JPH1143758A - Cooling method in alloying treatment process - Google Patents

Cooling method in alloying treatment process

Info

Publication number
JPH1143758A
JPH1143758A JP19838097A JP19838097A JPH1143758A JP H1143758 A JPH1143758 A JP H1143758A JP 19838097 A JP19838097 A JP 19838097A JP 19838097 A JP19838097 A JP 19838097A JP H1143758 A JPH1143758 A JP H1143758A
Authority
JP
Japan
Prior art keywords
cooling
sheet
air
flow rate
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19838097A
Other languages
Japanese (ja)
Other versions
JP3209408B2 (en
Inventor
Takayuki Hori
隆行 堀
Yuji Ikenaga
雄二 池永
Jiyun Morozumi
順 諸住
Hirotaka Okamoto
宏隆 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19838097A priority Critical patent/JP3209408B2/en
Publication of JPH1143758A publication Critical patent/JPH1143758A/en
Application granted granted Critical
Publication of JP3209408B2 publication Critical patent/JP3209408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a metallic material excellent in surface appearance uniformity by selecting whether it is suitable as a means between mist cooling and air cooling in accordance with the size of cooling loads discriminated by the heat transfer coefficient required for cooling and cooling a metallic material applied with hot-dip metal plating. SOLUTION: The sheet temp. of a steel sheet 10 applied with plating is measured by a sheet temp. gauge 40 at the outlet side of a heat holding zone 34, and from the line rate at this time, the sheet thickness, the outlet side objective sheet temp. in a cooling zone 36 and a parameter of a host computer, the heat transfer coefficient is computed. A controller 50 discriminates the size of cooling loads from the magnitude of the heat transfer coefficient, and whether mist cooling is executed or air cooling is executed is selected. In the case that the cooling loads is big, the speed of revolution of an air fan 52 is made certain, the sheet temp. is measured by a sheet temp. gauge 42, and the opening degree of a flow rate valve 58 is adjusted by a flow rate controller 56 so as to regulate the quantity of water detected by a flow rate gauge 54 to prescribed value. In the case that the cooling loads are small, the flow rate adjusting valve 58 is perfectly closed to regulate the quantity of water to zero, the air fan 52 is adjusted by a pressure controller 62 so as to regulate the air pressure in a pressure sensor 60 to the objective value, and the sheet temp. is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合金化処理過程の
冷却方法に係り、特に、溶融亜鉛めっき鋼板を製造する
際に用いるのに好適な、広範囲のライン速度、板厚に対
する冷却が可能な合金化処理過程の冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method in an alloying process, and more particularly to a method for cooling a wide range of line speeds and sheet thicknesses, which is suitable for use in producing hot-dip galvanized steel sheet. The present invention relates to a cooling method in an alloying process.

【0002】[0002]

【従来の技術】一般に、溶融亜鉛めっき鋼板の合金化処
理装置においては、図4に示す如く、鋼板10に亜鉛め
っき浴20を通してめっきした後、ガスノズル30から
噴出されるワイピングガスにより所定の付着量に調整
し、電気誘導又はガスによる加熱帯32によりほぼ均一
に加熱し、その後、保熱帯34により合金層を生成し、
冷却帯36で急速冷却している。図において、22は、
例えば焼鈍炉(図示省略)から導入される還元雰囲気中
の鋼板10を大気から遮断するためのスナウト、24
は、亜鉛めっき浴槽20内に侵漬されたシンクロール、
38は、トップロールである。
2. Description of the Related Art Generally, in an apparatus for alloying a hot-dip galvanized steel sheet, as shown in FIG. And heated almost uniformly by a heating zone 32 by electric induction or gas, and thereafter, an alloy layer was formed by a preservative layer 34,
Rapid cooling is performed in the cooling zone 36. In the figure, 22 is
For example, a snout for shielding the steel sheet 10 in a reducing atmosphere introduced from an annealing furnace (not shown) from the atmosphere, 24
Is a sink roll immersed in a galvanizing bath 20;
38 is a top roll.

