in an aqueous solution containing Ni and Ni-P, the steel strip came into contact with the electrodes, which led to a line stoppage, which caused a serious problem in operation. In order to solve this problem, it is conceivable to increase the distance between the steel strip and the electrode, but it has been industrially difficult in terms of cost and technology. [0007] The present invention has been made in view of the above problems of the prior art, and can perform a stable line operation,
It is an object of the present invention to provide a method for operating a continuous annealing line in a steel strip heat treatment apparatus capable of obtaining a product excellent in phosphatability and excellent in quality in which there is no defective shape of a steel strip and generation of oxidized portions. [0008] Therefore, the continuous annealing line operating method in the steel strip heat treatment equipment according to the present invention is a straightforward method.
Heat of steel strip with fire-type reduction heating furnace and roll cooling equipment
A method of operating a continuous annealing line in a processing apparatus,
Equipped with a steel strip shape straightening machine on the entrance side of the direct fire type reduction heating furnace
And a back cooling means in the roll cooling equipment.
The upper and lower rows installed in the direct-fired reduction heating furnace.
If the distance between the tools is 20 m or more,
After correcting the strain of the steel strip to 30 mm or less,
Pass the plate through a fired reduction heating furnace and cool the roll
When the equipment is passed through, the cooling system is
Coolant is sprayed on the back of the steel strip in contact with the
The basic feature is that the cooling of the back is performed at the same time as the cooling . The structure of the present invention described above was created based on the inference of the present inventors and the results of experiments based on the inference, and the inference and the background of the experiments will be described below. First, the present inventors have considered the mechanism of the occurrence of oxidation in a direct-fired reduction heating furnace as follows.
That is, the burner flame formed in the direct-fired reduction heating furnace has a limited range suitable for the reduction heating of the steel strip, and oxidation is performed in the specific range, in addition to reducing the steel strip unless it comes into contact with the steel strip. On the other hand, in order to achieve direct-fire reduction in one or two passes in a direct-fired reduction heating furnace, the interval between the upper and lower rolls provided in the furnace must be at least 20 m or more, and thus the furnace length is long. And the steel strip passing through it rolls between the rolls. Also, in the shape of the steel strip,
Shape irregularities such as irregularities and middle elongation at the center and ear waves and the like may occur at the end, and the ratio of the steel strip width w to the steel strip strain amount a, which indicates the degree of lifting of the steel strip cross-section center, is shown. As the steepness a / w increases, the shape defect becomes remarkable. In this case, if the interval between the upper and lower rolls provided in the furnace is at least 20 m or more, the steel strip is greatly undulated due to the burner pressure on the batt during combustion as described above. Such undulation of the steel strip causes the steel strip to be out of contact with the burner flame within the above-mentioned appropriate range of the burner flame, causing local oxidation problems. Therefore, in the conventional direct-fired reduction heating furnace, it is necessary to increase the concentration of H 2 gas in the atmosphere gas in order to increase the reduction burner and to improve the reducibility in the radiant tube-type heating furnace after the direct-fired furnace. In addition, an increase in equipment costs and an increase in the amount of H 2 gas used have been forced. On the other hand, the present inventors have considered that the problem of the occurrence of drawing in the gas jet cooling equipment and the problem of uneven cooling in the roll cooling equipment are also caused by the defective shape of the steel strip. In general, it is known that a slight shape defect of a steel strip is improved when the steel strip is uniformly heated in a furnace under a certain tension. However, the shape defect of the quarter part is not easily corrected, and when the sheet is passed through the gas jet cooling equipment as it is, a narrowing occurs there. No contact or no contact,
It is presumed that it became difficult to equalize the temperature distribution in the plate width direction after the final cooling, and that the material was uneven in the plate width direction and that the drawing and meandering occurred. Further, the problem of contact with the electrodes in the electroplating equipment for electroplating in a solution containing Ni or Ni-P is also caused by the defective shape of the steel strip, in which case the gas jet cooling equipment or roll cooling is used. It is considered that the shape defect promoted by drawing or the like generated in the equipment triggered the trigger. If the above-mentioned problem is caused by the above, a straightening machine for the steel strip is provided immediately before these heat treatment equipment, and the steel straightened by the straightening is provided. The present inventors have considered that these problems can be solved by heat-treating each of the belts. In practice, it was further clarified that once the shape of the steel strip was corrected immediately before the direct-fired reduction heating furnace, the following problems would not occur in subsequent equipment. However, it is difficult to achieve a uniform temperature distribution in the width direction of the steel strip by performing such a shape correction only once in the roll cooling equipment. The backside cooling, in which the refrigerant is blown from the backside of the belt, is also performed together with the roll cooling. Thereby, the drawing and meandering of the steel strip 1 are greatly improved, and the contact accident with the electrode in the subsequent electroplating equipment is completely prevented.
