JPS63152110A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS63152110A
JPS63152110A JP61298696A JP29869686A JPS63152110A JP S63152110 A JPS63152110 A JP S63152110A JP 61298696 A JP61298696 A JP 61298696A JP 29869686 A JP29869686 A JP 29869686A JP S63152110 A JPS63152110 A JP S63152110A
Authority
JP
Japan
Prior art keywords
permanent magnet
coercive force
thin strip
rare earth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61298696A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61298696A priority Critical patent/JPS63152110A/en
Publication of JPS63152110A publication Critical patent/JPS63152110A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE:To manufacture the anisotropic permanent magnet having a high energy product by a method wherein the thin strip or powder.piece-like material consisting of rareearth-iron alloy, having the magnetic coercive force at the normal temperature brought down to the prescribed value or below, is plastically deformed by performing a super-quenching operation, and a magnetic anisotropic property is given to said material. CONSTITUTION:The thin strip or powder.piece-like material consisting of rareearth-iron alloy having the magnetic coercive force at the normal temperature of 3 koe or below, for example, is plastically deformed at the temperature of 600 deg.C or above, for example, by performing a superquenching treatment, and a magnetic anisotropic property is given to said material. At this point, when a thin strip is going to be manufactured using a method wherein the melted metal of a rareearth-iron alloy is superquenched, there are methos such as a centrifugal quick-cooling method in which material is solidified by quenching by jetting out a fused alloy from a nozzle against the inner wall of the cooling drum which is rotated at high speed, and also a single-rolling method and the like wherein material is quickly cooled and solidified by jetting out a fused alloy against the outer wall of a rotating drum in the same manner as the method mentioned above. Amorphous quenching of 50 vol. % or more is added to the thin strip or powder.piece-like material after the material has been quickly cooled. As a result, the anisotropic permanent magnet having a high energy product can be obtained without lowering saturated magnetization and magnetic coercive force even when said material is heated up to 600 deg.C or above at which it can be plastically deformed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、異方性の水入磁石を製造するのに利用され
ろ水入磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a water-filled magnet that is used for manufacturing an anisotropic water-filled magnet.

(従来の技術) 近年、従来のアルニコ系磁石や希土類−コバルト系磁石
よりもさらに磁気特性に優れている磁石として、希土類
−鉄系の永久磁石が注目を集めるようになっている。
(Prior Art) In recent years, rare earth-iron permanent magnets have been attracting attention as magnets that have even better magnetic properties than conventional alnico magnets and rare earth-cobalt magnets.

(発明が解決しようとする問題点) このような希土類−鉄系の永久磁石において、塑性変形
により磁気的異方性をもたせるために、急冷後に高保磁
力を示す希土類−鉄系合金からなる薄帯および/または
粉・片状体もしくはそれらの中間成形体を、塑性変形が
可能である6 00 ’c以上の温度に加熱すると、飽
和磁化(4πIs)および保磁力(BHa 、 IHa
)が大きく低下してしまうことから、高エネルギー積(
(BH)max)を有する異方性の希土類−鉄系永久磁
石を製造することができないという問題点があった。
(Problems to be Solved by the Invention) In order to provide magnetic anisotropy through plastic deformation in such a rare earth-iron permanent magnet, a thin strip made of a rare earth-iron alloy that exhibits high coercive force after quenching is used. And/or when powder/flake bodies or intermediate molded bodies thereof are heated to a temperature of 600'c or higher at which plastic deformation is possible, saturation magnetization (4πIs) and coercive force (BHa, IHa
) will decrease significantly, resulting in a high energy product (
(BH) max) cannot be manufactured.

(発明の目的) この発明は、上述した従来の問題点に着目してなされた
もので、希土類−鉄系合金よりなる高エネルギー積((
BH)max)の異方性永久磁石を製造することが可能
であろ永久磁石の製造方法を提供することを目的として
いるものである。
(Objective of the Invention) This invention was made by focusing on the above-mentioned problems of the conventional art.
It is an object of the present invention to provide a method for manufacturing a permanent magnet that is capable of manufacturing an anisotropic permanent magnet of BH) max).