【0003】前記冷却帯36における冷却に際しては、
鋼板表面に発生する恐れのあるスパングルと称する花模
様を抑制したり、表面外観を均一とするために急速冷却
が必要とされているので、例えば特開平5−9697の
ように、空気と水を混合したミスト冷却(気水冷却とも
称する)を行ったり、特開昭62−253757のよう
に、アルコールミスト冷却が行われている。
In cooling in the cooling zone 36,
Since rapid cooling is required to suppress a flower pattern called spangle which may occur on the surface of the steel sheet and to make the surface appearance uniform, for example, as described in JP-A-5-9697, air and water are removed. Mixed mist cooling (also referred to as air-water cooling) is performed, and alcohol mist cooling is performed as in JP-A-62-253775.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ミスト
冷却は、急速冷却のように、大きな熱伝達係数を必要と
する冷却では、十分に能力を発揮するが、そうでない場
合、例えば、ライン速度が低い時や、薄物鋼板の時等
は、逆に過冷却となり、鋼板面に水残りを発生させ、冷
却水の、ロール等の他の設備のボタ落ち等を引き起こす
ことがある。又、ロール表面にも鋼板面の水が転写し、
ロール上で鋼板がスリップして表面外観を損なったり、
あるいは、鋼板が接触するロール中央部を冷やし過ぎ
て、熱膨張量の差によりロール中央部の半径を相対的に
小さくして、ロールクラウンによる蛇行防止効果を失わ
せてしまい、鋼板が蛇行する等の問題があった。
However, the mist cooling is sufficiently effective for cooling requiring a large heat transfer coefficient, such as rapid cooling, but otherwise, for example, when the line speed is low. On the other hand, when a thin steel plate or the like is used, overcooling occurs, and water remains on the surface of the steel plate, which may cause dropping of cooling water or other equipment such as rolls. Also, the water on the steel plate is transferred to the roll surface,
The steel plate slips on the roll and impairs the surface appearance,
Alternatively, the central portion of the roll contacted by the steel sheet is excessively cooled, and the radius of the central portion of the roll is made relatively small due to the difference in the amount of thermal expansion, so that the effect of preventing the roll crown from meandering is lost. There was a problem.

【0005】本発明は、前記従来の問題を解決するべく
なされたもので、広範囲のライン速度や板厚に対する冷
却を可能とし、金属表面の水残りや蛇行を無くし、表面
外観均一性に優れた金属材を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and enables cooling over a wide range of line speeds and plate thicknesses, eliminates water residue and meandering on the metal surface, and has excellent surface appearance uniformity. It is an object to provide a metal material.

【0006】[0006]

【課題を解決するための手段】本発明は、溶融金属でめ
っきされた金属材を、合金化処理過程の冷却帯で冷却す
るに際して、冷却負荷が大きい時はミスト冷却を行い、
冷却負荷が小さい時は空気冷却を行うことにより、前記
課題を解決したものである。
According to the present invention, when cooling a metal material plated with a molten metal in a cooling zone in an alloying process, mist cooling is performed when a cooling load is large,
When the cooling load is small, the above problem is solved by performing air cooling.

【0007】又、前記冷却負荷の大小を、冷却に必要な
熱伝達係数の大小により判定するようにしたものであ
る。
Further, the magnitude of the cooling load is determined based on the magnitude of a heat transfer coefficient required for cooling.

【0008】本発明によれば、冷却負荷の判定を例えば
熱伝達係数で行うようにして、冷却帯での入側板温、出
側目標板温、冷却長、冷媒温度、ライン速度、板厚、ス
トリップ密度、ストリップ比熱等より熱伝達係数を算出
した後、あるしきい値をもってミスト冷却と空気冷却を
切り替えるようにしたので、鋼板等の金属材に対して過
冷却になることはなく、ミスト冷却方式で冷却できない
領域では空気冷却を行うようになるので、金属材表面に
水残りができることはなく、鋼板等の蛇行やスリップを
抑制できる。
According to the present invention, the determination of the cooling load is made based on, for example, the heat transfer coefficient, so that the inlet side plate temperature, the outlet side target plate temperature, the cooling length, the refrigerant temperature, the line speed, the plate thickness, After calculating the heat transfer coefficient from the strip density, the specific heat of the strip, etc., the mist cooling and air cooling are switched at a certain threshold, so that the metal material such as a steel plate does not become overcooled, and the mist cooling does not occur. Since air cooling is performed in a region that cannot be cooled by the method, no water remains on the surface of the metal material, and meandering and slippage of a steel plate or the like can be suppressed.

