JPS6246608B2 - - Google Patents

Info

Publication number
JPS6246608B2
JPS6246608B2 JP15595082A JP15595082A JPS6246608B2 JP S6246608 B2 JPS6246608 B2 JP S6246608B2 JP 15595082 A JP15595082 A JP 15595082A JP 15595082 A JP15595082 A JP 15595082A JP S6246608 B2 JPS6246608 B2 JP S6246608B2
Authority
JP
Japan
Prior art keywords
drum
water level
water
flow rate
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15595082A
Other languages
Japanese (ja)
Other versions
JPS5947310A (en
Inventor
Toshihiro Murata
Shigeo Oohashi
Minoru Takeuchi
Takeya Fukumoto
Satoru Hirabayashi
Yasuhiko Sonomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Steel Corp
Kawasaki Motors Ltd
Original Assignee
Fuji Electric Co Ltd
Nippon Steel Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Steel Corp, Kawasaki Jukogyo KK filed Critical Fuji Electric Co Ltd
Priority to JP15595082A priority Critical patent/JPS5947310A/en
Publication of JPS5947310A publication Critical patent/JPS5947310A/en
Publication of JPS6246608B2 publication Critical patent/JPS6246608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 この発明は、上吹または底吹転炉の廃ガス処理
におけるバツチプロセスのドラム給水制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drum water supply control method for batch processes in waste gas treatment of top-blown or bottom-blown converters.

製鋼設備の一つとして酸素転炉が知られてお
り、この酸素転炉は吹錬時に多量の廃ガスを発生
する。この廃ガスは一酸化炭素ガスに富む有価ガ
スであるので、回収して燃料として用いられる。
かゝる廃ガス回収のための廃ガス処理装置の煙道
の一部である輻射部は、廃ガスが高温のため加熱
されるので、その周囲にパイプで冷却水を流すこ
とにより、輻射部本体の保護を図つている。かゝ
る冷却水はドラムに貯えられ、ドラムから前記パ
イプを通つて輻射部により加熱されてドラムに戻
る。ドラムからは加熱された水の一部が蒸気とな
つて流出するので、別に給水してやらないとドラ
ム水位を一定に維持することができない。
An oxygen converter is known as one type of steelmaking equipment, and this oxygen converter generates a large amount of waste gas during blowing. Since this waste gas is a valuable gas rich in carbon monoxide gas, it is recovered and used as fuel.
The radiant part, which is a part of the flue of the waste gas treatment equipment for recovering such waste gas, is heated due to the high temperature of the waste gas. It is intended to protect the main body. Such cooling water is stored in a drum, passes from the drum through the pipe, is heated by a radiant section, and returns to the drum. A portion of the heated water flows out of the drum as steam, so the water level in the drum cannot be maintained at a constant level unless water is supplied separately.

ところで、酸素転炉における一回の吹錬時間は
約15分間程度と短く、バツチ(間欠)的に運転さ
れる。したがつて、輻射部における冷却水との熱
交換も吹錬時には盛んであり、非吹錬時には衰え
る。そのため流出する蒸気の量も変動するから、
ドラムへ補給される給水量も間欠的に変動するこ
とになる。
By the way, the time for one blowing in an oxygen converter is as short as about 15 minutes, and the oxygen converter is operated in batches (intermittently). Therefore, the heat exchange with the cooling water in the radiant section is active during blowing, and decreases during non-blowing. As a result, the amount of steam flowing out also fluctuates,
The amount of water supplied to the drum also fluctuates intermittently.

この発明は、このような状況のもとで実施され
るドラム給水制御方式にまつわる或る問題点を解
決するためになされたものである。
This invention was made in order to solve certain problems associated with the drum water supply control system implemented under such circumstances.

第1図は、従来のドラム給水制御方式を示す概
要図である。
FIG. 1 is a schematic diagram showing a conventional drum water supply control system.

同図において、輻射部は、その周囲に巻かれた
パイプを通る冷却水を加熱するので、ボイラーと
考えてよい。そこでボイラー1があり、その中を
冷却水管路2が走り、該管路2の中をポンプ3に
より冷却水が送られる。冷却水はドラム4から供
給され、ボイラー1の中で加熱され、高温(200
内至250℃)になつてドラム4へ戻る。
In the figure, the radiant section heats the cooling water that passes through the pipes wound around the radiant section, so it can be thought of as a boiler. There is a boiler 1, inside which runs a cooling water pipe 2, through which cooling water is sent by a pump 3. Cooling water is supplied from drum 4 and heated in boiler 1 to a high temperature (200
250℃) and return to drum 4.

したがつてドラム4内で蒸気が発生し、この蒸
気は蒸気管路5を通つて排出される。そこで給水
管路15からドラム4内へ水を補給しないと、ド
ラム水位を一定に維持することはできない。管路
5に挿入されたオリフイス6の差圧から測定され
る蒸気流量は蒸気流量発信器7を、また、ドラム
水位はドラム水位発信器8およびドラム水位調節
計9を経てそれぞれ演算器10へ送出される。演
算器10では、蒸気流量V1とドラム水位調節計
出力V2から次の式で示す演算を行なう。
Steam is therefore generated in the drum 4 and is discharged through the steam line 5. Therefore, unless water is replenished into the drum 4 from the water supply pipe 15, the drum water level cannot be maintained constant. The steam flow rate measured from the differential pressure of the orifice 6 inserted into the pipe line 5 is sent to the steam flow rate transmitter 7, and the drum water level is sent to the computing unit 10 through the drum water level transmitter 8 and the drum water level controller 9. be done. The calculator 10 performs calculations expressed by the following equation from the steam flow rate V 1 and the output V 2 of the drum water level controller.

A1V1+A2(V2−B)=V0 但しA1とA2はそれぞれ適宜な係数であり、B
はドラム4における設定水位である。演算器10
における演算結果V0は、設定値SVとして給水流
量調節計11へ与えられる。一方、給水管路15
に挿入されたオリフイス14の差圧から測定され
た給水流量は、給水流量発信器13から測定値
PVとして給水流量調節計11へ送られる。給水
流量調節計11では、設定値SVと測定値PVとの
偏差が零になる方向で操作出力を生じて給水調節
弁12の弁開度を制御し、給水流量を調節する。
A 1 V 1 + A 2 (V 2 - B) = V 0 However, A 1 and A 2 are appropriate coefficients, and B
is the set water level in drum 4. Arithmetic unit 10
The calculation result V 0 in is given to the water supply flow rate controller 11 as the set value SV. On the other hand, water supply pipe 15
The water supply flow rate measured from the differential pressure of the orifice 14 inserted into the
It is sent to the water supply flow rate controller 11 as PV. The water supply flow rate controller 11 generates an operational output in the direction in which the deviation between the set value SV and the measured value PV becomes zero, controls the opening degree of the water supply control valve 12, and adjusts the water supply flow rate.

以上のようにして、吹錬中のドラムの水位は設
定水位に維持されるようになつている。
As described above, the water level in the drum during blowing is maintained at the set water level.

ところで、かゝる転炉廃ガス処理装置における
ドラムの給水制御は、上記のようにバツチ的に行
われるためにその水位変動が非常に大きく、特に
ドラムの起動時には、水位が一時的に急激に上昇
することが知られている。これは、ドラムの起動
時には、ドラム4から多量の蒸気が流出するが、
この蒸気の流出によつてドラムの水位が本来下が
るべきところ、逆に上昇してしまう現象であつ
て、いわゆる逆応答現象と呼ばれているものであ
る。
By the way, the drum water supply control in such a converter waste gas treatment equipment is performed in batches as described above, so the water level fluctuates very widely, and especially when the drum is started up, the water level may suddenly suddenly change. known to rise. This is because a large amount of steam flows out from drum 4 when the drum is started, but
Due to the outflow of steam, the water level in the drum, which should have fallen, instead rises, a so-called reverse response phenomenon.

このような現象は、ドラムの水位をボイラーの
全負荷範囲において一定に制御するという建前か
らも、勿論好ましいものではなく、例えば、従来
は、そのための特別な補償演算装置を設けるなど
して、この現象を無くすべく努力が払われてい
る。
Such a phenomenon is of course not desirable from the standpoint of controlling the water level in the drum at a constant level over the entire load range of the boiler. Efforts are being made to eliminate the phenomenon.

この発明は、このような事情のもとになされた
もので、したがつて、その目的は、上記のような
逆応答現象を特別な補償演算装置等を用いること
なく抑止するためのドラム給水制御方法を提供す
るにある。
This invention was made under these circumstances, and therefore, its purpose is to provide drum water supply control for suppressing the above-mentioned reverse response phenomenon without using a special compensation calculation device, etc. We are here to provide you with a method.

上記の目的は、この発明によれば、起動時の逆
応答現象によるドラム水位の急激な上昇を抑える
ために、給水量を減らすのではなく、逆に増やす
という一見無謀ともみえる制御を行ない、この給
水にもとづく冷却効果によつて水位の低下を図る
ことにより達成される。
According to the present invention, in order to suppress the sudden rise in the drum water level due to the reverse response phenomenon at the time of start-up, the above-mentioned purpose is to perform a seemingly reckless control of increasing the water supply amount instead of reducing it. This is achieved by lowering the water level through the cooling effect of the water supply.

そして、この発明では、ドラムの起動時、つま
り逆応答時に多量の水を供給するために、吹錬中
における給水弁の操作出力は蒸気流量が或る一定
量以上になる迄は全閉としておくとゝもに、水位
調節計におけるドラムの設定水位を吹錬中は蒸気
が発生する時点の水位よりも充分高くなるように
するかまたは非吹錬中は充分低くなるようにする
かの少なくとも1方を選択しかつ水位調節計のI
動作時間、すなわち積分時間を充分長く設定する
ものである。
In this invention, in order to supply a large amount of water at the time of starting the drum, that is, at the time of reverse response, the operation output of the water supply valve during blowing is kept fully closed until the steam flow rate exceeds a certain level. In addition, at least one of setting the water level of the drum in the water level controller so that it is sufficiently higher than the water level at the time when steam is generated during blowing, or sufficiently lower during non-blowing. Select one and turn the water level controller I.
The operation time, that is, the integration time is set to be sufficiently long.

以下、この発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第2図は、この発明の実施例を説明するための
転炉の吹錬時間とドラム水位、蒸気流量および給
水量との関係を同一時間軸上で示すグラフであ
る。
FIG. 2 is a graph showing, on the same time axis, the relationship between the blowing time of the converter, the drum water level, the steam flow rate, and the water supply amount for explaining an embodiment of the present invention.

同図において、Xはドラムの水位(mm)、Yは
蒸気流量(t/h)、Zは給水量(t/h)を示
し、C1は非吹錬中におけるドラム水位調節計の
設定値、C2は吹錬中のそれを示し、前記式にお
ける設定値Bを決めるものである。
In the figure, X is the drum water level (mm), Y is the steam flow rate (t/h), Z is the water supply amount (t/h), and C1 is the setting value of the drum water level controller during non-blowing. , C 2 indicates that during blowing, and determines the set value B in the above formula.

図からも明らかなように、ドラムの水位は、非
吹錬中はC1で示すようにほゞ−300mmくらいに低
く、また、吹錬中は蒸気が発生する直前のレベル
よりも高く、例えば、C2で示されるように、
ほゞ150mmくらいに、それぞれ前もつて設定され
る。
As is clear from the figure, the water level in the drum is as low as approximately -300 mm during non-blowing, as shown by C 1 , and during blowing, it is higher than the level just before steam is generated, e.g. , as shown in C 2 ,
Each front is set to approximately 150mm.

そして、操業が開始され、ドラムの内圧が設定
の圧力になつた時点t2で蒸気流量Yが急激に増大
し、これにもとづいてドラム水位Xも逆応答現象
により急激に上昇するので、この時点t2で給水量
Zを一気に増やし、冷却効果によつて逆応答現象
を抑止する。また、斜線部分、つまり時刻tから
t2の間では長い時間をかけて積分動作を行ない、
水位調節計の出力を100%にしておくことによ
り、たとえ上記の設定を誤まることがあつても、
給水量が多くなるようにしている。
Then, at the time t2 when the operation starts and the internal pressure of the drum reaches the set pressure, the steam flow rate Y suddenly increases, and based on this, the drum water level X also rises rapidly due to the reverse response phenomenon, so at this point At t 2 , the water supply amount Z is suddenly increased to suppress the reverse response phenomenon by the cooling effect. Also, from the shaded part, that is, time t
During t 2 , the integral operation takes a long time,
By setting the output of the water level controller to 100%, even if the above settings are incorrect,
The amount of water supplied is increased.

なお、t0は操業開始時点、t3は操業終了時点を
示す。
Note that t 0 indicates the start of operation, and t 3 indicates the end of operation.

第3図は、この発明の実施例を示す構成概要図
である。
FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention.

同図に示す制御方式が第1図に示した従来の方
式と異なる点は、水位調節計9の水位レベルを設
定する設定器C1,C2および給水流量調節弁12
を制御するための設定器20と論理(アンド)回
路21を設けた点である。
The control system shown in the figure is different from the conventional system shown in FIG.
The point is that a setting device 20 and a logic (AND) circuit 21 are provided for controlling.

すなわち、設定器C1によつて非吹錬中におけ
るドラムの水位(例えば、−300mmにする。)を、
また設定器C2によつて吹錬中のそれ(例えば、
150mmにする。)を夫々設定し、さらに、吹錬中で
あつて蒸気流量が大であることをアンド回路21
で検出し、この条件が成立しないときは、設定器
C3側に切り換えて給水流量調節弁12への操作
出力を断つものである。給水調節弁12は、操作
出力が与えられないと全閉する構造になつている
ので、操作出力が断たれるとドラム4に対する給
水が停止される。
In other words, the water level of the drum during non-blowing (for example, -300 mm) is set using the setting device C1 .
Also, it is set during blowing by setting device C 2 (for example,
Make it 150mm. ), and furthermore, the AND circuit 21 indicates that blowing is in progress and the steam flow rate is large.
If this condition is not met, the setting device
This is to switch to the C3 side and cut off the operational output to the water supply flow rate control valve 12. Since the water supply control valve 12 is configured to be fully closed when no operational output is applied, the water supply to the drum 4 is stopped when the operational output is cut off.

なお、ドラム圧力調節計16およびドラム圧力
制御弁17は、ドラム4の圧力が所定の値になる
よう制御し、起動時には、ドラム内圧が所定の値
になつたことを検出して制御弁17を開き、ドラ
ム内に発生した蒸気を取り出すものである。
Note that the drum pressure regulator 16 and drum pressure control valve 17 control the pressure of the drum 4 to a predetermined value, and at startup, detect that the drum internal pressure has reached a predetermined value and open the control valve 17. It opens to take out the steam generated inside the drum.

したがつて、少なくとも非吹錬中は、給水調節
弁12への操作出力はなく、設定器C3側に固定
されていて調節弁12は全閉となつているが、吹
錬が開始され、かつ蒸気流量が大になつた時点で
は、調節計11においては、設定水位に対する現
在水位の偏差が充分に大きいので、調節弁12は
大きく開かれて多量の給水が行われる。
Therefore, at least during non-blowing, there is no operational output to the water supply control valve 12, and it is fixed to the setting device C3 side and the control valve 12 is fully closed, but when blowing is started, At the time when the steam flow rate becomes large, the deviation of the current water level from the set water level in the controller 11 is sufficiently large, so the control valve 12 is opened wide and a large amount of water is supplied.

なお、そのほかの水位調節動作は従来の方式の
それと変わるところはない。
Note that the other water level adjustment operations are the same as those of the conventional method.

以上のように、この発明によれば、ドラムの起
動時における逆応答現象を抑えるために、水位調
節計における水位および積分時間の設定と、給水
調節弁の制御条件とを上記のように決めて、一気
に給水を行なうようにするだけの簡単な構成であ
るから、通常の調節計を用いて実現することがで
きるばかりでなく、従来のような逆応答補償演算
装置が不要となるので経済的であり、しかも制御
が簡素化され、信頼性が向上するという利点を有
するものである。
As described above, according to the present invention, in order to suppress the reverse response phenomenon when starting the drum, the settings of the water level and integration time in the water level controller and the control conditions of the water supply control valve are determined as described above. Since it has a simple configuration that allows water to be supplied all at once, it can be realized using an ordinary controller, and it is also economical because it eliminates the need for a conventional reverse response compensation calculation device. Moreover, it has the advantage that control is simplified and reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のドラム給水制御方式を示す概要
図、第2図はこの発明の実施例を説明するための
転炉の吹錬時間とドラム水位、蒸気流量および給
水量との関係を同一時間軸上で示すグラフ、第3
図はこの発明の実施例を示す構成概要図である。 符号説明、1……ボイラー、2……冷却水管
路、3……ポンプ、4……ドラム、5……蒸気管
路、6,14……オリフイス、7……蒸気流量発
信器、8……ドラム水位発信器、9……ドラム水
位調節計、10……演算器、11……給水流量調
節器、12……給水流量調節弁、13……給水流
量発信器、15……給水管路、16……ドラム圧
力調節計、17……ドラム圧力制御弁、18,1
9,20……設定器、21……論理積回路。
Fig. 1 is a schematic diagram showing a conventional drum water supply control system, and Fig. 2 is a diagram showing the relationship between converter blowing time, drum water level, steam flow rate, and water supply amount at the same time to explain an embodiment of the present invention. Graph shown on axis, 3rd
The figure is a schematic configuration diagram showing an embodiment of the present invention. Description of symbols, 1...Boiler, 2...Cooling water pipe, 3...Pump, 4...Drum, 5...Steam pipe, 6, 14...Orifice, 7...Steam flow rate transmitter, 8... Drum water level transmitter, 9...Drum water level controller, 10...Arithmetic unit, 11...Water supply flow rate regulator, 12...Water supply flow rate control valve, 13...Water supply flow rate transmitter, 15...Water supply pipe, 16...Drum pressure regulator, 17...Drum pressure control valve, 18,1
9, 20... Setting device, 21... AND circuit.

Claims (1)

【特許請求の範囲】 1 転炉の吹錬中に出される高温の廃ガスに対し
て冷却水を供給するドラムの水位を検出し、予め
設定された設定水位との偏差によつて操作出力を
出すドラム水位調節計と、 廃ガスによる加熱にてドラム内に発生する蒸気
流量と蒸気になつて流出する水を補なうべく給水
される給水流量とをそれぞれ計測し、これら計測
値と前記水位調節計の出力とにもとづきドラム水
位を設定水位になるよう給水調節弁を介して給水
流量を調節する流量調節計と、 を設け、 前記水位調節計のドラム設定水位を転炉の吹錬
中には蒸気が発生する時点における水位よりも高
くなるように設定しておくとゝもに、水位調節計
の積分時間を充分長く設定しておき、吹錬中にド
ラムにおける蒸気流量が所定の量を越えたときは
前記流量調節計の操作出力を前記給水調節弁側へ
切替えてドラムへの給水を多量にしもつてドラム
を冷却して逆応答現象にもとづく急激な水位の上
昇を抑えることを特徴とする転炉廃ガス処理にお
けるドラム給水制御方法。
[Claims] 1. The water level of a drum that supplies cooling water to high-temperature waste gas discharged during blowing of a converter is detected, and the operating output is determined based on the deviation from a preset water level. A drum water level controller is used to measure the flow rate of steam generated in the drum due to heating by waste gas, and the flow rate of water supplied to compensate for the water that flows out as steam, and these measured values and the water level are measured. a flow rate controller that adjusts the water supply flow rate via a water supply control valve so that the drum water level becomes the set water level based on the output of the controller, and the drum water level set by the water level controller is adjusted during blowing of the converter The water level is set to be higher than the water level at the time when steam is generated, and the integration time of the water level controller is set to be long enough to ensure that the steam flow rate in the drum reaches a predetermined amount during blowing. When the flow rate exceeds the flow rate, the operation output of the flow rate controller is switched to the water supply control valve side to supply a large amount of water to the drum, thereby cooling the drum and suppressing a sudden rise in water level due to a reverse response phenomenon. Drum water supply control method for converter waste gas treatment.
JP15595082A 1982-09-09 1982-09-09 Method for controlling water supply to drum in waste gas treatment device for converter Granted JPS5947310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15595082A JPS5947310A (en) 1982-09-09 1982-09-09 Method for controlling water supply to drum in waste gas treatment device for converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15595082A JPS5947310A (en) 1982-09-09 1982-09-09 Method for controlling water supply to drum in waste gas treatment device for converter

Publications (2)

Publication Number Publication Date
JPS5947310A JPS5947310A (en) 1984-03-17
JPS6246608B2 true JPS6246608B2 (en) 1987-10-02

Family

ID=15617069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15595082A Granted JPS5947310A (en) 1982-09-09 1982-09-09 Method for controlling water supply to drum in waste gas treatment device for converter

Country Status (1)

Country Link
JP (1) JPS5947310A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678439B2 (en) 2002-09-05 2010-03-16 Ngk Insulators, Inc. Honeycomb structure and die for forming honeycomb structure
US7556665B2 (en) 2003-03-19 2009-07-07 Ngk Insulators, Ltd. Honeycomb structure
JP4511396B2 (en) 2005-03-22 2010-07-28 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
CN104451024A (en) * 2013-09-22 2015-03-25 新兴铸管新疆有限公司 Automatic water supplementing system of water seal inverted valve

Also Published As

Publication number Publication date
JPS5947310A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
JPS6246608B2 (en)
JP2734390B2 (en) Hot water outlet temperature control method
JP4173883B2 (en) Water heater
KR200181023Y1 (en) The automatic temp/press raising control device for industrial boiler plant
JP2990861B2 (en) Water heater
JP2000248904A (en) Output control method for thermal power plant
JP3282294B2 (en) Water heater
JP3748464B2 (en) Water heater
JPH07282829A (en) Fuel reforming device of fuel cell
JP3551498B2 (en) Hot water storage system
JPH1151481A (en) Hot water feeding device
JPS6218823Y2 (en)
JPH08100950A (en) Storage type hot water supply system
JPH0456220B2 (en)
JPS622006B2 (en)
JP2800504B2 (en) Control method of hot water storage water heater
JP3845099B2 (en) Water heater heating control device
JPH08135908A (en) Method and device for controlling temperature of reheat steam of boiler
JP2645129B2 (en) Condensate recirculation flow control device
SU1054555A1 (en) Method of controlling boiler-back-pressure-turbine power unit
JP3780590B2 (en) Flow control valve controller
JP3551495B2 (en) Hot water storage system
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JP2002168406A (en) Reheat steam temperature controller for boiler
JPS63278101A (en) Process controller