[発明の構成] (問題点を解決するだめの手段) この発明による永久磁石の製造方法は、超急冷によって
常温における保磁力を3KOe以下にした希土類−鉄系
合金からなる薄帯および/または粉・片状体を600℃
以上の温度で塑性変形させて磁気的異方性を付与するよ
うにしたことを特徴としているものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a permanent magnet according to the present invention is to produce a thin ribbon and/or powder made of a rare earth-iron alloy whose coercive force at room temperature is reduced to 3 KOe or less by ultra-quenching.・Heat the flakes at 600℃
It is characterized in that it is plastically deformed at a temperature above or above to impart magnetic anisotropy.

この発明が適用される希土類−鉄系合金としては、R1
、−β、 −δ(F e (N r 、 M n 。
The rare earth-iron alloy to which this invention is applied is R1
, -β, -δ(F e (N r , M n .

co))(xxβMyA6 で表わされ、Rが希土類元
素のうちの1種以上、XがB、C,N。
co)) (xxβMyA6, where R is one or more rare earth elements, and X is B, C, or N.

St、Pのうちの1種以上、MがT i ’、 Z r
 。
One or more of St, P, M is T i ', Z r
.

Hf、V、Nb、Ta、Cr、Mo、W、AM。Hf, V, Nb, Ta, Cr, Mo, W, AM.

Zn、Ga、In、TJIのうちの1種以上、AがRu
、Rh、Pd、Os、Ir、Ptのうちの1種以上であ
るものを用いることが望ましい。
One or more of Zn, Ga, In, TJI, A is Ru
, Rh, Pd, Os, Ir, and Pt.

上記のうち、Fe (Ni 、Mn、Co)は、残留磁
束密度(B r)を向上させるのに有効な元素群であり
、Feのうちの一部、より望ましくは原子比で0.10
以下のFe1N i 、Mn 、Coで置換することが
可能であり、Ni、Mnの適量添加によって保磁力(B
HC、IHC)を向上させ、COの適量添加によってキ
ュリ一点を上昇させることが可能であって、良好な最大
エネルギー積((BH)max)を得るためには0.6
0≦α≦0.85とすることがより望ましい。
Among the above, Fe (Ni, Mn, Co) is an element group effective for improving the residual magnetic flux density (Br), and is a part of Fe, preferably 0.10 in atomic ratio.
It is possible to replace Fe1N i , Mn , and Co below, and by adding appropriate amounts of Ni and Mn, the coercive force (B
It is possible to raise the Curie point by adding an appropriate amount of CO, and to obtain a good maximum energy product ((BH)max), 0.6
It is more desirable that 0≦α≦0.85.

また、X元素は磁気特性の向上に寄与する元素であり1
M元素を添加した場合にこれらの一部と結合して硼化物
、炭化物、窒化物、珪化物、燐化物などを形成すること
により磁気特性を向上させることが可能であって、0く
β≦0.15.0≦γ≦0.01とすることがとくに望
ましい。
In addition, the X element is an element that contributes to improving magnetic properties, and 1
When the M element is added, it is possible to improve the magnetic properties by combining with some of these elements to form borides, carbides, nitrides, silicides, phosphides, etc. It is particularly desirable that 0.15.0≦γ≦0.01.

ざらに、A元素である白金族元素群は耐食性を向上させ
るのに寄与するので、必要に応じて0≦δ≦0.02の
範囲で添加するのもよい。
In general, since the platinum group element group, which is element A, contributes to improving corrosion resistance, it may be added as necessary in the range of 0≦δ≦0.02.

この発明においては、上記に例示した希土類−鉄系合金
の溶湯を超急冷することにより、過冷却し、これによっ
て得られるリボン状薄帯や粉・片状体の常温における保
磁力が3KOe以下であるようにする。すなわち、前記
リボン状薄り1?や粉・片状体の常温における保磁力が
3KOe以下となるようにしておけば、後述するように
その後に塑性変形可能な600 ’C以上の温度に加熱
しても、飽和磁化(4πIs)および保磁力(BHC。
In this invention, the molten metal of the rare earth-iron alloy exemplified above is supercooled by ultra-quenching, and the coercive force of the resulting ribbon-shaped ribbon, powder, or flake at room temperature is 3 KOe or less. Make it so. That is, the ribbon-like thinning 1? If the coercive force of powder or flakes at room temperature is 3 KOe or less, saturation magnetization (4πIs) and Coercive force (BHC.

rHc)が低下せず、高エネルギー積を有する異方性の
永久磁石を得ることができるようになるためである。
This is because it is possible to obtain an anisotropic permanent magnet having a high energy product without reducing rHc).