【0009】[0009]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】本実施形態を実施するための冷却制御装置
の構成を、図1に示す。
FIG. 1 shows the configuration of a cooling control device for carrying out the present embodiment.

【0011】本実施形態においては、鋼板10が保熱帯
34の出側に到達した時点で、板温計40により鋼板1
0の板温を測定し、その時の、ライン速度、板厚、冷却
帯36の出側目標板温と上位計算機(図示省略)が持つ
パラメータから熱伝達係数を計算し、制御装置50で、
ミスト冷却を行うか、空気冷却を行うか判定する。
In the present embodiment, when the steel sheet 10 reaches the exit side of the preservation zone 34, the steel sheet 1 is measured by the sheet thermometer 40.
A sheet temperature of 0 is measured, and a heat transfer coefficient is calculated from the line speed, the sheet thickness, the target sheet temperature on the outlet side of the cooling zone 36 at that time, and parameters of a host computer (not shown).
It is determined whether to perform mist cooling or air cooling.

【0012】図2に、本発明の制御負荷範囲を示す。切
替えの判定閾値(熱伝達係数)α、βは、現在冷却方式
別、鋼種別に持たせることができる。この閾値α、βを
越えると、冷却方式が切り替わる。現冷却方式がミスト
冷却である場合に、空気冷却に切り替えるための閾値α
は、例えばα=100kcal/m2 ・hr・℃とすることが
できる。又、現冷却方式が空気冷却である場合に、ミス
ト冷却へ切り替えるための閾値βは、例えばβ=150
kcal/m2 ・hr・℃とすることができる。
FIG. 2 shows the control load range of the present invention. The switching determination thresholds (heat transfer coefficients) α and β can be provided for each cooling method and steel type. If the thresholds α and β are exceeded, the cooling method is switched. Threshold α for switching to air cooling when the current cooling method is mist cooling
Can be, for example, α = 100 kcal / m 2 · hr · ° C. When the current cooling method is air cooling, the threshold β for switching to mist cooling is, for example, β = 150
kcal / m 2 · hr · ° C.

【0013】ここで、αとβの値を変えて、ミスト冷却
と空気冷却の切替えにヒステリシスを設けているのは、
冷却方式切替え時の板温変動による冷却むらを抑えるた
めである。
Here, the reason why hysteresis is provided for switching between mist cooling and air cooling by changing the values of α and β is as follows.
This is to suppress cooling unevenness due to plate temperature fluctuation when switching the cooling method.

【0014】制御装置50でミスト冷却が選択された場
合には、例えば空気流量を一定とし、水量を操作端とす
る。具体的には、空気ファン52の回転数を一定とする
一方、冷却帯36の出側で板温計42により板温を測定
し、その結果に合わせて、流量計54で検出される水量
が所定値となるよう、流量コントローラ(FIC)56
で流量調節弁58の開度を調節する。
When mist cooling is selected by the control device 50, for example, the air flow rate is kept constant, and the water flow rate is used as the operation end. Specifically, while the rotation speed of the air fan 52 is kept constant, the plate temperature is measured by the plate thermometer 42 on the outlet side of the cooling zone 36, and the amount of water detected by the flow meter 54 is adjusted according to the result. The flow controller (FIC) 56 is set to a predetermined value.
To adjust the opening of the flow control valve 58.