Also in the case of performing this backside cooling, the blowing of the refrigerant is usually performed by sufficiently bringing the spray nozzle close to the vicinity of the backside of the steel strip wound around the cooling roll, and the shape correction of the steel strip has been performed before. Therefore, there is no fear of contact with the nozzle. Further, since the present inventors have made a major element of the oxidation of the steel strip in the direct-fired type reducing furnace condition affects the quality of the product was investigated how you can prevent this with higher efficiency. First, the state of the oxide film on the exit side of the non-reducing burner of the open fire furnace was examined, and it was found that there was a correlation between the defective shape of the steel strip and the maximum thickness of the oxide film. That is, when the steel strip 1 in the open fire furnace 12 has a shape distortion as shown in FIG. 5, as shown in FIG. 6, the distance h between the steel strip and the burner is:
The oxide film thickness b becomes thicker at a certain point (h1) even if it becomes smaller or larger than that. Therefore, in the reduction heating of the steel strip by the reduction burner, when the proper distance was determined based on the assumption that the distance h between the steel strip and the burner would further influence the reduction effect, the result was 150 to 350 mm. It was found that if it was not within the range, a sufficient reduction effect could not be obtained. This means that the steel strip cannot come into contact with the burner flame within the range of the burner flame suitable for the reduction heating unless the separation distance is maintained. Among the steepness a / w, the steel strip strain amount a indicating the degree of lifting at the center of the steel strip cross section and the steel strip / burner distance h shown in FIG. 7 (a) and 7 (b). That is, FIG. 7A shows the relationship between the upper and lower rolls provided in the direct fired heating furnace when the distance between the upper and lower rolls is 18 m. According to this, the steel strip shape distortion amount a becomes close to 80 mm. Also, the distance h between the steel strip and the burner is within the range of 150 to 350 mm (the hatched portion in the figure indicates the flapping range of the steel strip). On the other hand, FIG. 8B shows the relationship between the upper and lower rolls when the distance between the upper and lower rolls is 25 m. In this case, the distance h between the steel strip and the burner is required unless the steel strip shape distortion amount a is 30 mm or less. are those Tsu see that does not fit within the range of 150~350mm. The configuration of the present invention is therefore based on this new finding, correction in the case of direct-fired type reducing furnace distance between the upper and lower rolls have more than 20 m, the straightening machine in immediately before the original plate shape distortion amount a to 30mm or less To do . Hereinafter, specific embodiments of the present invention will be described in detail. FIG. 1 is a schematic view showing a continuous annealing furnace line configuration of a steel strip 1 provided with a configuration of an embodiment of a heat treatment apparatus of the present invention. In this embodiment, the steel strip 1 is rewound by the pay-off reel 2 and is sheared by the entry shear 3, and the leading coil and the trailing coil are connected by the welding machine 4. Next, after being electrolytically degreased by the inlet cleaning equipment 5, it is supplied to the preheating furnace 11 and the direct-fired reduction heating furnace 12 via the inlet looper 10, and is heated to 600 to 750 ° C. After heating to a predetermined temperature in the furnace 13 and the radiant tube type soaking furnace 14, it is soaked as it is.
And cooled to 350 ° C in the roll cooling equipment 20.
Cool down to Subsequently, the overaging treatment zone 21 and the quenching furnace 22
After, in the electroplating equipment 23, the electroplating is performed in an aqueous solution containing Ni (or Ni-P) for improving the chemical conversion property and pressability, dried in the drying equipment 24, passed through the outlet looper 25, The surface of the sheet is subjected to a temper treatment by a temper rolling mill 26, inspected and lubricated by a surface defect meter 27 and an oiling machine 28, and cut into a predetermined length by an output shearing machine 29. Wound by 30. In front of the direct heating type reduction heating furnace 12, the entrance looper 10 and the preheating furnace 11 are provided.
And a tension leveler 8 serving as a plate shape correcting machine is provided therebetween. In addition, this direct fire type reduction heating furnace 1
The distance between the upper and lower rolls provided in 2 is 25 m. It is desirable to correct the shape of the steel strip 1 immediately after the oil adhering to the surface of the steel strip 1 is washed off by the inlet cleaning equipment 5, and therefore, in this embodiment, the inlet cleaning equipment 5 and the preheating are performed. The above-mentioned tension leveler 8 was installed between the furnace and the furnace 11 (in the actual equipment configuration, a two-roll type steering roll 6 is disposed immediately before the tension leveler 8, and 7 and 9 are the entrance side of the tension leveler 8 and Outgoing bridle roll). On the other hand, from the viewpoint of preventing meandering in the entrance-side looper 10, it is better to perform the shape correction of the steel strip 1 immediately before that, and in consideration of the complexity of changing the rolls in the looper 10, the tension leveler 8 is The entrance looper 10
I decided to install just before. Note that the entrance-side cleaning equipment 5 does not have to be installed immediately above the tension leveler 5. The structure of the roll cooling equipment 20 used in the present embodiment has at least one cooling roll for rotating and contacting the steel strip 1 while rotating and continuously cooling the steel strip 1. The roll has a body length at least equal to the plate width of the steel strip 1, and a cooling liquid continuously flows through the inside of the roll to cool the roll, and moves in a direction substantially perpendicular to the moving direction of the steel strip 1. The contact area can be controlled (that is, the cooling length can be controlled). The configuration of the roll cooling equipment 20 is shown in FIG.