そこで、希土類−鉄系合金の溶湯を超急冷することによ
り、リボン状薄帯や粉・片状体の常温における保磁力が
3KOe以下であるようにするためには、上記超急冷後
におけるリボン状薄帯や粉・片状体中のアモルファス(
非晶質)量が50体積%以上となるようにすることがと
くに望ましい。
Therefore, in order to ultra-quench the molten metal of rare earth-iron alloy so that the coercive force of the ribbon-shaped ribbon, powder, or flakes at room temperature is 3 KOe or less, it is necessary to Amorphous (
It is particularly desirable that the amount of amorphous is 50% by volume or more.

この場合、希土類−鉄系の溶融合金に対する超急冷法と
しては、薄帯を製造する場合に、高速回転する冷却用ド
ラムの内壁に溶融合金をノズルから噴射して急冷凝固さ
せる遠心急冷法や、回転ドラムの外壁に同じく溶融合金
を噴射して急冷凝固させる片ロール法や、相互に接触し
て高速回転する2個のドラムの接触面に溶融合金を噴射
して急冷法凝固させる双ロール法などを採用することが
可能であり、粉状体を製造する場合には、スパーク二ロ
ージゴン法やアトマイズ法などが用いられ、片状体を製
造する場合には上記リボン状薄帯を破砕して得る方法な
どを採用する。
In this case, the ultra-quenching method for the rare earth-iron based molten alloy includes a centrifugal quenching method in which the molten alloy is injected from a nozzle onto the inner wall of a cooling drum that rotates at high speed to rapidly solidify it when manufacturing a ribbon; There is a single-roll method in which molten alloy is similarly injected onto the outer wall of a rotating drum and then rapidly solidified, and a twin-roll method in which molten alloy is injected onto the contact surfaces of two drums that rotate at high speed and are rapidly cooled and solidified. When producing a powder, the spark diroggon method or atomization method is used, and when producing a flake, the above-mentioned ribbon-like thin strip is crushed. Adopt methods etc.

そして、リボン状薄帯をロール法によって製造する場合
には、ロール周速が15m/sec以上であるようにし
て超急冷し、この結果書られるリボン状薄帯や粉φ片状
体中のアモルファス量をより望ましくは50体積%以上
に確保することによって、常温における保磁力(BHC
、z Ha)が3KOe以下であるようにし、後に塑性
変形可能な600℃以上の温度に加熱したときでも、飽
和磁化(4πIs)および保磁力(BHC。
When a ribbon-like thin strip is produced by a roll method, ultra-quenching is performed at a roll circumferential speed of 15 m/sec or more, and the amorphous material in the resulting ribbon-like thin strip or powder φ flakes is By ensuring the amount is more preferably 50% by volume or more, the coercive force (BHC) at room temperature can be improved.
, z Ha) is 3 KOe or less, and even when heated to a temperature of 600° C. or higher that allows plastic deformation later, the saturation magnetization (4πIs) and coercive force (BHC) are maintained.

rHc)が低下しないようにする。rHc) so as not to decrease.

次いで、必要に応じて前記リボン状薄帯および/または
、粉番片状体を例えばコールドプレスやホットプレスな
どによって成形して中間成形体としたのち、前記中間成
形体を便性変形が可能である600℃以上の温度に加熱
してアプセット加工や圧延加工などの塑性加工を行い、
素材の延伸方向に対し直角方向に磁化容易軸を形成させ
て異方性の永久磁石が得られるようにする。
Next, if necessary, the ribbon-like thin strip and/or powder plate-like body is formed into an intermediate molded body by, for example, cold pressing or hot pressing, and then the intermediate molded body is made into a material that can be conveniently deformed. It is heated to a temperature of 600℃ or higher and subjected to plastic processing such as upsetting and rolling.
An anisotropic permanent magnet is obtained by forming an axis of easy magnetization in a direction perpendicular to the stretching direction of the material.