【0015】一方、制御装置50で空気冷却が選択され
た場合には、流量調節弁58を全閉として水量を零と
し、空気ファン52の回転数を操作端とし、冷却帯36
の出側で測定した板温に応じて、圧力センサ60で検出
される空気圧力が目標値となるよう、圧力コントローラ
(PIC)62で、空気ファン52の回転数を調節し、
板温を制御する。
On the other hand, when air cooling is selected by the control device 50, the flow control valve 58 is fully closed to set the water volume to zero, the rotation speed of the air fan 52 is set to the operation end, and the cooling zone 36 is set.
The pressure controller (PIC) 62 adjusts the rotation speed of the air fan 52 so that the air pressure detected by the pressure sensor 60 becomes a target value in accordance with the plate temperature measured on the outlet side of
Control the sheet temperature.

【0016】図において、64は、板温計42の出力に
応じて、流量コントローラ56や圧力コントローラ62
に目標値を与える温度コントローラ(TIC)である。
In the drawing, reference numeral 64 denotes a flow controller 56 and a pressure controller 62 in accordance with the output of the plate thermometer 42.
Is a temperature controller (TIC) for giving a target value to the temperature controller.

【0017】本実施形態においては、板温計42で検出
された冷却帯36の出側の板温を流量コントローラ56
及び圧力コントローラ62にフィードバックしているの
で、高精度の冷却制御を行うことができる。なお、例え
ば空気冷却時に、圧力コントローラ62に固定の設定値
を入力して、オープンループの制御を行うことも可能で
ある。
In the present embodiment, the sheet temperature on the outlet side of the cooling zone 36 detected by the sheet thermometer 42 is used as a flow controller 56.
And the feedback to the pressure controller 62, it is possible to perform high-precision cooling control. Note that, for example, at the time of air cooling, a fixed set value may be input to the pressure controller 62 to perform open-loop control.

【0018】又、本実施形態においては、冷却負荷の切
替え判定に熱伝達係数を用いているので、高精度の切替
え判定が可能である。なお、冷却負荷の大小を判定する
基準は、熱伝達係数の大小に限定されず、例えば、冷却
水流量や空気圧力を冷却負荷の判定に用いてもよい。具
体的には、例えばミスト冷却で冷却水流量が所定の下限
値以下となった場合に、空気冷却へ移行し、一方、空気
冷却で空気圧力が所定の上限値以上となった場合に、ミ
スト冷却へ移行することができる。
Further, in the present embodiment, since the heat transfer coefficient is used to determine the switching of the cooling load, the switching can be determined with high accuracy. The criterion for determining the magnitude of the cooling load is not limited to the magnitude of the heat transfer coefficient. For example, the cooling water flow rate or the air pressure may be used for determining the cooling load. Specifically, for example, when the cooling water flow rate becomes equal to or lower than a predetermined lower limit value by mist cooling, the process shifts to air cooling. On the other hand, when the air pressure becomes equal to or higher than a predetermined upper limit value by air cooling, the mist cooling is performed. A transition can be made to cooling.

【0019】なお、前記実施形態においては、ミスト冷
却の制御を、水量により行い、空気冷却の制御を空気フ
ァンの回転数により行っていたがミスト冷却や空気冷却
の制御方法は、これに限定されない。
In the above embodiment, the mist cooling is controlled by the amount of water, and the air cooling is controlled by the rotation speed of the air fan. However, the control method of the mist cooling and the air cooling is not limited to this. .

【0020】又、前記実施形態においては、本発明が、
溶融亜鉛めっき鋼板の冷却に適用されていたが、本発明
の適用対象はこれに限定されず、亜鉛以外の他の溶融金
属による、鋼板以外の他の金属材のめっき時における合
金化処理過程の冷却にも、本発明が同様に適用できるこ
とは明らかである。
In the above embodiment, the present invention
Although it was applied to the cooling of hot-dip galvanized steel sheet, the application of the present invention is not limited to this.By the other hot-dip metal other than zinc, during the alloying process during the plating of other metal materials other than the steel sheet. Obviously, the invention is equally applicable to cooling.

