JPS622006B2 - - Google Patents

Info

Publication number
JPS622006B2
JPS622006B2 JP10311179A JP10311179A JPS622006B2 JP S622006 B2 JPS622006 B2 JP S622006B2 JP 10311179 A JP10311179 A JP 10311179A JP 10311179 A JP10311179 A JP 10311179A JP S622006 B2 JPS622006 B2 JP S622006B2
Authority
JP
Japan
Prior art keywords
drum
water level
flow rate
control valve
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10311179A
Other languages
Japanese (ja)
Other versions
JPS5629616A (en
Inventor
Toshihiro Murata
Masayoshi Yamaoka
Minoru Takeuchi
Takeya Fukumoto
Yasuhiko Sonomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Steel Corp
Original Assignee
Fuji Electric Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP10311179A priority Critical patent/JPS5629616A/en
Publication of JPS5629616A publication Critical patent/JPS5629616A/en
Publication of JPS622006B2 publication Critical patent/JPS622006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 この発明は、ドラム水位制御方法に関するもの
であり、更に詳しくはドラム給水弁のエロージヨ
ン防止を可能にした水位制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drum water level control method, and more particularly to a water level control method that makes it possible to prevent erosion of a drum water supply valve.

さて製鋼設備の一つとして酸素転炉が知られて
おり、この酸素転炉は吹錬時に多量の廃ガスを発
生する。この廃ガスは一酸化炭素ガスに富む有価
ガスであるので回収して燃料として用いられる。
かかる廃ガス回収のための廃ガス処理装置の煙道
の一部である輻射部は、廃ガスが高温なため加熱
されるので、その周囲にパイプで冷却水を流すこ
とにより輻射部本体の熱に対する保護を図つてい
る。かかる冷却水はドラムに貯えられ、ドラムか
ら前記パイプを通つて輻射部により加熱されてド
ラムに戻る。ドラムからは加熱された水の一部が
蒸気となつて流出するので、別に給水してやらな
いとドラム水位を一定に維持することができな
い。ところで酸素転炉における1回の吹練時間は
約15分間程度と短く、バツチ的に運転される。従
つて輻射部における冷却水との熱交換も吹錬時に
は盛んであり、非吹錬時には衰える。そのため流
出する蒸気の量も変動するから、ドラムへ補給さ
れる給水量も間欠的に変動することになる。この
発明は、このような状況のもとで実施されるドラ
ム水位制御方法にまつわる或る問題点を解決する
ためになされたものである。
Now, an oxygen converter is known as one type of steel manufacturing equipment, and this oxygen converter generates a large amount of waste gas during blowing. Since this waste gas is a valuable gas rich in carbon monoxide gas, it is recovered and used as fuel.
The radiant part, which is a part of the flue of the waste gas treatment equipment for recovering waste gas, is heated because the waste gas is at a high temperature, so by flowing cooling water through a pipe around the radiant part, the heat of the radiant part itself is reduced. We are trying to protect against Such cooling water is stored in a drum, passes from the drum through the pipe, is heated by a radiant section, and returns to the drum. A portion of the heated water flows out of the drum as steam, so the water level in the drum cannot be maintained at a constant level unless water is supplied separately. By the way, the time for one blowing in an oxygen converter is as short as about 15 minutes, and the furnace is operated in batches. Therefore, heat exchange with the cooling water in the radiant section is active during blowing, and decreases during non-blowing. As a result, the amount of steam flowing out also fluctuates, and the amount of water supplied to the drum also fluctuates intermittently. This invention has been made to solve certain problems associated with drum water level control methods implemented under such circumstances.

第1図は、従来のドラム水位制御方法を示す概
要図であり、第2図は転炉の吹錬時間の経過と蒸
気発生量の関係を示すクラフである。
FIG. 1 is a schematic diagram showing a conventional drum water level control method, and FIG. 2 is a graph showing the relationship between the passage of blowing time in a converter and the amount of steam generated.

第1図を参照する。輻射部は、その周囲に巻か
れたパイプを通る冷却水を加熱するので、ボイラ
ーと考えてよい。そこでボイラー1があり、その
中を冷却水管路2が走り、該管路2の中をポンプ
3により冷却水が送られる。冷却水はドラム4か
ら供給され、ボイラー1の中で加熱され、高温
(200乃至250℃)になつてドラム4へ戻る。従つ
てドラム4内で蒸気が発生するから、この蒸気は
蒸気管路5を通つて排出される。そこで給水管路
8からドラム4内へ水を補給しないとドラム水位
を一定に維持することができない。管路5に挿入
されたオリフイス6の差圧から測定された蒸気流
量は蒸気流量発信器10から、またドラム水位は
ドラム水位発信器9からそれぞれ演算器12へ送
出される。演算器12では、蒸気流量V1とドラ
ム水位V2から次の式で示す演算を行なう。
Please refer to FIG. The radiant can be thought of as a boiler, as it heats the cooling water that passes through the pipes wrapped around it. There is a boiler 1, inside which runs a cooling water pipe 2, through which cooling water is sent by a pump 3. Cooling water is supplied from the drum 4, heated in the boiler 1, heated to a high temperature (200 to 250°C), and returned to the drum 4. Steam is therefore generated in the drum 4 and is discharged through the steam line 5. Therefore, unless water is replenished into the drum 4 from the water supply pipe 8, the drum water level cannot be maintained constant. The steam flow rate measured from the differential pressure of the orifice 6 inserted into the pipe line 5 is sent to the computing unit 12 from the steam flow rate transmitter 10, and the drum water level is sent from the drum water level transmitter 9, respectively. The calculator 12 performs calculations expressed by the following equation from the steam flow rate V 1 and the drum water level V 2 .

A1V1+A2(V2−B)=V0 但しA1とA2はそれぞれ適宜な係数であり、B
はドラム4における設定水位である。演算器12
における演算結果V0は設定値SVとして水位調節
計13へ与えられる。一方、給水管路8に挿入さ
れたオリフイス7の差圧から測定された給水流量
は、給水流量発信器11から測定値PVとして調
節計13へ送られる。水位調節計13では、設定
値SVと設定値PVとの偏差が零になる方向で操作
出力を生じて給水調節弁14の弁開度を制御し、
給水流量を調節する。以上の如くして通常、ドラ
ム4の水位は設定水位に維持されるようになつて
いる。
A 1 V 1 + A 2 (V 2 - B) = V 0 However, A 1 and A 2 are appropriate coefficients, and B
is the set water level in drum 4. Arithmetic unit 12
The calculation result V 0 in is given to the water level controller 13 as a set value SV. On the other hand, the water supply flow rate measured from the differential pressure of the orifice 7 inserted into the water supply pipe 8 is sent from the water supply flow rate transmitter 11 to the controller 13 as a measured value PV. The water level controller 13 generates an operational output in the direction in which the deviation between the set value SV and the set value PV becomes zero to control the valve opening of the water supply control valve 14,
Adjust the water supply flow rate. As described above, the water level of the drum 4 is normally maintained at the set water level.

所で、管路8における給水調節弁14である
が、キヤビテーシヨンによるエロージヨン防止対
策のほどこされた弁が用いられる。周知のよう
に、制御弁およびその前後配管に損傷を与えたり
騒音を発生させる主原因であるキヤビテーシヨン
は、水の流れにおける気泡の発生とそれに続く気
泡の圧壊現象によるものである。気泡が圧壊する
と、流れの中に衝撃波が発生し、この衝撃波によ
りかなりの騒音が発生すると同時に、これが衝突
することによつて弁の各部あるいは管壁に圧力が
加わり金属の小片をむしりとる作用をする。これ
により弁各部の損傷(これをエロージヨンと云
う)が発生する。そこで、かかるキヤビテーシヨ
ン・エロージヨンの発生防止対策のほどこされた
特殊な弁が開発されているので、これが前記の給
水調節弁14に用いられているわけである。とこ
ろが、かかる特殊弁は、規定の開度例えば10%以
下に低下すると、エロージヨン発生防止策が無効
になるという性質をもつている。他方、第2図を
参照すれば明らかなように、転炉における吹錬は
バツチ運転であるから、ドラム4における蒸気発
生量も吹錬の時間と共に大幅に変動し、従つて給
水管路8を流れる給水流量もほゞこれに追随す
る。そこで給水調節弁14を流れる給水流量も、
転炉における非吹錬中の間は、弁開度で10%以下
という少ない流量となり、調節弁14におけるエ
ロージヨンの発生を防止することが出来ないとい
う事情にあつた。
By the way, as for the water supply control valve 14 in the pipe line 8, a valve is used which is designed to prevent erosion due to cavitation. As is well known, cavitation, which is the main cause of damage to control valves and the piping before and after them, and of generating noise, is caused by the generation of bubbles in the flow of water and the subsequent collapse of the bubbles. When the bubbles collapse, a shock wave is generated in the flow, and this shock wave generates considerable noise, and at the same time, when the bubbles collide, pressure is applied to various parts of the valve or the pipe wall, which has the effect of tearing off small pieces of metal. do. This causes damage to various parts of the valve (this is called erosion). Therefore, a special valve has been developed that is designed to prevent cavitation/erosion from occurring, and is used in the water supply control valve 14 described above. However, such special valves have the property that when the opening degree decreases below a specified opening, for example, 10%, the measures to prevent erosion become ineffective. On the other hand, as is clear from FIG. 2, since the blowing in the converter is a batch operation, the amount of steam generated in the drum 4 also varies greatly with the blowing time, and therefore the water supply pipe 8 is The flow rate of water supply also follows this pattern. Therefore, the water supply flow rate flowing through the water supply control valve 14 is also
During non-blowing in the converter, the flow rate was as low as 10% or less depending on the valve opening, and the situation was such that erosion in the control valve 14 could not be prevented.

この発明は、上述のような従来の技術的事情を
背景としてなされたものであり、従つてこの発明
の目的は、給水流量調節弁を流れる給水流量が低
下しても調節弁のエロージヨン発生防止策が無効
になることのないようにしたドラム水位制御方法
を提供することにある。
This invention has been made against the background of the above-mentioned conventional technical circumstances, and therefore, an object of the invention is to provide a method for preventing erosion of a water supply flow rate control valve even when the flow rate of water flowing through the water supply flow rate control valve decreases. An object of the present invention is to provide a drum water level control method that prevents water level from becoming invalid.

この発明の構成の要点は次のとおりである。蒸
気流量とドラム水位と給水流量とから調節計が発
する操作出力で調節弁を開閉して給水流量を調節
し、ドラム水位を設定水位に維持せんとするドラ
ム水位制御方法において、給水弁開度がエロージ
ヨン防止の限度以下に低下したときは、調節動作
を停止して調節弁を全閉とし、そのためドラム水
位が低下して或る下限水位にまで達し、設定水位
に対する偏差が充分大きくなつたとき調節動作を
再開し、調節計のPI動作のうち特にI動作を利か
して調節弁を大きく開く。従つてこのときは、エ
ロージヨン防止の限度を外れた大きな調節弁開度
になるのでエロージヨンの心配はない。この発明
の要点は以上の通りである。
The main points of the configuration of this invention are as follows. In the drum water level control method, which attempts to maintain the drum water level at a set water level by opening and closing the control valve using the operational output generated by the controller based on the steam flow rate, drum water level, and feed water flow rate, and maintaining the drum water level at the set water level, When the water level drops below the erosion prevention limit, the adjustment operation is stopped and the control valve is fully closed.As a result, the drum water level decreases to a certain lower limit water level, and when the deviation from the set water level becomes sufficiently large, the adjustment is started. Restart the operation and use the I operation of the controller's PI operation to widen the control valve. Therefore, at this time, the opening degree of the control valve is large enough to exceed the limit for preventing erosion, so there is no need to worry about erosion. The main points of this invention are as described above.

次に図を参照してこの発明の一実施例を詳細に
説明する。
Next, one embodiment of the present invention will be described in detail with reference to the drawings.

第3図は、この発明の一実施例を示す構成概要
図である。同図に示す制御方法が第1図に示した
従来の方法と相違する点は、水位調節計13から
給水調節弁14へ操作出力を送る信号路に、蒸気
流量規定以上で常閉接点aと常開接点bを含むリ
レー回路15を設け、演算器12からリレー回路
15へ制御信号が送られるように構成した点であ
る。すなわち、演算器12は、給水弁開度を監視
しており、それが、調節弁14のエロージヨン発
生防止策が無効となる低弁開度(例えば弁開度で
10%以下)に達したとき、リレー回路15へ制御
信号を送つて常閉接点aを開き、調節計13から
調節弁14への操作出力を断つ。調節弁14は、
操作出力が与えられないときは全閉する構造にな
つているので全閉してドラム4への給水を断つ。
そのためドラム4の水位が低下し、或る下限に達
して設定水位との偏差が充分大きくなつたとき、
ドラム水位を監視していた演算器12は、再び制
御信号をリレー回路15へ送り、今度は常閉接点
bを閉じて調節計13から調節弁14へ操作出力
を送り、水位調節動作を再開する。このとき調節
計13では、設定水位に対する現在水位の偏差が
充分大きいので、そのPI動作のうちI動作を強く
利かして調節弁14を大きく開く。そのため調節
弁14の弁開度は前の低弁開度を越えた大きさと
なるので該弁のエロージヨン発生防止策が無効に
なることはない。またドラム4における水位が一
定の値になれば接点bが復旧して開となる。また
蒸気流量が規定値以上になれば、接点aが復旧し
て閉となる。そのほかの水位調節動作は従来の方
法のそれと変わることがない。なお上述のような
制御方法は、一見危険なように見えるが、給水流
量が少ないということは転炉で云えば非吹錬時に
当たること、またドラム4の容積が大きければ、
その水位が前述の下限に達してから、更に本当に
危険な下々限水位に達するまでにはかなりの余裕
時間をとり得ること、などの理由により実用上問
題はないと云える。
FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention. The difference between the control method shown in the figure and the conventional method shown in FIG. A relay circuit 15 including a normally open contact b is provided, and a control signal is sent from the arithmetic unit 12 to the relay circuit 15. That is, the computing unit 12 monitors the water supply valve opening, and determines whether it is a low valve opening (for example, at a valve opening that makes the erosion prevention measures of the control valve 14 ineffective).
10% or less), a control signal is sent to the relay circuit 15 to open the normally closed contact a and cut off the operation output from the controller 13 to the control valve 14. The control valve 14 is
Since it is designed to be fully closed when no operational output is given, it is fully closed and the water supply to the drum 4 is cut off.
Therefore, when the water level of the drum 4 decreases and reaches a certain lower limit and the deviation from the set water level becomes sufficiently large,
The arithmetic unit 12 that had been monitoring the drum water level sends a control signal to the relay circuit 15 again, this time closing the normally closed contact b, sending the operating output from the controller 13 to the control valve 14, and restarting the water level adjustment operation. . At this time, in the controller 13, since the deviation of the current water level from the set water level is sufficiently large, the I operation of the PI operation is strongly utilized to widen the control valve 14. Therefore, the valve opening of the control valve 14 exceeds the previous low valve opening, so that the measures to prevent erosion of the valve are not invalidated. Further, when the water level in the drum 4 reaches a constant value, the contact point b is restored and opened. Further, when the steam flow rate exceeds the specified value, contact a is restored and closed. Other water level adjustment operations remain unchanged from those of the conventional method. Although the above-mentioned control method may seem dangerous at first glance, a low flow rate of water supply corresponds to a non-blowing period in a converter, and if the volume of the drum 4 is large,
It can be said that there is no problem in practical use because there can be a considerable amount of time between the water level reaching the lower limit and reaching the truly dangerous lower limit water level.

以上説明したとおりであるから、この発明によ
れば、ドラム水位制御方法において、ドラムへの
給水流量が間欠的に大きく変動して低流量になる
ことがある場合でも、給水流量調節弁におけるエ
ロージヨン発生防止策を常に維持できるという利
点がある。
As explained above, according to the present invention, in the drum water level control method, even when the water supply flow rate to the drum intermittently fluctuates greatly and becomes a low flow rate, erosion in the water supply flow rate control valve can be prevented. The advantage is that preventive measures can always be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のドラム水位制御方法を示す概
要図であり、第2図は転炉の吹錬時間の経過と蒸
気発生量の関係を示すグラフであり、第3図はこ
の発明の一実施例を示す構成概要図である。 図において、1はボイラ、2は冷却水管路、3
はポンプ、4はドラム、5は蒸気管路、6と7は
それぞれオリフイス、8は給水管路、9はドラム
水位発信器、10は蒸気流量発信器、11は給水
流量発信器、12は演算器、13は水位調節計、
14は給水調節弁、15はリレー回路、を示す。
FIG. 1 is a schematic diagram showing a conventional drum water level control method, FIG. 2 is a graph showing the relationship between the blowing time of a converter and the amount of steam generated, and FIG. FIG. 1 is a schematic configuration diagram showing an example. In the figure, 1 is the boiler, 2 is the cooling water pipe, and 3 is the boiler.
is a pump, 4 is a drum, 5 is a steam pipe, 6 and 7 are orifices, 8 is a water supply pipe, 9 is a drum water level transmitter, 10 is a steam flow rate transmitter, 11 is a water supply flow rate transmitter, and 12 is a calculation 13 is a water level controller,
14 is a water supply control valve, and 15 is a relay circuit.

Claims (1)

【特許請求の範囲】 1 ドラム水位検出装置と、該ドラムから流出す
る蒸気流量測定装置と、該ドラムへ流入する給水
流量測定装置および給水流量調節弁と、検出され
たドラム水位と測定された蒸気流量および給水流
量とに基づきドラム水位が設定水位に維持される
ように前記調節弁を操作して給水流量を調節する
流量調節計と、を有して成るドラム水位制御装置
におけるドラム水位制御方法において、 前記調節弁の弁開度がエロージヨンを惹起する
に足る下限開度にまで低下したときは、流量調節
動作を停止して前記調節弁を全閉とし、そのため
ドラム水位が低下して或る下限水位にまで達し、
設定水位に対する偏差が充分大きくなつたとき給
水流量調節動作を再開して前記調節弁を開き、そ
れにより前記下限開度を超える給水弁開度が得ら
れるようにしたことを特徴とするドラム水位制御
方法。
[Claims] 1. A drum water level detection device, a steam flow rate measurement device flowing out from the drum, a water supply flow rate measurement device flowing into the drum, a water supply flow rate control valve, and a drum water level detection device and a steam flow rate control valve flowing into the drum. A drum water level control method in a drum water level control device, comprising: a flow rate controller that adjusts the water supply flow rate by operating the control valve so that the drum water level is maintained at a set water level based on the flow rate and the water supply flow rate. When the opening degree of the control valve decreases to the lower limit opening degree that is sufficient to cause erosion, the flow rate adjustment operation is stopped and the control valve is fully closed, so that the drum water level decreases to a certain lower limit. reaching the water level,
Drum water level control characterized in that when the deviation from the set water level becomes sufficiently large, the water supply flow rate adjustment operation is restarted and the control valve is opened, thereby obtaining a water supply valve opening that exceeds the lower limit opening. Method.
JP10311179A 1979-08-15 1979-08-15 Controlling system of water level in drum Granted JPS5629616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311179A JPS5629616A (en) 1979-08-15 1979-08-15 Controlling system of water level in drum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311179A JPS5629616A (en) 1979-08-15 1979-08-15 Controlling system of water level in drum

Publications (2)

Publication Number Publication Date
JPS5629616A JPS5629616A (en) 1981-03-25
JPS622006B2 true JPS622006B2 (en) 1987-01-17

Family

ID=14345490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311179A Granted JPS5629616A (en) 1979-08-15 1979-08-15 Controlling system of water level in drum

Country Status (1)

Country Link
JP (1) JPS5629616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146804U (en) * 1987-03-11 1988-09-28
JPH01111000U (en) * 1988-01-20 1989-07-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146804U (en) * 1987-03-11 1988-09-28
JPH01111000U (en) * 1988-01-20 1989-07-26

Also Published As

Publication number Publication date
JPS5629616A (en) 1981-03-25

Similar Documents

Publication Publication Date Title
JPS622006B2 (en)
JP7387360B2 (en) Boiler plants, power plants, and boiler plant control methods
JPH0777598A (en) Gas injector for nuclear power plant
JPH09236025A (en) Fuel supply device for gas turbine and its controller
JP7399657B2 (en) Boiler plants and boiler plant control methods
JPS6246608B2 (en)
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JPS6048716B2 (en) How to prevent corrosion of reactor piping
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler
JP2672729B2 (en) Water quality adjustment device
RU2064151C1 (en) Method for cleaning and passivating working medium path of once-through boiler
JPS6338805A (en) Spray water injection controller for boiler
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH07158812A (en) Controlling method for boiler and control device for boiler
JPS6352281B2 (en)
JPH108912A (en) Turbine bypass valve control device
JP2894118B2 (en) Boiler steam temperature control method
JP2811662B2 (en) Alkali metal engine control device
JPH0979508A (en) Feed water controller for steam generating plant
JP2002005403A (en) Method for reducing temperature difference between heterogeneous fluid wall at start up of boiler
SU627303A1 (en) System of cleaning heating surface of steam superheater of atomic power plant turbines
JPS63131909A (en) Water treatment method of boiler feedwater
CN116585919A (en) Full-protection oxygenation conversion method for water vapor system
JPH0949606A (en) Variable pressure once-through boiler
JPS63162905A (en) Control system for bleed air temperature lowering device of mixed pressure bleeder turbine