JPH02190413A - Method for controlling refining in batch type melting refining furnace - Google Patents

Method for controlling refining in batch type melting refining furnace

Info

Publication number
JPH02190413A
JPH02190413A JP894289A JP894289A JPH02190413A JP H02190413 A JPH02190413 A JP H02190413A JP 894289 A JP894289 A JP 894289A JP 894289 A JP894289 A JP 894289A JP H02190413 A JPH02190413 A JP H02190413A
Authority
JP
Japan
Prior art keywords
refining
error
present
blowing
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP894289A
Other languages
Japanese (ja)
Inventor
Isao Tone
刀根 功
Akira Yamane
明 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP894289A priority Critical patent/JPH02190413A/en
Publication of JPH02190413A publication Critical patent/JPH02190413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To improve accuracy of refining calculation and to improve the yield by using time series model under consideration of factor in the present operation and error and factor of the past operation in the equation for predicting error in the refining calculation. CONSTITUTION:In the batch type operation, by using the time series model equation containing the past operational error, the past operational factor and the present operational factor, the present operational error is predicted. Based on this, blowing oxygen rate and sub-raw material charging rate are calculated as the operational factor to store into the control device. By this method, the unit consumptions of the sub-raw material and the blowing oxygen are reduced and the safe operation can be achieved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、バッチ式に操業される溶融精錬炉の精錬制御
方法に係り、特に、転炉操業に用いるのに好適な、バッ
チ式溶融精錬炉の精錬制御方法に関する。
The present invention relates to a refining control method for a batch-type melting and refining furnace, and particularly to a refining control method for a batch-type melting and refining furnace suitable for use in converter operation.

【従来の技術】[Conventional technology]

転炉における吹錬制御方法の従来例としては、例えば特
開昭52−146710号で開示されている「純酸素転
炉における動的終点制御方法」が挙げられる。この従来
例は、純酸素転炉の吹錬末期における操業において、操
作要因である吹込酸素量及び冷却剤投入量を含む炭素濃
度推定式並びに鋼浴温度推定式を、実験データ及び操業
データから経験的に求めておき、これらの推定式に前記
吹込酸素量及び冷却剤投入量の適宜な値を代入して吹錬
終点における炭素濃度並びに鋼浴温度の推定値を算出し
、該推定値により目標値との誤差を求め、該誤差が最小
となるように前記吹込酸素量及び冷却剤投入量を修正し
て実操業することにより、終点炭素濃度と終点鋼浴温度
の両方を同時に連中させるようにしていた。 なお、上記従来例などにおいて、吹錬計算中の誤差を求
める推定式、即ちモデルは、例えば下式(1)、(2)
に示すように、熱バランス式(1)と酸素バランス式(
2)から構成され、両式共、化学反応式に基づき物質収
支をとる確定項と誤差を推定する推定項とからなってい
る。 ΣQ i” ”ΣQ””+Wo r e X Ho r
e十A・・・ (1) ここで、 Q NrNハ炭素(C) 、珪素(S i ) 、マン
:lfン(Mn)、リン(P)及び酸化鉄(Fed)の
燃焼熱及び溶銑の顕然、 Q0′JTは溶鋼、スラグ、ダスト及び廃ガスの票熱、 worex)(oreは冷却剤による冷却熱量、Aは熱
量誤差である。 EV II’ +vb10”  =EV +”T+ B
  ・−(2)ここで、 VB”は装入酸化物中に含まれる酸素量、y blo″
′は吹錬酸素量、 y 、0IJTはスラグ、ダスト、廃ガスなどの排出酸
化物に含まれる酸素量、 Bは酸素量誤差である。 転T操業においては、測定あるいは定量不可能な要因が
多いため、推定項の部分は、重回帰式等の統計モデルで
推定していた。 しかしながら、従来のように当該操業の要因のみを考慮
した吹錬計算では、多様化した今日の転r操業に対して
、吹錬計算の精度を向上させるには限界があるという問
題があった。
A conventional example of a blowing control method in a converter includes, for example, "Dynamic end point control method in a pure oxygen converter" disclosed in JP-A-52-146710. In this conventional example, a formula for estimating carbon concentration and a formula for estimating steel bath temperature, including operating factors such as the amount of oxygen blown and the amount of coolant input, are used in the operation of a pure oxygen converter at the final stage of blowing, based on experimental data and operational data. The carbon concentration and steel bath temperature at the end of blowing are calculated by substituting appropriate values for the amount of blown oxygen and the amount of coolant into these estimation formulas, and the target value is calculated using the estimated values. By calculating the error from the value, correcting the amount of blown oxygen and the amount of coolant input so as to minimize the error, and conducting actual operation, both the end point carbon concentration and the end point steel bath temperature can be made to coincide at the same time. was. In addition, in the above-mentioned conventional example, the estimation formula, that is, the model for calculating the error during blowing calculation, is, for example, the following formulas (1) and (2).
As shown in , the heat balance equation (1) and the oxygen balance equation (
2), and both equations consist of a deterministic term that takes the mass balance based on the chemical reaction formula and an estimation term that estimates the error. ΣQ i” “ΣQ””+Wor e X Hor
e1A... (1) Here, the combustion heat of Q NrN carbon (C), silicon (S i ), manganese (Mn), phosphorus (P), and iron oxide (Fed) and of hot metal Obviously, Q0'JT is the heat of molten steel, slag, dust, and waste gas, worex) (ore is the cooling heat amount by the coolant, and A is the heat amount error. EV II' + vb10" = EV + "T + B
・-(2) Here, VB" is the amount of oxygen contained in the charged oxide, y blo"
' is the blowing oxygen amount, y, 0IJT is the oxygen amount contained in exhaust oxides such as slag, dust, waste gas, etc., and B is the oxygen amount error. Since there are many factors that cannot be measured or quantified in rolling T operations, the estimation term has been estimated using statistical models such as multiple regression equations. However, conventional blowing calculations that only take into account the operating factors have a problem in that there is a limit to the accuracy of blowing calculations that can be improved in today's diversified rolling operations.

【発明が達成しようとする課題】[Problem to be achieved by the invention]

本発明は、かかる従来の問題に鑑みてなされたものであ
り、その課題は、バッチ式の操業において、精錬計算の
精度を向上し、歩出り向上などを達成できるバッチ式溶
融精錬fの精錬制御方法を提供することにある。
The present invention has been made in view of such conventional problems, and its object is to improve the accuracy of refining calculations and improve the yield in batch-type melting and refining operations. The objective is to provide a control method.

【発明を解決するための手段】[Means for solving the invention]

本発明は、バッチ式に操業される溶融精錬炉の精錬制御
方法において、精錬計算の誤差を予測する式に、過去の
操業の誤差、過去の操業の要因、及び当該操業の要因を
含む時系列モデル式を用い、当該操業の誤差を予測して
m錬計算に反映させることにより、前記課題を達成した
ものである。
The present invention provides a refining control method for a melting and refining furnace that is operated in a batch manner, in which a formula for predicting errors in refining calculations includes errors in past operations, factors in past operations, and a time series that includes factors in the operation. The above-mentioned problem has been achieved by using a model formula to predict errors in the operation and reflecting them in the m-process calculation.

【作用】[Effect]

本発明は、バッチ式の操業においては、前操業のスラグ
を残したり、耐火煉瓦の閉熱、摩耗など経時的に変化し
ていく要因が数多く存在すること、従って、連続する操
業を時系列的にとらえる時系列解析が有効であることに
着目してなされたものである。 即ち、本発明では、精錬計算の誤差を予測する式に、当
該操業の要因だけでなく、過去の操業の誤差と過去の操
業の要因をも考慮した時系列モデル式を用い、当該操業
の誤差を予測して精錬計算に反映させるものである。 このような本発明の時系列モデル式を用いることにより
、過去の操業の要因が当該操業に及ぼす影響を考慮する
ことができるうえ、定量化が不可能な要因に基づく誤差
も経時的に変化する誤差であれば考慮することができ、
精錬計算の精度を向上できる。 本発明に係る時系列モデル式としては、例えば転グの場
合、次式を用いることができる。 +B  (Z −言 ’)   [PHM  (t  
)  。 CF(t)、TF(t)。 MNOR(t  )、5PAR(t  )。 5LAG (t  )、TTPTP(t)1丁+已(t
  ”) ・・・・・・・・・ (3) ここで、 K(t)は熱バランス式の誤差、 L(t)は酸素バランス式の誤差、 PHM (t )は溶銑中のリン濃度、CF (t )
は吹止炭素濃度、 TF (t )は吹止温度、 MNOR(t )はマンガン鉱石投入量、5PAR(t
 )はホタル石投入量、 5LAG (t )はスラグ量、 TTFTP (t )は吹錬間隅時間、Φ(1)はモデ
ル誤差、 tは当該操業をそれぞれ示している。 又、A(Z’)は、■を単位行列として、下式(4)を
満足するパラメータ行列であり、B(Z−1)は、下式
(5)を満足するパラメータ行列である。 A(Z’)=I+At ・Z−’+−−−・ ・ ・+
An−Z−’    ・・・(4)B  (Z−1) 
 = B o + B 1・Z −’ + ・・・・ 
・ ・+Bn−Z−’    ・・・(5)更ニ、Z−
1はZ−1・K(t)=K(t−1)を満たす遅延演算
子、(t−1)は前操業をそれぞれ示している。 上記(3)式において、上記モデル誤差e(t)を最小
にする最小二乗法を用いて、パラメータA(Z−’ )
 、B (Z−’ )を操業毎に求めた。このようにし
て決定された上記(3)式を用いて、当該操業の前記誤
差K(t)、L(j)を予測し、吹錬計算に反映させた
。 第2図は、本発明を適用した実験結果を示す図である。 第2図(A)は、本発明を適用する前後における熱バラ
ンス式の誤差の標準偏差を示し、第2図(B)は、本発
明を適用する前後における酸素バランス式の誤差の標準
偏差を、いずれも本発明適用前の値を100%として示
したものである。 第2図から明らかなように、本発明適用後の熱バランス
式の誤差の標準偏差は60%、酸素バランス式の誤差の
標準偏差は80%となっており、いずれも本発明適用前
の値より小さくなっている。 このことから、本発明により吹錬計算の精度が向上する
ことが分る。
The present invention is based on the fact that in batch-type operations, there are many factors that change over time, such as leaving behind slag from previous operations, closing heat of refractory bricks, and wear. This was done with the focus on the effectiveness of time series analysis, which captures the That is, in the present invention, a time-series model formula that takes into account not only the factors of the relevant operation but also errors of past operations and factors of past operations is used as the formula for predicting errors in refining calculations, and the error of the relevant operation is This is to predict and reflect it in refining calculations. By using such a time-series model formula of the present invention, it is possible to consider the influence of factors from past operations on the operation in question, and errors due to factors that cannot be quantified can also change over time. Any errors can be taken into account,
The accuracy of refining calculations can be improved. As a time series model formula according to the present invention, for example, in the case of rolling, the following formula can be used. +B (Z - word') [PHM (t
). CF(t), TF(t). MNOR(t), 5PAR(t). 5LAG (t), TTPTP (t) 1 + 2 (t
(3) Here, K(t) is the error of the heat balance formula, L(t) is the error of the oxygen balance formula, PHM (t) is the phosphorus concentration in the hot metal, CF (t)
is the end carbon concentration, TF (t) is the end temperature, MNOR (t) is the amount of manganese ore input, 5PAR (t
) is the amount of fluorite input, 5LAG (t) is the amount of slag, TTFTP (t) is the time between blowing, Φ(1) is the model error, and t is the operation in question. Further, A(Z') is a parameter matrix that satisfies the following formula (4) with ■ being the unit matrix, and B(Z-1) is a parameter matrix that satisfies the following formula (5). A(Z')=I+At ・Z-'+----・ ・ ・+
An-Z-'...(4)B (Z-1)
= B o + B 1・Z −' + ・・・・
・ ・+Bn−Z−′ ...(5) Sarani, Z−
1 represents a delay operator satisfying Z-1·K(t)=K(t-1), and (t-1) represents a previous operation. In the above equation (3), using the least squares method that minimizes the model error e(t), the parameter A(Z-')
, B (Z-') were determined for each operation. Using the equation (3) thus determined, the errors K(t) and L(j) of the operation were predicted and reflected in the blowing calculation. FIG. 2 is a diagram showing the results of an experiment to which the present invention is applied. Figure 2 (A) shows the standard deviation of the error in the heat balance formula before and after applying the present invention, and Figure 2 (B) shows the standard deviation of the error in the oxygen balance formula before and after applying the present invention. , all values are shown with the values before application of the present invention set as 100%. As is clear from Fig. 2, the standard deviation of the error in the heat balance formula after applying the present invention is 60%, and the standard deviation of the error in the oxygen balance formula is 80%, both of which are the values before applying the present invention. It's smaller. From this, it can be seen that the accuracy of blowing calculation is improved by the present invention.

【実施例】【Example】

以下、本発明の実施例について図を用いて説明する。 第1図は、本実施例を説明するための構成図である。 通常、吹錬計算は吹錬開始前に行なわれる。この時、プ
ロセスコンピュータ(以下P/C)20、は、該当操業
の命令情報、溶銑成分分析値、溶銑・スクラップ量なら
びに、過去操業の実績値及びモデル式誤差を持っている
。これらの情報をもとにして、P/C20は、前出〈3
)式に例示したような本発明に係る時系列モデル式を用
いて、当該操業におけるモデル式の誤差を予測し、操業
における操作要因である吹錬酸素量、副原料投入量を算
出し、吹錬制御装置22に記憶させる。 吹錬制御装置22は、吹錬開始より、酸素流量制御弁1
6.17を制御し、制御された流量の酸素が、ランス1
4及び底吹羽口11を介して転炉10内に供給される。 同じく吹錬制御装置22は、与えられたタイミングより
、副原料切出装置18を介して副原料バンカー19内の
副原料を所定量だけ転炉10内に供給せしめる。このよ
うにして、転r操業における操作要因である酸素及び副
原料が制御される。 又、吹錬末期に、サブランス24にて転炉10内の溶鋼
12の温度及びC濃度が検出され、P/C20に出力さ
れる。この場合にも、脱炭モデル(溶gA12中のC濃
度が目標値になるように吹止の酸素量を決定)や昇温モ
デル(吹止時の溶鋼温度を推定し、目標値になるように
冷剤量を決定)に、過去操業における実績や誤差を用い
た時系列モデル式を用いて、当該操業における誤差を予
測し、操作量を決定し、制御できる。 なお、前記実施例においては、本発明が上底吹転炉に適
用されていたが、本発明の適用対象は、これに限定され
ず、他の方式の転炉やバッチ式溶U精錬炉一般に適用で
きることは明らかである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram for explaining this embodiment. Normally, blowing calculations are performed before blowing begins. At this time, the process computer (hereinafter referred to as P/C) 20 has command information for the relevant operation, hot metal component analysis values, hot metal/scrap amounts, past operation results, and model formula errors. Based on this information, P/C20
) Using the time-series model formula according to the present invention as exemplified in the formula, the error of the model formula in the relevant operation is predicted, the blowing oxygen amount and the amount of auxiliary material input, which are operational factors in the operation, are calculated, and the blowing It is stored in the training control device 22. The blowing control device 22 controls the oxygen flow rate control valve 1 from the start of blowing.
6.17 and a controlled flow rate of oxygen is supplied to lance 1.
4 and the bottom blowing tuyere 11 into the converter 10 . Similarly, the blowing control device 22 causes a predetermined amount of the auxiliary raw material in the auxiliary raw material bunker 19 to be supplied into the converter 10 via the auxiliary raw material cutting device 18 at a given timing. In this way, oxygen and auxiliary materials, which are operating factors in the rotary operation, are controlled. Further, at the end of blowing, the temperature and C concentration of the molten steel 12 in the converter 10 are detected by the sublance 24 and output to the P/C 20. In this case as well, the decarburization model (determines the amount of oxygen at the blow-off so that the C concentration in molten gA12 reaches the target value) and the temperature increase model (estimates the molten steel temperature at the blow-off and adjusts it to the target value) (determining the amount of refrigerant), it is possible to predict the error in the operation, determine the manipulated variable, and control it using a time-series model formula that uses the results and errors in past operations. In the above embodiments, the present invention was applied to a top-bottom blowing converter, but the present invention is not limited to this, and is applicable to other types of converters and batch-type smelting furnaces in general. The applicability is clear.

【発明の効果】【Effect of the invention】

以上詳しく説明したような本発明によれば、過去の操業
の誤差、過去の操業の要因及び当該操業の要因を考慮し
た時系列モデル式を用い、当該操業の誤差を予測して精
錬計算に反映させるような構成であるため、前記従来例
に比して精錬計算の精度が向上する。従って、歩出り向
上、副原料や吹錬酸素の原単位低減、無到炉迅速出鋼率
の向上、及び安定操業が達成できるなどの優れた効果が
得られる。
According to the present invention as described in detail above, errors in the operation are predicted and reflected in refining calculations using a time series model formula that takes into account errors in past operations, factors in the past operations, and factors in the operation. Since the structure is such that the refining calculation is performed, the precision of the refining calculation is improved compared to the conventional example. Therefore, excellent effects such as improved yield, reduced unit consumption of auxiliary raw materials and blowing oxygen, improved rapid steel extraction rate in a non-furnace furnace, and stable operation can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の詳細な説明するための構成説明図、 第2図は、本発明を適用した実験結果を示す線図である
。 10・・・転炉、 11・・・底吹羽口、 2・・・溶鋼、 4・・・ランス、 6.17・・・酸素流量制御弁、 8・・・副原料切出装置、 9・・・副原料バンカー 0・・・プロセスコンピュータ(P/C)2・・・吹錬
制御装置、 4・・・サブランス。
FIG. 1 is a configuration explanatory diagram for explaining the present invention in detail, and FIG. 2 is a diagram showing experimental results to which the present invention is applied. 10... Converter, 11... Bottom blowing tuyere, 2... Molten steel, 4... Lance, 6.17... Oxygen flow rate control valve, 8... Sub-material cutting device, 9 ... Auxiliary material bunker 0 ... Process computer (P/C) 2 ... Blowing control device, 4 ... Sublance.

Claims (1)

【特許請求の範囲】[Claims] (1)バッチ式に操業される溶融精錬炉の精錬制御方法
において、精錬計算の誤差を予測する式に、過去の操業
の誤差、過去の操業の要因、及び当該操業の要因を含む
時系列モデル式を用い、当該操業の誤差を予測して精錬
計算に反映させることを特徴とするバッチ式溶融精錬炉
の精錬制御方法。
(1) In a refining control method for a melting and refining furnace that is operated in a batch manner, a time series model that includes past operational errors, past operational factors, and relevant operational factors in the formula for predicting errors in refining calculations. A refining control method for a batch-type melting and refining furnace, characterized by using a formula to predict errors in the operation and reflecting them in refining calculations.
JP894289A 1989-01-18 1989-01-18 Method for controlling refining in batch type melting refining furnace Pending JPH02190413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP894289A JPH02190413A (en) 1989-01-18 1989-01-18 Method for controlling refining in batch type melting refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP894289A JPH02190413A (en) 1989-01-18 1989-01-18 Method for controlling refining in batch type melting refining furnace

Publications (1)

Publication Number Publication Date
JPH02190413A true JPH02190413A (en) 1990-07-26

Family

ID=11706725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP894289A Pending JPH02190413A (en) 1989-01-18 1989-01-18 Method for controlling refining in batch type melting refining furnace

Country Status (1)

Country Link
JP (1) JPH02190413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002132304A (en) * 2000-10-27 2002-05-10 Mitsubishi Chemicals Corp Model structuring method and plant control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002132304A (en) * 2000-10-27 2002-05-10 Mitsubishi Chemicals Corp Model structuring method and plant control method

Similar Documents

Publication Publication Date Title
US20150337404A1 (en) Method and device for predicting, controlling and/or regulating steelworks processes
JP2012136767A (en) Method for estimating phosphorus concentration in converter
CN113961865A (en) Method for accurately controlling addition amount of temperature regulator in TSC (thyristor switched capacitor) stage of large converter
JP6825348B2 (en) Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium
JPH02190413A (en) Method for controlling refining in batch type melting refining furnace
Vidhyasagar et al. A Static Model for Energy‐Optimizing Furnace
JP2751800B2 (en) Liquid Steel Temperature Control Method in Steel Making Process
JP5924310B2 (en) Blowing control method and blowing control device
JP3146907B2 (en) Converter end point control method for converter
JPS6324044B2 (en)
JP4140939B2 (en) Converter blowing method
JP4484717B2 (en) How to operate steelmaking equipment
RU2180923C1 (en) Method of control of melting process in electric furnace
JP2621613B2 (en) Control method of end-point carbon concentration in upper-bottom blowing converter
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
JP7319538B2 (en) Converter blowing control device, converter blowing control method and program
Terpák et al. The Mathematical Model for Indirect Measurement of Carbon Concentration in the Steelmaking Process and its Utilization in Process Control
Ferreira et al. Predictions at the blow end of the LD-KGC converter by a semi-dynamic control model
JPH0533029A (en) Method for deciding charging quantity of main raw material in converter operation
JPH0433846B2 (en)
RU2252263C1 (en) Device of formation of a converter process control
JPH093518A (en) Method for controlling end point of blowing in converter
Rout et al. Dynamic modelling of BOF process: Comparison of model performance with the plant data
Khadhraoui et al. Combining the power of computational thermochemistry with the convenience of Python within the digital Platforms of the SMS group
Falkus et al. Artificial neural network predictive system for oxygen steelmaking converter