【0021】[0021]

【発明の効果】本発明によれば、合金化処理過程の冷却
時に、冷却負荷に応じて冷却方式が選択されるので、広
範囲のライン速度や板厚に対する冷却が可能となる。
又、金属材表面の水残りが無くなるため、ロール上での
金属板のスリップや蛇行が抑制できる。更に、これらの
作用により、表面外観均一性に優れた溶融亜鉛めっき鋼
板等を安定して提供できる等の優れた効果を有する。
According to the present invention, a cooling method is selected according to a cooling load at the time of cooling in the alloying process, so that a wide range of line speeds and sheet thicknesses can be cooled.
Further, since no water remains on the surface of the metal material, slipping and meandering of the metal plate on the roll can be suppressed. Further, by these actions, there is an excellent effect that a galvanized steel sheet having excellent surface appearance uniformity can be stably provided.

【0022】発明者の実験によると、空気冷却に切り替
えることにより、図3に示す如く、過冷却が無くなっ
て、汚れ発生領域を避けることができ、一級品質の阻害
要因を低減できた。又、板温制御精度も向上し、Znピ
ックアップ疵発生領域も回避でき、同じく阻害要因を低
減できた。
According to the experiment conducted by the inventor, as shown in FIG. 3, by switching to air cooling, supercooling was eliminated, so that a dirt generation area could be avoided, and a factor inhibiting first-class quality could be reduced. Further, the plate temperature control accuracy was improved, the area where Zn pickup flaws were generated could be avoided, and similarly, the inhibition factor could be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を実施するための冷却制御装
置の構成を示す管路図
FIG. 1 is a pipeline diagram showing a configuration of a cooling control device for implementing an embodiment of the present invention.

【図2】前記実施形態におけるミスト冷却と空気冷却の
切替え基準を示す線図
FIG. 2 is a diagram showing a reference for switching between mist cooling and air cooling in the embodiment.

【図3】本発明の効果を示す線図FIG. 3 is a diagram showing the effect of the present invention.

【図4】本発明の適用対象の一例である溶融亜鉛めっき
鋼板の合金化処理装置の構成を示す断面図
FIG. 4 is a cross-sectional view showing a configuration of an apparatus for alloying a hot-dip galvanized steel sheet, which is an example of an object to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10…鋼板 20…亜鉛めっき浴 30…ガスノズル 32…加熱帯 34…保熱帯 36…冷却帯 40、42…板温計 50…制御装置 52…空気ファン 54…流量計 56…流量コントローラ(FIC) 58…流量調節弁 60…圧力センサ 62…圧力コントローラ(PIC) 64…温度コントローラ(TIC) DESCRIPTION OF SYMBOLS 10 ... Steel plate 20 ... Galvanizing bath 30 ... Gas nozzle 32 ... Heating zone 34 ... Preservation zone 36 ... Cooling zone 40, 42 ... Plate thermometer 50 ... Control device 52 ... Air fan 54 ... Flow meter 56 ... Flow controller (FIC) 58 ... Flow control valve 60 ... Pressure sensor 62 ... Pressure controller (PIC) 64 ... Temperature controller (TIC)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諸住 順 岡山県倉敷市水島川崎通一丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 岡本 宏隆 岡山県倉敷市水島川崎通一丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Jun Morizumi 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Inside Kawasaki Steel Corporation Mizushima Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶融金属でめっきされた金属材を、合金化
処理過程の冷却帯で冷却するに際して、 冷却負荷が大きい時はミスト冷却を行い、 冷却負荷が小さい時は空気冷却を行うことを特徴とする
合金化処理過程の冷却方法。
When cooling a metal material plated with a molten metal in a cooling zone in an alloying process, mist cooling is performed when a cooling load is large, and air cooling is performed when a cooling load is small. Characteristic cooling method in alloying process.
【請求項2】請求項1において、前記冷却負荷の大小
を、冷却に必要な熱伝達係数の大小により判定すること
を特徴とする合金化処理過程の冷却方法。
2. The method according to claim 1, wherein the magnitude of the cooling load is determined based on the magnitude of a heat transfer coefficient required for cooling.
JP19838097A 1997-07-24 1997-07-24 Cooling method in alloying process Expired - Fee Related JP3209408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19838097A JP3209408B2 (en) 1997-07-24 1997-07-24 Cooling method in alloying process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19838097A JP3209408B2 (en) 1997-07-24 1997-07-24 Cooling method in alloying process

Publications (2)

Publication Number Publication Date
JPH1143758A true JPH1143758A (en) 1999-02-16
JP3209408B2 JP3209408B2 (en) 2001-09-17

Family

ID=16390168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19838097A Expired - Fee Related JP3209408B2 (en) 1997-07-24 1997-07-24 Cooling method in alloying process

Country Status (1)

Country Link
JP (1) JP3209408B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309359A (en) * 2001-04-12 2002-10-23 Nkk Corp Method for manufacturing hot-dip metal coated steel strip
JP2009013481A (en) * 2007-07-06 2009-01-22 Nippon Steel Corp Alloying furnace equipment
KR20170021310A (en) 2014-07-24 2017-02-27 신닛테츠스미킨 카부시키카이샤 Cooling method and cooling device for strip steel
KR20180125537A (en) 2016-04-05 2018-11-23 가부시끼가이샤 구레하 Microspheres, thermo-expandable resin compositions, and foamed molded articles and manufacturing methods thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309359A (en) * 2001-04-12 2002-10-23 Nkk Corp Method for manufacturing hot-dip metal coated steel strip
JP4736223B2 (en) * 2001-04-12 2011-07-27 Jfeスチール株式会社 Manufacturing method of molten metal plated steel strip
JP2009013481A (en) * 2007-07-06 2009-01-22 Nippon Steel Corp Alloying furnace equipment
KR20170021310A (en) 2014-07-24 2017-02-27 신닛테츠스미킨 카부시키카이샤 Cooling method and cooling device for strip steel
US10465262B2 (en) 2014-07-24 2019-11-05 Nippon Steel Corporation Method for cooling steel strip and cooling apparatus
KR20180125537A (en) 2016-04-05 2018-11-23 가부시끼가이샤 구레하 Microspheres, thermo-expandable resin compositions, and foamed molded articles and manufacturing methods thereof

Also Published As

Publication number Publication date
JP3209408B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP3209408B2 (en) Cooling method in alloying process
JP4306471B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
JPH0892712A (en) Control of temperature of steel strip immersing into galvanizing bath
JP5167895B2 (en) Method for producing hot-dip steel strip
JP3787320B2 (en) Method and apparatus for controlling alloying in hot dip galvanizing line
KR101648310B1 (en) Control apparatus for alloying galvannealing sheet steel
JP3024302B2 (en) Hot-dip bath temperature control method
JPH04329856A (en) Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip
JP2003027145A (en) Cooling zone in continuous annealing furnace and method for controlling cooling
JP3114572B2 (en) Method for controlling alloying of galvannealed steel sheet
JP3393750B2 (en) Method and apparatus for controlling alloy layer thickness of continuous galvanized steel sheet
JP2807156B2 (en) Method for controlling the degree of alloying of galvanized steel sheet
US3215115A (en) Coating apparatus including means in control of thermal-pretreating device
JPH03188250A (en) Molten metal dipping vessel used for continuous hot-dipping
JP4428096B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
JP2596229B2 (en) Manufacturing method of galvannealed steel sheet
JP3175802B2 (en) Method for controlling alloying of hot-dip galvanized steel sheet
KR20020048087A (en) edge heater auto control apparatus using Fe induction pating line
JPH0913155A (en) Method for producing hot-dip metal plated steel sheet
JP3411712B2 (en) Alloying furnace for hot-dip galvanized steel sheet and its operation method
JPH0967618A (en) Method for controlling atmospheric dew point in decarburize-annealing furnace
JP2789946B2 (en) Manufacturing method of galvannealed steel sheet
JPH06330276A (en) Method for controlling degree of alloying of hot dip metal coated steel sheet in induction heating type alloying furnace
JP2004315901A (en) Hot dip zinc coating method
JP2005163057A (en) Hot dip galvannealed steel plate manufacturing device, and method for controlling the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees