JP2004124144A - Continuous hot-dip metal plating apparatus - Google Patents

Continuous hot-dip metal plating apparatus Download PDF

Info

Publication number
JP2004124144A
JP2004124144A JP2002288716A JP2002288716A JP2004124144A JP 2004124144 A JP2004124144 A JP 2004124144A JP 2002288716 A JP2002288716 A JP 2002288716A JP 2002288716 A JP2002288716 A JP 2002288716A JP 2004124144 A JP2004124144 A JP 2004124144A
Authority
JP
Japan
Prior art keywords
temperature
metal plating
gas
plating bath
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002288716A
Other languages
Japanese (ja)
Other versions
JP2004124144A5 (en
Inventor
Takao Seno
勢能 孝雄
Mamoru Sakata
阪田 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2002288716A priority Critical patent/JP2004124144A/en
Priority to TW092114034A priority patent/TWI274085B/en
Priority to KR1020030035212A priority patent/KR20040030218A/en
Priority to CNB031492983A priority patent/CN100362126C/en
Publication of JP2004124144A publication Critical patent/JP2004124144A/en
Publication of JP2004124144A5 publication Critical patent/JP2004124144A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/02Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material
    • B05C3/12Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating work of indefinite length
    • B05C3/125Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating work of indefinite length the work being a web, band, strip or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous hot-dip metal plating apparatus which has a quick response on a temperature control of a steel sheet, and keeps the steel sheet to a desired temperature while making temperature variations small, in order to solve a conventional problem. <P>SOLUTION: The continuous hot-dip metal plating apparatus 1 comprises a plating tank 14 for accommodating a metal plating bath 29 which is heated and kept to the desired temperature, and a chamber 11 for keeping a strip temperature. In the chamber 11, a gas is sprayed to a steel strip S which has been cooled to a temperature capable of being hot-dip metal plated and enters the chamber; the steel strip S is made to pass through an atmosphere in which the gas is forcibly convected, and is continuously sent out to the metal plating bath 29; and the above sprayed gas is adjusted to a temperature for holding the steel strip S to a suitable temperature for immersing it into the metal plating bath 29 to hot-dip plate it. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、帯状鋼板を金属めっき浴に連続的に浸漬させて溶融金属めっきする連続溶融金属めっき設備に関するものである。
【0002】
【従来の技術】
従来、加熱帯、ガス強制対流式の冷却帯に続けて設けられた連続溶融金属めっき設備が公知である(先行技術文献情報なし)。また、帯状鋼板を連続的に金属めっき浴に浸漬させることにより帯状鋼板に連続溶融金属めっきをする場合、金属めっき浴内に進入してくる帯状鋼板を略金属めっき浴温度に精度よく調節するのが良いことは周知である。さらに、一般にこの金属めっき浴内に進入してくる帯状鋼板の長手方向の温度のばらつき、幅方向の温度のばらつきについては、いずれも±5℃程度が金属めっきの品質上、温度精度上の上限とされている。
【0003】
前記冷却帯では、例えば、帯状ステンレス鋼板にZnめっきする場合、この鋼板を約460℃まで冷却するために100〜150℃のガスが帯状鋼板に噴射され、この帯状鋼板と噴射されるガスの両者の温度が大きく、このためこの帯状鋼板の長手方向および幅方向において温度のばらつきが前記温度制度上の上限を超えて生じ易い。
そこで、斯かる温度のばらつきを縮小すべく、前記冷却帯に続く輻射式の板温保持室が設けられた連続溶融金属めっき設備が知られている。
【0004】
【発明が解決しようとする課題】
前記従来の輻射式の板温保持室が設けられた連続溶融金属めっき設備の場合、この板温保持室は輻射式のため、帯状鋼板の温度制御に関する応答性が悪く、かつ帯状鋼板のついて所望の温度精度を達成しようとすると、この板温保持室が長くなり過ぎ、大きな設置スペースを要するという問題がある。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、短い長さで、帯状鋼板の温度制御に関し、応答性を良好にし、温度のばらつきの少ない状態で帯状鋼板を所望温度に保持することを可能とした連続溶融金属めっき設備を提供しようとするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明は、設定温度に加熱保持された金属めっき浴を収容しためっき浴槽と、溶融金属めっき可能な温度に冷却されて進入してくる帯状鋼板にガスが噴射され、このガスが強制対流させられる雰囲気中を前記帯状鋼板が通過させられて、前記金属めっき浴へと連続的に送り出されるとともに、前記噴射されるガスの温度が前記金属めっき浴に前記帯状鋼板を浸漬させて溶融金属めっきするのに適した温度に前記帯状鋼板を保持する温度に調整される板温保持室とを備えた構成とした。
【0006】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1は、本発明に係る連続溶融金属めっき設備1を示し、この連続溶融金属めっき設備1は、例えば焼鈍炉の加熱帯、冷却帯に続けて設けられ、帯状鋼板S、例えば冷延鋼板が連続的に順次通過してゆく板温保持室11、めっき浴槽導入空間部12、スナウト13およびめっき浴槽14を備えている。
【0007】
板温保持室11の内部には、横方向に間隔をあけて整列配置された複数のノズル21が、帯状鋼板Sにガス噴射可能に、鋼板Sの上下に2列、間隔をあけて対向配置され、板温保持室11内でガスが強制対流させられるようになっている。また、板温保持室11からはガス循環流路22が延びており、このガス循環流路22は、例えば加熱手段として、ヒータ或いはバーナを備え、冷却手段としてクーラを備えた加熱冷却部23、圧力制御弁24および送風機25を経て、前記ノズル21の各々に接続している。そして、前記加熱手段は例えばサイリスタや流量調節弁を用いた加熱調節手段26により加熱強さの調節が行われ、前記冷却手段は、例えばクーラーを用いた冷却調節手段27により冷却強さの調節が行われる。
【0008】
めっき浴槽導入空間部12は、ガイドロール28を内蔵し、板温保持室11から進入してきた帯状鋼板Sをガイドロール28により方向転換させて、続くスナウト13へと送り出している。
スナウト13は、その先端部を例えば、Zn,Al等の金属を溶融させためっき浴槽14内の金属めっき浴29内に位置させており、板温保持室11およびめっき浴槽導入空間部12を通過してきた帯状鋼板Sを金属めっき浴29に浸漬させている。
めっき浴槽14内には、シンクロール31が設けられており、金属めっき浴29に浸漬し、めっき処理された帯状鋼板Sがシンクロール31を介して上方に導かれて、続く工程へと送り出される。
【0009】
一方、めっき浴槽導入空間部12に板温検出器51が、めっき浴槽14にめっき浴温度検出器52が、加熱冷却部23と圧力調節弁24との間のガス循環流路22の部分にガス温度検出器53が設けられ、送風機25と板温保持室11との間のガス循環流路22の部分にガス圧検出器54が設けられている。板温検出器51により金属めっき浴29に進入する直前の帯状鋼板Sの温度が検出され、検出された鋼板温度Tを示す温度信号が温度指示調節計55に入力される。また、金属めっき浴29は図示しないめっき浴加熱手段により設定温度、例えばZnめっき浴の場合は約450℃に保たれ、めっき浴温度検出器52によりその金属めっき浴29の温度が検出され、検出されためっき浴温度Tを示す温度信号が演算器56に入力される。この演算器56では検出された金属めっき浴温度Tに基づき、例えばTに一定温度20℃を加えることにより、金属めっき浴29に進入する帯状鋼板Sの好ましい温度として設定板温度T’(=T+20℃)が算出され、この設定板温度T’を示す設定板温度信号が温度指示調節計55に入力される。
【0010】
温度指示調節計55からは、鋼板温度Tと設定板温度T’との温度差ΔTa(=T−T’)を示す温度偏差信号が演算器57および58に入力される。演算器57では、温度差ΔTaに基づき、所望のガス温度Tが求められ、このガス温度Tを示す温度信号が温度指示調節計59に入力される。この温度指示調節計59には、またガス温度検出器53により検出されたガス循環流路22内のガス温度Tを示す温度信号が入力されており、所望のガス温度Tと検出されたガス温度Tとの温度差ΔTb(=T−T)を示す温度偏差信号が制御手段61に入力される。そして、この制御手段61にて、ノズル21から噴射されるガス、即ちガス循環流路22内のガスが加熱されるべきか、冷却されるべきか判断され、この判断結果に基づき、温度差ΔTbをゼロにするように、制御手段61から加熱調節手段26、或いは冷却調節手段27のいずれかに、前記加熱手段による加熱強さを増減させるための信号、或いは前記冷却手段による冷却強さを増減させるための信号が入力され、ガス循環流路22内のガス温度Tが、T’−ΔT≦T≦T’+ΔTが成立する所定範囲内に、例えばT’−15℃≦T≦T’+15℃となる範囲内に保たれる。
【0011】
一方、演算器58では、温度差ΔTaに対応する設定圧力Pが求められ、この設定圧力Pを示す圧力信号が圧力指示調節計62に入力される。この圧力指示調節計62には、ガス圧検出器54により検出されたガス循環流路22内のガス圧力Pを示す圧力信号が入力されており、設定圧力Pと検出されたガス圧力Pとの差圧ΔP(=P−P)を示す圧力偏差信号が制御手段63に入力される。そして、このΔPをゼロにするように制御手段63からの制御信号により差圧圧力制御弁24の開度調節、或いは回転数制御器(VVVF)64を介して送風機25の駆動モータの回転数制御が行われ、ガス循環流路22内のガス圧力が適正値に保たれ、このガス圧力を通じて帯状鋼板Sの温度が所望範囲内に保たれるようになっている。
【0012】
さらに詳説すれば、圧力制御弁24の弁駆動部の応答速度は送風機25の駆動モータの応答速度に比して速く、制御手段63から圧力制御弁24および送風機25に対して制御信号が出力された初期の段階で、この制御信号に基づいて直ちに応答するのは圧力制御弁24のみである。このため、ガス圧力検出器54による検出圧力が高過ぎる場合は、圧力制御弁24の開度を小さくしてゆくことにより検出ガス圧力Pを低下させてゆく。そして、検出ガス圧力Pが設定圧力Pに達すると、圧力制御弁54の開度を基準開度の状態、例えば開度約70%の状態に、即ち開方向に移行させてゆくとともに、これに伴う圧力変化が生じないように送風機25の駆動モータの回転数を増大させてゆき、圧力制御弁24による圧力変動分を送風機により補償する。これに対して、ガス圧力検出器54による検出ガス圧力が低過ぎる場合は、圧力制御弁24の開度を大きくしてゆくことにより検出ガス圧力Pを上昇させてゆく。そして、検出ガス圧力Pが設定圧力Pに達すると、圧力制御弁24の開度を基準開度の状態、例えば開度約70%の状態に、即ち閉方向に移行させてゆくとともに、これに伴う圧力変化が生じないように送風機25の駆動モータの回転数を低下させてゆき、圧力制御弁24による圧力変動分を送風機25により補償する。
【0013】
このように、圧力制御弁24の開度を一旦小さく或いは大きくした後、基準開度の状態に戻すのは、その後、検出圧力Pが変動した場合に、応答性のよい圧力制御弁24により迅速に対応できるようにしておくためである。換言すれば、圧力制御弁24の開度を小さくしたままにしておいて、検出ガス圧力Pが上昇し過ぎた場合、或いは前記開度を大きくしたままにしておいて、検出ガス圧力Pが降下し過ぎた場合、これに対処できなくなるからである。
なお、本発明は、圧力制御弁24と送風機25の双方を設けたものに限定するものでなく、圧力制御弁24と送風機25の内のいずれか一方のみを設けた連続溶融金属めっき設備をも含むものである。
【0014】
このように、この連続溶融金属めっき設備1において、略めっき浴温度で板温保持室11に進入してきた鋼板Sは、ノズル21から噴射される所定温度のガス圧力が調節されることにより、強制対流させられるガスの雰囲気の中で適温に保たれ、めっき浴槽導入空間部12およびスナウト13を経て、所定温度に加熱されためっき浴29に浸漬されて、溶融金属めっきされ、金属めっき浴29から続く工程に送り出される。
【0015】
なお、本発明は、必ずしも焼鈍炉に付属した設備である必要はなく、Znめっき以外に、例えばAlめっき用設備であってもよい。
また、図1では横型配置の設備を示したが、本発明は竪型配置の設備をも含むものである。
さらに、本発明における循環ガスの温度、圧力制御系は前述した構成に限定するものでなく、板温保持室内でガスが強制対流させられる構成であればよい。
【0016】
【発明の効果】
以上の説明より明らかなように、本発明によれば、設定温度に加熱保持された金属めっき浴を収容しためっき浴槽と、溶融金属めっき可能な温度に冷却されて進入してくる帯状鋼板にガスが噴射され、このガスが強制対流させられる雰囲気中を前記帯状鋼板が通過させられて、前記金属めっき浴へと連続的に送り出されるとともに、前記噴射されるガスの温度が前記金属めっき浴に前記帯状鋼板を浸漬させて溶融金属めっきするのに適した温度に前記帯状鋼板を保持する温度に調整される板温保持室とを備えた構成としてある。
【0017】
このように、めっき浴槽の入側に設けられた板温保持室がガス強制対流式のものであるため、ここでの帯状鋼板の温度制御に関し、応答性が良好になり、板温保持室の全長を短縮でき、かつ温度のばらつきが少ない状態で帯状鋼板を所望温度に保持して帯状鋼板をめっき浴槽に導くことが可能となり、金属めっきの質を向上させることが可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る連続溶融金属めっき設備の全体構成を示す図である。
【符号の説明】
1 連続溶融金属めっき設備   11 板温保持室
12 めっき浴槽導入空間部   13 スナウト
14 めっき浴槽        21 ノズル
22 ガス循環流路       23 加熱冷却部
24 圧力制御弁        25 送風機
26 加熱調節手段       27 冷却調節手段
28 ガイドロール       29 めっき浴
31 シンクロール       51 板温検出器
52 めっき浴温度検出器    53 ガス温度検出器
54 ガス圧検出器       55 温度指示調節計
56 演算器          57 演算器
58 演算器          59 温度指示調節計
61 制御手段
S 帯状鋼板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous hot-dip metal plating facility for continuously dipping a strip-shaped steel sheet in a metal plating bath and performing hot-dip metal plating.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a continuous hot-dip metal plating facility provided following a heating zone and a cooling zone of a gas forced convection type is known (there is no prior art document information). In addition, when continuously hot-dip metal plating is performed on a steel strip by continuously immersing the steel strip in a metal plating bath, the temperature of the steel strip entering the metal plating bath is accurately adjusted to approximately the metal plating bath temperature. Is well known. Further, in general, the variation of the temperature in the longitudinal direction and the variation in the width direction of the strip-shaped steel sheet entering the metal plating bath is about ± 5 ° C., which is the upper limit of the quality of the metal plating and the temperature accuracy. It has been.
[0003]
In the cooling zone, for example, when Zn-plating a strip-shaped stainless steel sheet, a gas at 100 to 150 ° C is injected into the strip-shaped steel sheet to cool the steel sheet to about 460 ° C. Is large, so that the temperature variation in the longitudinal direction and the width direction of the strip-shaped steel sheet easily exceeds the upper limit in the temperature regulation.
Therefore, in order to reduce such variation in temperature, there is known a continuous hot-dip metal plating facility provided with a radiation type plate temperature holding chamber following the cooling zone.
[0004]
[Problems to be solved by the invention]
In the case of the continuous hot-dip metal plating equipment provided with the conventional radiation-type sheet temperature holding chamber, since the sheet temperature holding chamber is of a radiation type, the responsiveness with respect to the temperature control of the strip-shaped steel sheet is poor, and the strip-shaped steel sheet is desired. In order to achieve the above temperature accuracy, there is a problem that the plate temperature holding chamber becomes too long and a large installation space is required.
The present invention has been made to eliminate such a conventional problem, and relates to temperature control of a strip-shaped steel sheet having a short length, improving responsiveness, and controlling a strip-shaped steel sheet to a desired temperature in a state where temperature variation is small. It is an object of the present invention to provide a continuous hot-dip metal plating facility capable of holding a hot-dip metal.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a plating bath containing a metal plating bath heated and held at a set temperature, and a gas is injected into a strip-shaped steel sheet that is cooled to a temperature at which molten metal plating is possible and enters. The strip-shaped steel sheet is passed through an atmosphere in which this gas is forcedly convected, and is continuously sent out to the metal plating bath, and the temperature of the gas to be injected is such that the strip-shaped steel sheet is passed through the metal plating bath. And a sheet temperature holding chamber adjusted to a temperature for holding the strip-shaped steel sheet at a temperature suitable for immersion and hot-dip metal plating.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a continuous hot-dip metal plating facility 1 according to the present invention. The continuous hot-dip metal plating facility 1 is provided, for example, in a heating zone and a cooling zone of an annealing furnace. A plate temperature holding chamber 11, a plating bath tub introduction space 12, a snout 13, and a plating bath tub 14 that pass continuously and sequentially are provided.
[0007]
Inside the sheet temperature holding chamber 11, a plurality of nozzles 21 arranged side by side at intervals in the horizontal direction are arranged in two rows above and below the steel sheet S so as to be able to inject gas into the strip-shaped steel sheet S, facing each other at an interval. The gas is forcedly convected in the plate temperature holding chamber 11. A gas circulation channel 22 extends from the plate temperature holding chamber 11, and the gas circulation channel 22 includes, for example, a heating / cooling unit 23 including a heater or a burner as a heating unit and a cooler as a cooling unit. It is connected to each of the nozzles 21 via a pressure control valve 24 and a blower 25. The heating means adjusts the heating intensity by, for example, a heating adjustment means 26 using a thyristor or a flow control valve, and the cooling means adjusts the cooling intensity by, for example, a cooling adjustment means 27 using a cooler. Done.
[0008]
The plating bath introduction space 12 incorporates a guide roll 28, and changes the direction of the strip-shaped steel sheet S entering from the sheet temperature holding chamber 11 by the guide roll 28 and sends it out to the subsequent snout 13.
The snout 13 has its tip located in a metal plating bath 29 in a plating bath 14 in which a metal such as Zn, Al or the like is melted, and passes through the plate temperature holding chamber 11 and the plating bath introduction space 12. The strip-shaped steel sheet S is dipped in the metal plating bath 29.
A sink roll 31 is provided in the plating bath 14, and the strip-shaped steel sheet S immersed in the metal plating bath 29 and subjected to the plating treatment is guided upward through the sink roll 31 and sent out to a subsequent step. .
[0009]
On the other hand, a plate temperature detector 51 is provided in the plating bath introduction space 12, a plating bath temperature detector 52 is provided in the plating bath 14, and a gas circulation passage 22 between the heating / cooling unit 23 and the pressure control valve 24 is provided. A temperature detector 53 is provided, and a gas pressure detector 54 is provided in a portion of the gas circulation channel 22 between the blower 25 and the plate temperature holding chamber 11. The temperature of the strip-shaped steel sheet S immediately before entering the metal plating bath 29 is detected by the sheet temperature detector 51, and a temperature signal indicating the detected steel sheet temperature T 1 is input to the temperature indicating controller 55. Further, the metal plating bath 29 is maintained at a set temperature by a plating bath heating means (not shown), for example, about 450 ° C. in the case of a Zn plating bath, and the temperature of the metal plating bath 29 is detected by the plating bath temperature detector 52 and detected. temperature signal indicating the plating bath temperature T 2 which is is input to the arithmetic unit 56. Based on the detected metal plating bath temperature T 2 , the arithmetic unit 56 adds a constant temperature of 20 ° C. to T 2 , for example, to set a set plate temperature T 2 ′ as a preferable temperature of the strip-shaped steel sheet S entering the metal plating bath 29. (= T 2 + 20 ° C.), and a set plate temperature signal indicating the set plate temperature T 2 ′ is input to the temperature indicating controller 55.
[0010]
A temperature deviation signal indicating a temperature difference ΔTa (= T 1 −T 2 ′) between the steel plate temperature T 1 and the set plate temperature T 2 ′ is input from the temperature indicating controller 55 to the calculators 57 and 58. The arithmetic unit 57 based on the temperature difference .DELTA.Ta, desired gas temperature T 3 is determined, the temperature signal indicating the gas temperature T 3 is input to the temperature indicating controller meter 59. The temperature indicator adjusting meter 59, also is input a temperature signal indicative of the gas temperature T 4 of the gas circulating passage 22 detected by the gas temperature detector 53, is detected that the desired gas temperature T 3 A temperature deviation signal indicating a temperature difference ΔTb (= T 3 −T 4 ) from the gas temperature T 4 is input to the control means 61. Then, the control means 61 determines whether the gas injected from the nozzle 21, that is, the gas in the gas circulation channel 22, should be heated or cooled. Based on the determination result, the temperature difference ΔTb So that the control unit 61 sends a signal for increasing or decreasing the heating intensity by the heating unit or the cooling intensity by the cooling unit to either the heating adjusting unit 26 or the cooling adjusting unit 27. It is input signal to the gas temperature T G in the gas circulation channel 22, within a predetermined range T 2 '-ΔT ≦ T G ≦ T 2' + ΔT is established, for example, T 2 '-15 ℃ ≦ It is kept within the range of TG ≦ T 2 ′ + 15 ° C.
[0011]
On the other hand, the computing unit 58 obtains the set pressure P 0 corresponding to the temperature difference ΔTa, and a pressure signal indicating the set pressure P 0 is input to the pressure indicating controller 62. A pressure signal indicating the gas pressure P 1 in the gas circulation channel 22 detected by the gas pressure detector 54 is input to the pressure indicating controller 62, and the set pressure P 0 and the detected gas pressure P pressure deviation signal indicating the differential pressure ΔP (= P 0 -P 1) between 1 is input to the control unit 63. Then, the opening degree of the differential pressure control valve 24 is adjusted by a control signal from the control means 63 or the rotation speed control of the drive motor of the blower 25 via a rotation speed controller (VVVF) 64 so that ΔP becomes zero. Is performed, the gas pressure in the gas circulation channel 22 is maintained at an appropriate value, and the temperature of the strip-shaped steel sheet S is maintained within a desired range through the gas pressure.
[0012]
More specifically, the response speed of the valve drive unit of the pressure control valve 24 is faster than the response speed of the drive motor of the blower 25, and a control signal is output from the control unit 63 to the pressure control valve 24 and the blower 25. Initially, only the pressure control valve 24 responds immediately based on this control signal. Therefore, when the detected pressure by the gas pressure detector 54 is too high, Yuku reduce the detected gas pressure P 1 by slide into decreases the opening of the pressure control valve 24. When the detected gas pressure P 1 reaches the set pressure P 0 , the opening of the pressure control valve 54 is shifted to a reference opening, for example, about 70%, that is, in the opening direction, The rotation speed of the drive motor of the blower 25 is increased so that the pressure change does not occur, and the blower compensates for the pressure fluctuation caused by the pressure control valve 24. In contrast, when the detected gas pressure by the gas pressure detector 54 is too low, Yuku raises the detected gas pressure P 1 by slide into increasing the opening degree of the pressure control valve 24. Then, when the detected gas pressure P 1 reaches the set pressure P 0 , the opening of the pressure control valve 24 is shifted to the state of the reference opening, for example, about 70%, that is, in the closing direction. The rotation speed of the drive motor of the blower 25 is reduced so as not to cause a pressure change accompanying this, and the blower 25 compensates for the pressure fluctuation by the pressure control valve 24.
[0013]
Thus, after temporarily reducing or increasing the opening degree of the pressure control valve 24, return to the state of the reference opening degree, then, when the detected pressure P 1 is varied, the response with good pressure control valve 24 This is in order to be able to respond quickly. In other words, leave that decreases the opening of the pressure control valve 24, when the detected gas pressure P 1 is too elevated, or Leave you increase the opening degree, detected gas pressure P 1 Is too low, it is not possible to cope with this.
Note that the present invention is not limited to the one provided with both the pressure control valve 24 and the blower 25, and may be a continuous molten metal plating facility provided with only one of the pressure control valve 24 and the blower 25. Including.
[0014]
As described above, in the continuous hot-dip metal plating equipment 1, the steel sheet S having entered the sheet temperature holding chamber 11 at substantially the plating bath temperature is forcibly controlled by adjusting the gas pressure of the predetermined temperature injected from the nozzle 21. It is kept at an appropriate temperature in the atmosphere of the gas to be convected, is immersed in the plating bath 29 heated to a predetermined temperature through the plating bath introducing space portion 12 and the snout 13, is subjected to hot-dip metal plating, and from the metal plating bath 29. It is sent to the following process.
[0015]
The present invention does not necessarily need to be equipment attached to the annealing furnace, and may be, for example, equipment for Al plating other than Zn plating.
Although FIG. 1 shows a horizontal arrangement, the present invention also includes a vertical arrangement.
Further, the temperature and pressure control system of the circulating gas in the present invention is not limited to the above-described configuration, but may be any configuration as long as the gas can be forcedly convected in the plate temperature holding chamber.
[0016]
【The invention's effect】
As is clear from the above description, according to the present invention, gas is applied to a plating bath containing a metal plating bath heated and held at a set temperature, and to a strip-shaped steel sheet which is cooled to a temperature at which molten metal plating is possible and enters. Is injected, the strip-shaped steel sheet is passed through an atmosphere in which the gas is forcedly convected, and is continuously sent out to the metal plating bath, and the temperature of the injected gas is set in the metal plating bath. The apparatus is provided with a sheet temperature holding chamber which is adjusted to a temperature at which the strip-shaped steel sheet is immersed and the strip-shaped steel sheet is maintained at a temperature suitable for hot-dip metal plating.
[0017]
As described above, since the sheet temperature holding chamber provided on the entrance side of the plating bath is of a gas forced convection type, responsiveness is improved with respect to the temperature control of the belt-shaped steel sheet here, The entire length can be shortened, and the strip-shaped steel sheet can be guided to the plating bath while maintaining the strip-shaped steel sheet at a desired temperature in a state where there is little variation in temperature. This has the effect of improving the quality of metal plating. .
[Brief description of the drawings]
FIG. 1 is a diagram showing an entire configuration of a continuous hot-dip metal plating facility according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Continuous molten metal plating equipment 11 Plate temperature holding room 12 Plating bath tub introduction space part 13 Snout 14 Plating bath tub 21 Nozzle 22 Gas circulation channel 23 Heating / cooling unit 24 Pressure control valve 25 Blower 26 Heating control means 27 Cooling control means 28 Guide roll 29 Plating bath 31 Sink roll 51 Sheet temperature detector 52 Plating bath temperature detector 53 Gas temperature detector 54 Gas pressure detector 55 Temperature indicating controller 56 Computing unit 57 Computing unit 58 Computing unit 59 Temperature indicating controller 61 Control means S Strip steel plate

Claims (1)

設定温度に加熱保持された金属めっき浴を収容しためっき浴槽と、溶融金属めっき可能な温度に冷却されて進入してくる帯状鋼板にガスが噴射され、このガスが強制対流させられる雰囲気中を前記帯状鋼板が通過させられて、前記金属めっき浴へと連続的に送り出されるとともに、前記噴射されるガスの温度が前記金属めっき浴に前記帯状鋼板を浸漬させて溶融金属めっきするのに適した温度に前記帯状鋼板を保持する温度に調整される板温保持室とを備えたことを特徴とする連続溶融金属めっき設備。A gas is injected into a plating bath containing a metal plating bath heated and held at a set temperature, and a strip-shaped steel sheet that is cooled to a temperature at which molten metal plating can be performed and enters, and the gas is forced into a convection atmosphere. The strip-shaped steel sheet is passed through and continuously sent to the metal plating bath, and the temperature of the injected gas is a temperature suitable for immersing the strip-shaped steel sheet in the metal plating bath and performing hot-dip metal plating. A continuous hot-dip metal plating facility, further comprising: a sheet temperature holding chamber adjusted to a temperature at which the strip-shaped steel sheet is held.
JP2002288716A 2002-10-01 2002-10-01 Continuous hot-dip metal plating apparatus Pending JP2004124144A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002288716A JP2004124144A (en) 2002-10-01 2002-10-01 Continuous hot-dip metal plating apparatus
TW092114034A TWI274085B (en) 2002-10-01 2003-05-23 Equipment for continuous molten metal plating
KR1020030035212A KR20040030218A (en) 2002-10-01 2003-06-02 Equipment for continuous molten metal plating
CNB031492983A CN100362126C (en) 2002-10-01 2003-06-19 Continuous melting metal electroplating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288716A JP2004124144A (en) 2002-10-01 2002-10-01 Continuous hot-dip metal plating apparatus

Publications (2)

Publication Number Publication Date
JP2004124144A true JP2004124144A (en) 2004-04-22
JP2004124144A5 JP2004124144A5 (en) 2005-09-15

Family

ID=32281130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288716A Pending JP2004124144A (en) 2002-10-01 2002-10-01 Continuous hot-dip metal plating apparatus

Country Status (4)

Country Link
JP (1) JP2004124144A (en)
KR (1) KR20040030218A (en)
CN (1) CN100362126C (en)
TW (1) TWI274085B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255431A (en) * 2007-04-05 2008-10-23 Nippon Steel Corp Plate temperature control method in continuous treatment line, apparatus, and computer program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154806B (en) * 2015-10-27 2017-12-15 中冶赛迪工程技术股份有限公司 Temperature of steel strips homogenization precision control method and device before hot-dip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023113A (en) * 1988-08-29 1991-06-11 Armco Steel Company, L.P. Hot dip aluminum coated chromium alloy steel
CA2142096C (en) * 1993-06-25 2000-10-03 Makoto Isobe Method of hot-dip-zinc-plating high-tension steel plate reduced in unplated portions
US6177140B1 (en) * 1998-01-29 2001-01-23 Ispat Inland, Inc. Method for galvanizing and galvannealing employing a bath of zinc and aluminum
JP2001329253A (en) * 2000-03-14 2001-11-27 Kao Corp Antistatic agent composition
JP4702974B2 (en) * 2000-03-28 2011-06-15 日新製鋼株式会社 Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255431A (en) * 2007-04-05 2008-10-23 Nippon Steel Corp Plate temperature control method in continuous treatment line, apparatus, and computer program

Also Published As

Publication number Publication date
CN1487113A (en) 2004-04-07
TWI274085B (en) 2007-02-21
TW200405911A (en) 2004-04-16
KR20040030218A (en) 2004-04-09
CN100362126C (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP5964449B2 (en) Method and apparatus for controlling strip temperature in quench zone in continuous annealing line
KR910004610B1 (en) Method for producing non-aging hot-dip galvanized steel strip
US8764915B2 (en) Carburizing treatment apparatus and method
JP2019143239A (en) Passage-type furnace for aluminum strip
JP2004124144A (en) Continuous hot-dip metal plating apparatus
UA120184C2 (en) Multipurpose processing line for heat treating and hot dip coating a steel strip
US20190338390A1 (en) Method and equipment for controlled patenting of steel wire
JPH04329856A (en) Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip
JP4223238B2 (en) Steel strip heating temperature control method
JP5506468B2 (en) Temperature control method for quench tank of electroplated steel sheet equipment
JP4306471B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
KR960000868Y1 (en) Cooling device of continuous hot-dipping tester
JP2003027145A (en) Cooling zone in continuous annealing furnace and method for controlling cooling
JPH05156419A (en) Alloying control method for galvannealed steel sheet
CA1266602A (en) Method and apparatus for cooling steel strips
CA1239570A (en) Method of controlling the temperature of steel strip in the cooling zone of a continuous annealing furnace
JPH0234727A (en) Method and device for cooling metallic strip
JP3787320B2 (en) Method and apparatus for controlling alloying in hot dip galvanizing line
JPH0967618A (en) Method for controlling atmospheric dew point in decarburize-annealing furnace
JP2815086B2 (en) Vertical continuous annealing furnace for steel strip
JPH1143758A (en) Cooling method in alloying treatment process
JPS62297419A (en) Control method for sheet temperature of outlet side of cooling apparatus for steel sheet in continuous annealing line
JPH0390520A (en) Apparatus for correcting flatness of steel strip in continuous annealing furnace
JP2001234251A (en) Method for controlling temperature in thickness direction of continuous strip
JPS61149441A (en) Method and apparatus for continuously dipping and cooling high temperature metal strip

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418