As shown in (1), a tension adjuster including at least two rolls 16a to 16d is installed on each of the entrance side and the exit side. Further, gas blowing headers 18a to 18e for blowing a cooling gas from the back surface of the steel strip 1 which is in contact with the cooling rolls 17a to 17e are provided. By blowing the cooling gas, the steel strip 1 can be uniformly cooled in the sheet width direction while preventing the steel strip 1 from rising. However, as described above, the cooling roll 17a
17e to 17e, for adjusting the contact length with the steel strip 1,
The gas blowing headers 18a to 18e can be moved in a direction substantially perpendicular to the moving direction of the gas blowing headers 18a to 18e.
Can also move in the same direction at the same time. On the other hand, on the exit side of the roll cooling equipment 20, a post-stage gas cooling header 19 is installed at a predetermined interval from both surfaces of the steel strip 1. As shown in FIG. 3, these headers 19 are installed in a state of being divided into three in each plate width direction (three surfaces 19a to 19c are shown on one surface, and only 19d is shown on the other side). By separately controlling the flow rate and / or the flow rate of the cooling gas blown out onto the surface of the steel strip 1 from these, the temperature distribution in the width direction of the steel strip 1 after the final cooling is made uniform. I can do it. In the continuous annealing line of the present embodiment having the above-described structure, the tension leveler 8 is connected to the direct-fired reduction heating furnace 12.
Is arranged on the upstream side of the heating furnace 12, the sheet-passing property of the steel strip 1 in the heating furnace 12 is improved, and the reduction heating characteristics of the direct-fired reduction heating furnace 12 are also improved, as is apparent from an experiment described later. It can be obtained stably. Therefore, when the subsequent plating process of the electroplating equipment 23 is performed,
The phosphatability of the steel strip 1 is improved. Further, the steel strip 1 is controlled by the tension leveler 8.
It is possible to correct the shape of the portion where the defective shape of the quarter portion occurs, eliminating the occurrence of squeezing in the gas jet cooling facility 15 and greatly reducing the squeezing and non-uniform cooling in the roll cooling facility 20. The meandering of the band 1 was eliminated, and the quality of the obtained product was improved. Therefore, the problem of contact with the electrode in the electroplating equipment 23 was eliminated. Further, there was no problem of contact with the gas jet nozzle in the gas jet cooling facility 15 and contact with the back gas spray headers 18a to 18e and the subsequent gas cooling header 19 in the roll cooling facility 20, and stable operation became possible. FIG. 4 shows the correlation between the strain a of the steel strip obtained from the experimental results when the tension leveler 8 was not installed as in this embodiment and the distance h between the steel strip and the burner. In the figure, the min value indicates the minimum value of the strain amount a measured in the steel strip 1 having a constant length, and the max value indicates the maximum value opposite thereto. , Steel strip 1
If the minimum strain amount a exceeds 30 mm, the distance h between the steel strip and the burner is less than 150 mm, which is not suitable for the reduction heating. Then it becomes 1.8%). Therefore, in the present embodiment, the amount of distortion is 30 mm
The steel strip 1 was introduced into the preheating furnace 11 and the direct-fired reduction heating furnace 12 after the shape of the original sheet was corrected by the tension leveler 8 as described below. As a result, stable reduction heating is performed in the direct fire type reduction heating furnace 12, and the problem of occurrence of local surface oxidation is eliminated. In this embodiment, between the direct fire type reduction heating furnace 12 and the radiant tube type soaking furnace 14 behind it.
Although the radiant tube type heating furnace 13 is provided, this is provided because the heat equalizing furnace 14 has low heat followability. That is, since the heating method of the soaking furnace 14 is a radiant tube method (the same applies to the electric heater heating method), the heating rate and the cooling rate at the time of temperature change are slower than that of the direct-fired reduction heating furnace 12 before the heating method. When the heating end temperature (soaking temperature) is changed, it is desirable to provide the radiant tube heating furnace 13 between them in terms of followability. Therefore, by providing the radiant tube type heating furnace 13 between them as in this embodiment, the speed of the thermal response of the direct fire type reduction heating furnace 12 can be effectively utilized. The installation position of the electroplating equipment 23 in the present embodiment is located after the quenching furnace 22 in consideration of the improvement of press formability, and is installed before the drying equipment 24 because it is necessary to dry after plating. Since there is no fluctuation or stoppage of the line speed, it is necessary to provide it before the exit looper 25. Further, in this embodiment, the tension leveler 8 is used as a shape straightening machine for the steel strip 1, but the same effect can be obtained by using a skin pass mill. According to the continuous annealing line operation method definitive in heat treatment equipment of the strip according to the present invention as described above in detail, it can be performed stable line operation, the oxidation in direct-fired type reducing furnace problems Therefore, the phosphatability of the steel strip after electroplating in an aqueous solution containing Ni or Ni-P is improved. In addition, since there is no shape defect or drawing of the steel strip quarter portion and uniform cooling can be performed at the time of cooling, a product excellent in quality can be obtained, and the problem of contact with the electrode at the time of the electroplating is also eliminated.

【図面の簡単な説明】 【図1】本発明に係る方法を実施する熱処理装置の一実
施例構成を備えた鋼帯の連続焼鈍炉ライン構成を示す概
略図である。 【図2】本実施例におけるロール冷却設備の構成を示す
説明図である。 【図3】本実施例における後段ガス冷却ヘッダの構成を
示す斜視図である。 【図4】テンションレベラの設置がなかった場合の実験
結果から得られた鋼帯歪量と、鋼帯・バーナ間距離の相
関関係を示すグラフである。 【図5】直火炉内の鋼帯に生じた形状歪の例を示す直火
炉断面図である。 【図6】直火炉非還元バーナの出側における鋼帯の形状
不良と該酸化膜の最大膜厚との間の相関関係を示すグラ
フである。 【図7】直火加熱炉内の上下ロール間距離が異なる場合
の鋼帯歪量と鋼帯・バーナ間距離の相関関係を示すグラ
フである。 【図8】鋼帯の連続焼鈍設備の従来構成例を示すライン
概略図である。 【符号の説明】 1 鋼帯 8 テンションレベラ 12 直火式還元加熱炉 15 ガスジェット冷却設備 20 ロール冷却設備 22 急冷炉 23 電気鍍金設備
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a line configuration of a continuous annealing furnace for a steel strip provided with an embodiment of a heat treatment apparatus for performing a method according to the present invention. FIG. 2 is an explanatory diagram illustrating a configuration of a roll cooling facility in the present embodiment. FIG. 3 is a perspective view showing a configuration of a post-stage gas cooling header in the present embodiment. FIG. 4 is a graph showing a correlation between a steel strip strain amount obtained from an experimental result when a tension leveler is not installed and a steel strip-burner distance. FIG. 5 is a cross-sectional view of an open fire furnace showing an example of shape distortion generated in a steel strip in the open fire furnace. FIG. 6 is a graph showing a correlation between a shape defect of a steel strip at an outlet side of a non-reducing burner of a direct-fired furnace and a maximum thickness of the oxide film. FIG. 7 is a graph showing a correlation between a steel strip strain and a steel strip / burner distance when the distance between upper and lower rolls in the direct heating furnace is different. FIG. 8 is a schematic line diagram showing a conventional configuration example of continuous annealing equipment for steel strip. [Description of Signs] 1 Steel strip 8 Tension leveler 12 Direct fire reduction heating furnace 15 Gas jet cooling equipment 20 Roll cooling equipment 22 Quenching furnace 23 Electroplating equipment

フロントページの続き (56)参考文献 特開 昭63−69924(JP,A) 特開 昭61−99633(JP,A) 特開 昭50−90567(JP,A) 特開 昭57−67134(JP,A) 特開 昭62−54035(JP,A) 特公 昭58−37391(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C21D 9/56 101 C21D 1/00 125 Continuation of the front page (56) References JP-A-63-69924 (JP, A) JP-A-61-99633 (JP, A) JP-A-50-90567 (JP, A) JP-A-57-67134 (JP) JP-A-62-54035 (JP, A) JP-B-58-37391 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 9/56 101 C21D 1/00 125

Claims (1)

(57)【特許請求の範囲】 【請求項1】 直火式還元加熱炉と、ロール冷却設備と
を有した鋼帯の熱処理装置における連続焼鈍ライン操業
方法であって、 前記直火式還元加熱炉の入り側に鋼帯の形状矯正機を備
えさせるとともに、前記ロール冷却設備に背面冷却手段
を備えさせ、 前記直火式還元加熱炉に設置される上下ロールの間隔が
20m以上ある場合、前記形状矯正機において、鋼帯の
歪量を30mm以下に矯正した後、鋼帯を直火式還元加
熱炉に通板させるとともに、 前記ロール冷却設備を通板させる際、前記背面冷却手段
により、冷却ロールと接触する鋼帯の背面に冷媒を吹き
付けてロール冷却と同時に背面冷却も行わせることを特
徴とする連続焼鈍ライン操業方法。
(57) [Claims] (1)Direct fire type reduction heating furnace and roll cooling equipment
Operation of continuous annealing line in heat treatment equipment for steel strip with cracks
The method A steel strip shape straightening machine is provided on the entrance side of the direct-fired reduction heating furnace.
Back cooling means in the roll cooling equipment.
Equipped with The interval between the upper and lower rolls installed in the direct-fired reduction heating furnace is
If it is 20 m or more, the shape straightening machine
After correcting the strain amount to 30 mm or less, the steel strip
Letting it pass through a heating furnace, When passing through the roll cooling equipment, the back cooling means
Blows refrigerant to the back of the steel strip in contact with the cooling roll
The back cooling is performed simultaneously with the roll cooling.
Operation method of continuous annealing line.
JP11248993A 1993-04-16 1993-04-16 Continuous annealing line operation method Expired - Fee Related JP3362443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11248993A JP3362443B2 (en) 1993-04-16 1993-04-16 Continuous annealing line operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11248993A JP3362443B2 (en) 1993-04-16 1993-04-16 Continuous annealing line operation method

Publications (2)

Publication Number Publication Date
JPH06306486A JPH06306486A (en) 1994-11-01
JP3362443B2 true JP3362443B2 (en) 2003-01-07

Family

ID=14587930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11248993A Expired - Fee Related JP3362443B2 (en) 1993-04-16 1993-04-16 Continuous annealing line operation method

Country Status (1)

Country Link
JP (1) JP3362443B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013114578A1 (en) * 2013-12-19 2015-06-25 Sandvik Materials Technology Deutschland Gmbh Annealing furnace and method for annealing a steel strand

Also Published As

Publication number Publication date
JPH06306486A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP5130733B2 (en) Continuous annealing equipment
US5885382A (en) Primary cooling method in continuously annealing steel strip
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
CN112139282A (en) Strip steel coiling system, high-strength steel coiling method and high-strength steel production line
EP0779370A1 (en) Method of continuous annealing of cold rolled steel plate and equipment therefor
CN113215385B (en) Control method for preventing buckling of hot-dip galvanized thin-specification product
JP3362443B2 (en) Continuous annealing line operation method
CN213409875U (en) Strip steel coiling system and high-strength steel production line
JP3396932B2 (en) Continuous heat treatment apparatus and continuous heat treatment method for metal strip
JP3168753B2 (en) Threading method in direct reduction heating equipment of continuous metal strip processing line
JP3083247B2 (en) Method for producing stainless steel strip by continuous casting hot rolling and heat treatment furnace for continuous casting hot rolling of stainless steel strip
JPH06306485A (en) Heat treating device for metallic belt
US5182074A (en) Apparatus for continuously cooling metal strip
US4595357A (en) Continuous annealing method and apparatus for cold rolled steel strips
JPS6254373B2 (en)
EP0230780A1 (en) Steel strip cooling method
JP2807134B2 (en) Gas jet chamber sealing device
EP0495115B1 (en) System for continuously cooling metal strip
JPH09137233A (en) Method for heat treating band-shaped metallic sheet
JPS6130632A (en) Cooling method of steel strip
JPH07150259A (en) Method and device for cooling strip in continuous annealing furnace
JPH08209252A (en) Continuous heat treatment furnace for metallic strip
JPH0368934B2 (en)
JPH06340928A (en) Cooling roll and roll cooling apparatus using the same roll
JPS6123723A (en) Cooling method of steel strip in continuous annealing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees