JPS63153206A - Method for temperature control in smelting reduction process of chromium ore - Google Patents

Method for temperature control in smelting reduction process of chromium ore

Info

Publication number
JPS63153206A
JPS63153206A JP30057286A JP30057286A JPS63153206A JP S63153206 A JPS63153206 A JP S63153206A JP 30057286 A JP30057286 A JP 30057286A JP 30057286 A JP30057286 A JP 30057286A JP S63153206 A JPS63153206 A JP S63153206A
Authority
JP
Japan
Prior art keywords
flow rate
value
raw material
metal temperature
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30057286A
Other languages
Japanese (ja)
Inventor
Takeshi Takanawa
高輪 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30057286A priority Critical patent/JPS63153206A/en
Publication of JPS63153206A publication Critical patent/JPS63153206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce the consumption of raw material and the corrosion of refractory by performing assumption and prediction of metal temp. based on data of exhaust gas information, blowing O2 flow rate and raw material charging quantity and controlling the metal temp. according to the difference between the prediction value and the aimed value. CONSTITUTION:In smelting reduction process for chromium ore by a top-bottom blowing refining furnace, the data of the exhaust gas information (composition, flow rate), the blowing O2 flow rate and the raw material charging quantities (chromium ore, coke, etc.) are used and reaction velocity is found by material balance for reaction in the furnace and heat balance, to assume the metal temp. at every moment. On the other hand, the metal temp. is measured by a sub-lance at every set time. By comparison between the actual measured value and the above assumption value, a feedback operation is executed and in case the operational condition assumed to be held constant, the subsequent metal temp. is predicted. Based on the difference between the prediction value and the aimed value, the necessary blowing O2 flow rate to hold the metal temp. constant and the raw material charging velocity are calculated. Based on the calculated values, the operational condition is decided and the suitable metal temp. is stably held.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は上下吹精錬炉によるクロム鉱石の溶融還元プ
ロセスにおけるメタル温度の制御方法に係り、クロム鉱
石のコークス等炭素源による還元反応を円滑に促進し、
かつ精錬炉耐火物の熱負荷を抑制し耐火物の溶損を軽減
するために、精錬中のメタル温度を一定に制御する方法
に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method of controlling metal temperature in a smelting reduction process of chromium ore using a top-bottom blowing smelting furnace, which smoothly promotes the reduction reaction of chromium ore with a carbon source such as coke. ,
The present invention also relates to a method of controlling the temperature of metal during refining to a constant level in order to suppress the heat load on refractories in a refining furnace and reduce melting loss of the refractories.

従来技術とその問題点 従来、ステンレス鋼の製造はクロム鉱石等を電気炉で炭
素還元して製造したフェロクロムを用いて行なわれてき
たが、この方法では電気炉で高価な電力を消費するため
フェロクロムのコストが高くつ、き、結果的にステンレ
ス鋼のコストアップを予備なくされる。
Conventional technology and its problems Conventionally, stainless steel has been manufactured using ferrochrome produced by reducing chromium ore with carbon in an electric furnace. The cost of stainless steel is high, and as a result, the cost of stainless steel increases and spare parts are eliminated.

このため近年、クロム鉱石あるいはその予備処理品を上
下吹精錬炉により電力を消費せずにコークス等を用いて
炭素還元してフェロクロムを溶製しステンレス鋼を製造
する方法、すなわちクロム鉱石の溶融還元法(特開昭5
5−91913等)が試みられている。
For this reason, in recent years, a method has been developed in which chromium ore or its pre-processed products are reduced with carbon using coke or the like without consuming electricity in a top-down blowing smelting furnace to melt ferrochrome and produce stainless steel. Law (Japanese Patent Publication No. 5
5-91913 etc.) have been attempted.

しかし、従来の前記クロム鉱石の溶融還元プロセスにお
いては、還元精錬中のメタル温度が低すぎるとクロム鉱
石のコークス等による還元反応が円滑に行なわれず原料
使用量の増大を招き、他方、メタル温度が高すぎると精
錬炉内壁耐火物の熱負荷が大きくなり耐火物の溶損が著
しくなる。従って、還元精錬中のメタル温度を所定のレ
ベルに安定化させる必要があるが、従来はこのメタル温
度の制御に関する報告例はなく、操業者の勘のみに頼っ
てメタル温度を制御しているのが実状である。
However, in the conventional smelting reduction process of chromium ore, if the metal temperature during reduction refining is too low, the reduction reaction of the chromium ore with coke etc. cannot be carried out smoothly, leading to an increase in the amount of raw materials used. If the temperature is too high, the heat load on the refractories on the inner wall of the smelting furnace will increase, resulting in significant melting and loss of the refractories. Therefore, it is necessary to stabilize the metal temperature during reduction refining to a predetermined level, but until now there have been no reports on controlling this metal temperature, and the metal temperature has been controlled only by the intuition of operators. is the actual situation.

発明の目的 この発明は従来の前記問題点を解決するためになされた
もので、溶融還元中のメタル温度を適正に制御すること
により、クロム鉱石の炭素還元反応を円滑に促進させて
原料使用量の低減をはかるとともに、精錬炉耐火物の熱
負荷を抑制し耐火物溶損を軽減する方法を提案せんとす
るものである。
Purpose of the Invention This invention was made to solve the above-mentioned conventional problems. By properly controlling the metal temperature during melt reduction, the carbon reduction reaction of chromium ore is smoothly promoted and the amount of raw material used is reduced. The purpose of this paper is to propose a method for reducing the heat load on refractories in smelting furnaces and reducing corrosion of the refractories.

問題点を解決するための手段 この発明は従来の前記問題点を解決する手段として、上
下吹精錬炉によりクロム鉱石を溶融還元するに際し、排
ガス情報(成分、流量)、吹込02流量および原料投入
量の各データを用い、炉内反応に関する物質収支および
熱収支に基づいて時々刻々のメタル温度を推定し、メタ
ル温度の実測値と前記推定値とを比較しフィードバック
演算を行なうことにより、吹込み02流最および原料投
入速度が一定に保持されると仮定した場合の将来時刻の
メタル温度を予測し、この予測値と目標値との差に基づ
いてメタル温度を一定に保持するための吹込み02流量
および原料投入速度を算出し、この算出値に基づいてメ
タル温度を制御することにより、炭素還元反応を円滑に
促進させて原料使用量の低減をはかり、かつ精錬炉耐火
物の熱負荷を抑制して耐火物の溶損を軽減したもので必
る。
Means for Solving the Problems The present invention solves the above-mentioned conventional problems by providing exhaust gas information (components, flow rate), blowing 02 flow rate, and raw material input amount when chromium ore is melted and reduced in a top-bottom blowing smelting furnace. Using each data, the momentary metal temperature is estimated based on the material balance and heat balance related to the reaction in the furnace, and the actual measured value of the metal temperature and the estimated value are compared and feedback calculation is performed. Blow 02 to predict the metal temperature at a future time assuming that the flow rate and raw material input rate are held constant, and to maintain the metal temperature constant based on the difference between this predicted value and the target value. By calculating the flow rate and raw material input speed and controlling the metal temperature based on these calculated values, the carbon reduction reaction is smoothly promoted to reduce the amount of raw material used, and the heat load on the refractory of the smelting furnace is suppressed. It is necessary to reduce the corrosion damage of refractories.

すなわち、この発明は排ガス情報、吹込02流量および
原料投入量のデータに基づいてメタル温度の推定と予測
を行ない、予測温度と目標温度との差に基づいて温度制
御に必要な操作量を決定して溶融還元中のメタル温度を
適正に制御する方法である。
That is, the present invention estimates and predicts the metal temperature based on data on exhaust gas information, blow 02 flow rate, and raw material input amount, and determines the operation amount necessary for temperature control based on the difference between the predicted temperature and the target temperature. This is a method to appropriately control the metal temperature during melt reduction.

第1図は上下吹精錬炉を用いてクロム鉱石の溶融還元を
行う場合の溶融還元プロセスとメタル温度推移を示す図
でおる。第1図中、(1)は02吹込みランス、(2)
はクロム鉱石、コークス等の原料投入口、(3)は02
吹込み口、(4)は底吹きノズル、(5)はメタル、(
6)はスラグ、(刀はコークスである。
FIG. 1 is a diagram showing the smelting reduction process and metal temperature transition when chromium ore is smelted and reduced using a top-bottom blowing smelting furnace. In Figure 1, (1) is 02 blowing lance, (2)
is the raw material input port for chrome ore, coke, etc., (3) is 02
Inlet, (4) is bottom blowing nozzle, (5) is metal, (
6) is slag, (sword is coke).

すなわち、まず脱燐処理した溶銑にFe  Sjを投入
する等の手段によりメタル温度を所定の温度に昇熱した
後、溶融還元期において炉内のメタルに原料投入口(2
)からクロム鉱石を投入し、底吹きノズル(4)からの
底吹きN2ガス等で撹拌しつつ02吹込みランス(1)
およびo2吹込み口(3)から上吹きおよび横吹き送酸
してクロム鉱石を溶融還元する。この発明はこの溶融還
元期におけるメタル温度を一定に保つための制御を行な
う方法で必る。この溶融還元期にあける炉内反応は下記
第1表に示す5種類の反応が考えられる。
That is, first, the metal temperature is raised to a predetermined temperature by such means as introducing FeSj into the dephosphorized hot metal, and then during the smelting and reduction period, the metal in the furnace is heated through the raw material inlet (2).
), and while stirring with bottom-blown N2 gas etc. from the bottom-blowing nozzle (4), 02 blowing lance (1)
The chromium ore is melted and reduced by top-blown and side-blown acid from the O2 inlet (3). The present invention is based on a method for controlling the metal temperature during this melting and reduction period to keep it constant. Five types of reactions shown in Table 1 below are considered to occur in the furnace during this smelting and reduction period.

以下余白 第  1  表 反応速度R1〜R5は下記のごとく間接測定することが
できる。
Table 1 (Table 1) The reaction rates R1 to R5 can be measured indirectly as described below.

まず、総括の酸素収支、炭素収支より(11,(21式
が成立つ。
First, from the overall oxygen balance and carbon balance, equations (11 and (21) are established.

<02収支〉 RI +R2+3R3+ R4=(Co)c +2(C
Oz ) c・・・・・・(1)式 くC収支〉 R1+3R3+R4=(CO)c + (CO2) c
・・・(2)式%式% 吹込み酸素はコークスとCOの燃焼に消費されるから L (R,+ R2) = RO□ 2                     ・・・
(3)式R02:吹込み02流量(kmo//m1n)
クロム鉱石中のFaO成分は投入速度に応じて還元する
ものとすれば、 R4”RFe○             ・(4)式
RFe○ニクロム鉱石中FsOの投入速度(kmo、j
/m1n) 投入されたコークスはクロム鉱石の還元、吹込み酸素に
よる燃焼および浸炭に消費されると考えられるので、 R+ + 3R3+R4+R5=Rc ・(1−a)・
・・(5)式 Rcニー1−クス投入速度(kmol/mi n)a:
投入コークスのスラグ中残留比 上記(1)〜(5)式よりR1−R5は下記第2表のよ
うにまとめることができる。
<02 balance> RI +R2+3R3+ R4=(Co)c +2(C
Oz) c...(1) Formula C balance> R1+3R3+R4=(CO)c + (CO2) c
...(2) Formula % Formula % Since the blown oxygen is consumed in the combustion of coke and CO, L (R, + R2) = RO□ 2 ...
(3) Formula R02: Blowing 02 flow rate (kmo//m1n)
Assuming that the FaO component in chromium ore is reduced according to the input rate, R4''RFe○ ・(4) Formula RFe○ The input rate of FsO in nichrome ore (kmo, j
/m1n) Since the charged coke is considered to be consumed for reduction of chromium ore, combustion by blown oxygen, and carburization, R+ + 3R3+R4+R5=Rc ・(1-a)・
...(5) Formula Rc knee injection speed (kmol/min) a:
The residual ratio of the charged coke in the slag From the above formulas (1) to (5), R1-R5 can be summarized as shown in Table 2 below.

第  2  表 また、熱収支に基づけばメタル温度に関して下記(6)
式が得られる。
Table 2 Also, based on the heat balance, the following regarding metal temperature (6)
The formula is obtained.

・・・(6)式 W:メタル重量(kg) CP=メタル比熱(kcaUkg ℃)T:メタル温度
(’C) Rj :反応jの反応速度(kmo57min)△Hj
 :反応jの反応熱(kcad/kmo (1)Pj:
反応jの着熱効率 Ta:大気温度(’C) Hw:炉壁熱伝運係数(kca 1hIf−’C・m 
i n )Aw:炉壁表面積(m2) hw:係数 上記(6)式を解けば時々朗々のメタル温度Tを推定す
ることができる。
...(6) Equation W: Metal weight (kg) CP = Metal specific heat (kcaUkg °C) T: Metal temperature ('C) Rj: Reaction rate of reaction j (kmo57min)△Hj
: Reaction heat of reaction j (kcad/kmo (1) Pj:
Heat transfer efficiency of reaction j Ta: atmospheric temperature ('C) Hw: furnace wall heat transfer coefficient (kca 1hIf-'C m
i n ) Aw: Furnace wall surface area (m2) hw: Coefficient By solving the above equation (6), it is sometimes possible to estimate the metal temperature T.

次に、将来時刻のメタル温度を予測するために反応速度
のR1−R5のうち、R2とR3の予測ができれば第2
表からも分かるごと<R+ 、R4。
Next, in order to predict the metal temperature at a future time, of the reaction rates R1-R5, if R2 and R3 can be predicted, the second
As can be seen from the table <R+, R4.

R5も予測できる。そこで、吹込02流量のステップ変
更を行ない、その応答特性を調べることによりR2−R
3を吹込02流量の関数として定式化できる。この方法
によって求めたR1−R5の予測値をR+ 、R2、R
3、R↓、Rsとする。このとき、将来時刻のメタル温
度Tは下記(7)式のごとく予測される。
R5 can also be predicted. Therefore, by changing the blowing 02 flow rate in steps and examining the response characteristics, R2-R
3 can be formulated as a function of the blow 02 flow rate. The predicted values of R1-R5 obtained by this method are R+, R2, R
3. Let R↓, Rs. At this time, the metal temperature T at a future time is predicted as shown in equation (7) below.

T=T+δT        ・−<7)式ただしTは
反応速度の予測値R1〜R5を前記(6)式に代入して
得られるメタル温度の値であり、6丁は還元精錬中一定
時間毎のサブランス等による実測値と推定値の差を移動
平均した適応修正項である。
T = T + δT ・-<7) Formula, where T is the value of the metal temperature obtained by substituting the predicted reaction rate values R1 to R5 into the above formula (6), and 6th is the sub-balance at fixed time intervals during reduction refining. This is an adaptive correction term that is a moving average of the difference between the actual measured value and the estimated value.

上記の方法で2分後のメタル温度予測値TVを計算し、
その値を目標値下と比較し、その差に基づいてメタル温
度を一定に保持するために必要な次式により算出する。
Calculate the predicted metal temperature value TV after 2 minutes using the above method,
This value is compared with the lower target value, and based on the difference, the following equation is used to calculate the value required to keep the metal temperature constant.

△[:制御周期(min) Kニゲイン そして、上記(8)式で得られた吹込02流量の指示値
RO2を用いた場合のコークス燃焼速度の予測値をR1
とすれば、吹込02流量の変更にともなって変更すべき
コークス投入速度R2:は前時刻における値Rコ−1を
もとに下記(9)式により求められる。
Δ[: Control period (min) Knigain Then, the predicted value of the coke burning rate when using the indicated value RO2 of the blowing 02 flow rate obtained by the above equation (8) is R1
Then, the coke injection speed R2: which should be changed in accordance with the change in the blowing 02 flow rate can be obtained from the following equation (9) based on the value Rco-1 at the previous time.

ただし、R’+はR1の初期値で、前記第2表の式を用
いて間接測定された値である。
However, R'+ is the initial value of R1, which is a value indirectly measured using the formula in Table 2 above.

第2図は上記の方法に基づいてメタル温度制御のために
必要な吹込み01!流量、コークス投入速度を求める手
順を示すブロック図である。
Figure 2 shows the blow 01 required for metal temperature control based on the above method! FIG. 2 is a block diagram showing a procedure for determining the flow rate and coke injection speed.

すなわち、まず時々刻々(例えば1分毎に)排ガス情報
(成分、流量)、吹込02流量および原料投入量の各デ
ータを読み込み、前記第2表に示す式に基づいて時々刻
々の反応速度を推定する。この反応速度を前記(6)式
に代入することにより時々刻々のメタル温度下を推定す
る。
That is, first, each data of exhaust gas information (component, flow rate), blowing 02 flow rate, and raw material input amount is read moment by moment (for example, every minute), and the reaction rate is estimated moment by moment based on the formula shown in Table 2 above. do. By substituting this reaction rate into the above equation (6), the momentary metal temperature can be estimated.

一方、還元精錬中一定時間毎(例えば20分毎)にサブ
ランス等により計測されるメタル温度の実測値と前記の
推定値の比較によりフィードバック演算、すなわち(7
)式における適応修正項の値を求め、各時点の操作量が
一定に保持されると仮定した場合の将来時刻(例えば3
0分先)のメタル温度下を(7)式により予測する。そ
して、得られた将来時刻のメタル温度予測@下と目標値
Yとの差に基づき、メタル温度を所定の温度に一定に保
持するために必要な吹込02流量R3,とコークス投入
速度R色を前記(8)、 (9)式により算出する。こ
の算出(直に基づいて還元精錬中のメタル温度を安定化
させる。
On the other hand, a feedback calculation is performed by comparing the above estimated value with the actual value of the metal temperature measured by a sublance at regular intervals (for example, every 20 minutes) during reduction refining, that is, (7
), and calculate the value of the adaptive correction term in the equation, and calculate the value of the adaptive correction term in the future time (for example, 3
The metal temperature (0 minutes ahead) is predicted using equation (7). Then, based on the difference between the obtained future time metal temperature prediction @ lower and the target value Y, the blowing 02 flow rate R3 and coke injection rate R color required to keep the metal temperature constant at a predetermined temperature are determined. Calculated using equations (8) and (9) above. This calculation (based on direct stabilization of the metal temperature during reduction smelting).

実施例 第1図に示す160トン上下吹精錬炉による溶融還元プ
ロセスに本発明方法を適用した結果、メタル温度の的中
率は目標±15℃以内に92%であり、従来操業時の6
0%を大きく上まわる顕著な効“果が認められた。
Example As a result of applying the method of the present invention to a smelting reduction process using a 160-ton top-bottom blowing smelting furnace shown in Fig. 1, the accuracy rate of metal temperature was 92% within the target ±15°C, which was 6% in conventional operation.
A remarkable effect far exceeding 0% was observed.

なお、本実施例における溶融還元処理条件の一例を第3
表に示す。
Note that an example of the melting reduction treatment conditions in this example is shown in the third example.
Shown in the table.

以下余白 発明の詳細 な説明したごとく、この発明方法は排ガス情報、吹込0
2流量および原料投入量の各データに基づいてメタル温
度の推定と予測を行ない、予測温度と目標温度との差に
基づいて温度制御に必要な操作量を決定する方法である
から、溶融還元中のメタル温度を適正温度に安定保持す
ることができる。従って、炭素還元反応を円滑に促進さ
せることが可能となり、原料使用量を低減できるととも
に、精錬炉耐火物の熱負荷の軽減効果により耐火物原単
位の低減がはかられ、コストの合理化に大なる効果を奏
するものである。
As explained in detail below, the method of this invention provides exhaust gas information, blowing zero
2. This method estimates and predicts the metal temperature based on each data of flow rate and raw material input amount, and determines the amount of operation necessary for temperature control based on the difference between the predicted temperature and the target temperature. The metal temperature can be stably maintained at an appropriate temperature. Therefore, it is possible to smoothly promote the carbon reduction reaction, reduce the amount of raw materials used, and reduce the heat load on the smelting furnace refractories, thereby reducing the refractory unit consumption, which greatly contributes to cost rationalization. This has the following effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は上下吹精錬炉によるクロム鉱石の溶融還
元プロセスを示す概略図、同図(b)は同じくメタル温
度推移を示す図、第2図はこの発明のメタル温度制御方
式を示すブロック図である。 1・・・02吹込みランス、 2・・・クロム鉱石、コークス等の原料投入口、3・・
・02吹込み口、  4・・・底吹きノズル、5・・・
メタル、  6・・・スラグ、7・・・コークス。 出願人  住友金属工業株式会社 第1図 (a) (b)
Fig. 1 (a) is a schematic diagram showing the smelting and reduction process of chromium ore using a top-down blowing smelting furnace, Fig. 1 (b) is a diagram also showing the metal temperature transition, and Fig. 2 shows the metal temperature control method of this invention. It is a block diagram. 1...02 injection lance, 2...raw material input port for chromium ore, coke, etc., 3...
・02 blowing port, 4...bottom blowing nozzle, 5...
Metal, 6...Slag, 7...Coke. Applicant: Sumitomo Metal Industries, Ltd. Figure 1 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 上下吹精錬炉によるクロム鉱石の溶融還元プロセスにお
いて、排ガス情報(成分、流量)、吹込O_2流量およ
び原料投入量の各データを用い、炉内反応に関する物質
収支および熱収支に基づき時々刻々のメタル温度を推定
し、メタル温度の実測値と前記推定値を用いフィードバ
ック演算を行なうことにより、吹込O_2流量および原
料投入速度が一定に保持されると仮定した場合の将来時
刻のメタル温度を予測し、この予測値と目標値との差に
基づいてメタル温度を一定に保持するための吹込みO_
2流量および原料投入速度を算出し、この算出値に基づ
いてメタル温度を制御することを特徴とするクロム鉱石
溶融還元プロセスの温度制御方法。
In the smelting and reduction process of chromium ore in a top-bottom blowing smelting furnace, the metal temperature is determined from moment to moment based on the material balance and heat balance related to the reaction in the furnace, using exhaust gas information (components, flow rate), blown O_2 flow rate, and raw material input data. By estimating the metal temperature and performing feedback calculation using the measured value of the metal temperature and the estimated value, the metal temperature at a future time is predicted assuming that the blown O_2 flow rate and the raw material input speed are held constant. Blow O_ to keep the metal temperature constant based on the difference between the predicted value and the target value
2. A temperature control method for a chromium ore smelting reduction process, comprising calculating a flow rate and a raw material input speed, and controlling a metal temperature based on the calculated values.
JP30057286A 1986-12-16 1986-12-16 Method for temperature control in smelting reduction process of chromium ore Pending JPS63153206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30057286A JPS63153206A (en) 1986-12-16 1986-12-16 Method for temperature control in smelting reduction process of chromium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30057286A JPS63153206A (en) 1986-12-16 1986-12-16 Method for temperature control in smelting reduction process of chromium ore

Publications (1)

Publication Number Publication Date
JPS63153206A true JPS63153206A (en) 1988-06-25

Family

ID=17886453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30057286A Pending JPS63153206A (en) 1986-12-16 1986-12-16 Method for temperature control in smelting reduction process of chromium ore

Country Status (1)

Country Link
JP (1) JPS63153206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor
US6171364B1 (en) 1996-03-22 2001-01-09 Steel Technology Corporation Method for stable operation of a smelter reactor

Similar Documents

Publication Publication Date Title
JP5620030B2 (en) Method and control system for controlling a melting process
JPS63153206A (en) Method for temperature control in smelting reduction process of chromium ore
JP2751800B2 (en) Liquid Steel Temperature Control Method in Steel Making Process
JP5924310B2 (en) Blowing control method and blowing control device
JP2000309817A (en) Converter blowing method
JPH0438805B2 (en)
JP6947343B1 (en) Fluctuation detection method of solidified layer and blast furnace operation method
JP2022152721A (en) Operation method of blast furnace
JPS6389610A (en) Blowing method for converter
SU1252350A1 (en) Method of controlling steel melting in converter
JPS63171809A (en) Control method for furnace heat in oxygen blast furnace
JP4757387B2 (en) Hot metal desiliconization method
JPS5985841A (en) Manufacture of ferrochromium
JPH03197612A (en) Method for refining molten metal
JPS6124452B2 (en)
JPS5855519A (en) Controlling method for operation of aod furnace with computer simulation
JP3611664B2 (en) Hot metal pretreatment method
JPH04124211A (en) Method for controlling blowing in oxygen steelmaking furnace
JPS5928515A (en) Method and apparatus for refining steel
JP3873356B2 (en) Operation method of vertical smelting reduction furnace
JPH02185910A (en) Method for controlling blowing in converter
JP2000219908A (en) Method for cooling bottom-blown tuyere
JPH02190413A (en) Method for controlling refining in batch type melting refining furnace
JPH07118725A (en) Method for melting high chromium alloy steel
JPS63143214A (en) Nitrogen adding method in converter having bottom blowing tuyere