(実施例1) 誘導炉を使用して29重量%Nd−64重量%Fe−5
重量%Co−0,8重量%B−1,2fi量%Crの組
成よりなる希土類−鉄系の合金を溶製したのち、この合
金溶湯を種々の異なるロール周速(第1図参照)で回転
するロール上に噴射することによってリボン状の薄帯を
作製した。そして、前記異なるロール周速(Vs)毎に
得られたリボン状薄帯中のアモルファス量(X線回折に
より測定)と、最大エネルギー積((BH)max)、
残留磁束密度(B r)および保磁力(rHc)との関
連を調べたところ、第1図に示す結果であった。
(Example 1) 29 wt% Nd-64 wt% Fe-5 using an induction furnace
After melting a rare earth-iron alloy having a composition of 0.8 wt.% Co, 0.8 wt.% B, 1.2 wt.% Cr, the molten alloy was rolled at various roll peripheral speeds (see Figure 1). A ribbon-like thin strip was produced by spraying onto a rotating roll. Then, the amorphous amount (measured by X-ray diffraction) in the ribbon-like ribbon obtained for each of the different roll peripheral speeds (Vs) and the maximum energy product ((BH) max),
When the relationship between residual magnetic flux density (Br) and coercive force (rHc) was investigated, the results are shown in FIG.

第1図に示すように、この実施例1では、ロール周速(
Vs)を約21m/sec以上にしてリボン状薄帯を製
作すれば、このリボン状薄帯中のアモルファス量が約4
0体積%以上となり、当該リボン状7専帯の常温におけ
る保磁力(rHc)を約3KOe以下とすることが可能
であった。
As shown in FIG. 1, in this embodiment 1, the roll circumferential speed (
If a ribbon-like thin strip is produced with Vs) of about 21 m/sec or more, the amount of amorphous in this ribbon-like thin strip will be about 4 m/sec or more.
The coercive force (rHc) of the ribbon-like 7-magnetic band at room temperature could be reduced to about 3 KOe or less.

次に、前記アモルファス量が異なるリボン状薄帯をそれ
ぞれ別個にいずれも成形圧カフtonf/Cm2で圧縮
成形し、750℃において1500kgf/cm2の圧
力で熱間等方圧加圧(HIP処理)を行って中間成形体
を得た。
Next, the ribbon-like thin strips having different amounts of amorphous were compression molded separately using a molding pressure cuff tonf/Cm2, and hot isostatic pressing (HIP treatment) was performed at a pressure of 1500 kgf/cm2 at 750°C. An intermediate molded body was obtained.

次いで、前記HIP処理後の各中間成形体に対し、温度
700℃、加工率50%の条件でアプセット加工を行っ
て塑性変形させることにより、磁化容易軸をアプセット
方向にそろえた。このようにして得た塑性加工後の異方
性永久磁石のリボン状薄帯製造時におけるロール周速(
Vs)と最大エネルギー積((BH)max)、残留磁
束密度(B r)および保磁力(IHc)との関連を調
べたところ、第2図に示す結果であった。
Next, each of the intermediate compacts after the HIP treatment was subjected to upset processing at a temperature of 700° C. and a processing rate of 50% to cause plastic deformation, thereby aligning the axis of easy magnetization in the upsetting direction. Roll circumferential speed (
The relationship between the maximum energy product ((BH) max), the residual magnetic flux density (Br), and the coercive force (IHc) was investigated, and the results are shown in FIG. 2.

第2図に示すように、超急冷時のロール周速を約21m
/Sec以上にした希土類−鉄系の合金よりなるリボン
状薄帯を用いて中間成形体を成形したのち当該中間成形
体に塑性加工を行うことによって異方性磁石を製造すれ
ば、保磁力(rHc)および残留磁束密度(B r)が
大きく、最大エネルギー積((BH)max)の大きな
異方性永久磁石を製造できることが確かめられた。
As shown in Figure 2, the circumferential speed of the roll during ultra-quenching is approximately 21 m.
If an anisotropic magnet is manufactured by forming an intermediate compact using a ribbon-like thin strip made of a rare earth-iron alloy with a temperature of /Sec or more and then plastic working the intermediate compact, the coercive force ( It was confirmed that an anisotropic permanent magnet with a large maximum energy product ((BH)max) and a large residual magnetic flux density (B r ) and a large residual magnetic flux density (B r ) could be manufactured.

(実施例2) 誘導炉を使用して28重量%Nd−66重量%Fe−4
重量%Co−0,5重量%B−0,5重量%AJZ−1
,0重量%Ruの組成よりなる希土類−鉄系の合金を溶
製したのち、この合金溶湯を種々の異なるロール周速(
第3図参照)で回転するロール上に噴射することによっ
てリボン状の薄帯を作製した。そして、前記異なるロー
ル周速(Vs)毎に得られたリボン状薄帯中のアモルフ
ァス量(X線回折により測定)と、最大エネルキー積(
(BH)max)、残留磁束密度(B r)および保磁
力(XHc)との関連を調べたところ、第3図に示す結
果であった。
(Example 2) 28 wt% Nd-66 wt% Fe-4 using an induction furnace
wt% Co-0,5 wt% B-0,5 wt% AJZ-1
After melting a rare earth-iron alloy having a composition of .
A ribbon-like thin strip was produced by spraying the mixture onto a rotating roll (see FIG. 3). Then, the amorphous amount (measured by X-ray diffraction) in the ribbon-like ribbon obtained for each of the different roll circumferential speeds (Vs) and the maximum energy product (
(BH)max), residual magnetic flux density (Br), and coercive force (XHc), the results are shown in FIG.

第3図に示すように、この実施例2では、ロール周速(
Vs)を約25m/sec以上にしてリボン状薄帯を製
作すれば、このリボン状薄帯中のアモルファス量が約8
0体積%以上となり、当該リボン状薄帯の常温における
保磁力(rHc)を約3KOe以下とすることが可能で
あった。
As shown in FIG. 3, in this embodiment 2, the roll circumferential speed (
If a ribbon-like thin strip is produced with Vs) of about 25 m/sec or more, the amount of amorphous in this ribbon-like thin strip will be about 8
The coercive force (rHc) of the ribbon-like ribbon at room temperature could be reduced to about 3 KOe or less.

次に、前記アモルファス量が異なるリボン状薄帯をそれ
ぞれ別個にいずれも成形圧カフtonf/am2で圧縮
成形し、750℃において1500kgf/cm2(7
)圧力で熱間等方圧加圧(HIP処理)を行って中間成
形体を得た。
Next, the ribbon-like thin strips having different amounts of amorphous were compression-molded separately at a molding pressure cuff tonf/am2, and at 750°C and 1500 kgf/cm2 (7
) hot isostatic pressing (HIP treatment) was performed at a pressure to obtain an intermediate molded body.

次いで、前記HIP処理後の各中間成形体に対し、温度
700℃、加工率50%の条件でアプセット加工を行っ
て塑性変形させることにより、磁化容易軸をアプセット
方向にそろえた。このようにして得た塑性加工後の異方
性永久磁石のりボン状薄帯製造時におけるロール周速(
Vs)と最大エネルギーIA((BH)max)、残留
磁束密度(B r)および保磁力(rHc)との関連を
調べたところ、第4図に示す結果であった。
Next, each of the intermediate compacts after the HIP treatment was subjected to upset processing at a temperature of 700° C. and a processing rate of 50% to cause plastic deformation, thereby aligning the axis of easy magnetization in the upsetting direction. The roll circumferential speed (
When the relationship between the maximum energy IA ((BH) max), the residual magnetic flux density (Br), and the coercive force (rHc) was investigated, the results are shown in FIG. 4.

第4図に示すように、超急冷時のロール周速を約25m
/see以上にした希土類−鉄系の合金よりなるリボン
状薄帯を用いて中間成形体を成形したのち当該中間成形
体に塑性加工を行うことによって異方性磁石を製造すれ
ば、保磁力(zHc)および残留磁束密度(B r)が
大きく、最大エネルギー積((BH)max)の大きな
異方性永久磁石を製造できることが確かめられた。
As shown in Figure 4, the circumferential speed of the roll during ultra-quenching is approximately 25 m.
If an anisotropic magnet is manufactured by forming an intermediate compact using a ribbon-like thin strip made of a rare earth-iron alloy with a hardness of at least /see and then plastically working the intermediate compact, the coercive force ( It was confirmed that it was possible to manufacture an anisotropic permanent magnet with a large maximum energy product ((BH)max) and a large residual magnetic flux density (B r).

[発明の効果] 以上説明してきたように、この発明による永久磁石の製
造方法によれば、超急冷によって常温における保磁力を
3KOe以下にした希土類−鉄系合金からなる薄帯およ
び/または粉φ片状体を600 ’O以上の温度で矧性
変形させて磁気的異方性を付与するようにしたから、希
土類−鉄系合金よりなる薄体および/または粉・片状体
もしくはそれらの中間成形体を、だ性交形が可能である
6 00 ’c以上の温度に加熱したときでも、飽和磁
化(4πI s)および保磁力(BHC、rHc)が低
下するのを防止することが可能であり、高エネルギー積
を有する希土類−鉄系の異方性永久磁石を!iJ 造す
ることが可能であるという非常に優れた効果がもたらさ
れる。
[Effects of the Invention] As explained above, according to the method for manufacturing a permanent magnet according to the present invention, a ribbon and/or powder φ made of a rare earth-iron alloy whose coercive force at room temperature is reduced to 3 KOe or less by ultra-quenching. Since the flakes are deformed in a rectangular manner at a temperature of 600'O or higher to impart magnetic anisotropy, thin bodies made of rare earth-iron alloys and/or powder/flake bodies or intermediates thereof can be produced. It is possible to prevent the saturation magnetization (4πI s) and coercive force (BHC, rHc) from decreasing even when the molded body is heated to a temperature of 600'C or higher, at which it is possible to form the molded body. , a rare earth-iron based anisotropic permanent magnet with a high energy product! The very excellent effect that it is possible to create iJ is brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例1において29重量%Nd−
64重量%Fe−5重量%Co−0,8重■%B−1,
2重量%Crの組成よりなる昂土類−鉄系合金溶湯から
ロール法によってリボン状薄帯を製造した場合のロール
周速(Vs)と薄帯中のアモルファス硼ならびに最大エ
ネルギー積((BH)max)、残留磁束密度(Br)
および保磁力(IHC)との関連を調べた結果を示すグ
ラフ、第2図は同じくこの発明の実施例1において塑性
加工により磁気的異方性を付与した異方性永久磁石の素
材であるリボン状薄帯の製造時におけるロール周速(V
s)と最大エネルギー積((BH)may)、残留磁束
密度(Br)および保磁力(工Hc)との関連を調べた
結果を示すグラフ、第3図はこの発明の実施例2におい
て28重量%Nd−66重量%Fe−4重量%Co−0
,5重量%B−0.5重量%A又−1.0重量%Ruの
組成よりなる希土類−鉄系合金溶湯からロール法によっ
てリボン状薄帯を製造した場合のロール周速(V s)
とvi帯中のアモルファス量ならびに最大エネルギー積
((BH)max)、残留磁束密度(Br)および保磁
力(IHC)との関連を調べた結果を示すグラフ、第4
図は同じくこの発明の実施例2において塑性加工により
磁気的異方性を付与した異方性永久磁石の素材であるリ
ボン状薄帯の製造時におけるロール周速(Vs)と最大
エネルギー積((BH)max)、残留磁束密度(B 
r)および保磁力(IHC)との関連を調べた結果を示
すグラフである。 第1図 了七ルファス量 (イ本1%) 第2図 O−ル鵬JL  Vs  (m/s) 第3図 ア七ルフ7スt  (1本種%) 第4図
FIG. 1 shows 29% by weight Nd-
64% by weight Fe-5% by weight Co-0,8% B-1,
Roll circumferential speed (Vs), amorphous boron in the ribbon, and maximum energy product ((BH) when a ribbon-like thin strip is produced by a roll method from a molten earth-iron alloy having a composition of 2% by weight Cr. max), residual magnetic flux density (Br)
FIG. 2 is a graph showing the results of investigating the relationship between the magnetic field and the coercive force (IHC), and FIG. Roll circumferential speed (V
s), maximum energy product ((BH) may), residual magnetic flux density (Br), and coercive force (Hc). %Nd-66wt%Fe-4wt%Co-0
, 5 wt% B-0.5 wt% A or -1.0 wt% Ru when a ribbon-shaped thin strip is produced by a roll method from a rare earth-iron alloy molten metal having a composition of: 5 wt% B-0.5 wt% A or -1.0 wt% Ru
Graph showing the results of investigating the relationship between the amount of amorphous in the VI band, the maximum energy product ((BH) max), the residual magnetic flux density (Br), and the coercive force (IHC), 4th
The figure also shows the roll peripheral speed (Vs) and the maximum energy product (( BH)max), residual magnetic flux density (B
FIG. Fig. 1 Ryo7 Rufus amount (1%) Fig. 2 O-ru Peng JL Vs (m/s) Fig. 3 A7 Rufus 7st (1%) Fig. 4

Claims (4)

【特許請求の範囲】[Claims] (1)超急冷によって常温における保磁力を3KOe以
下にした希土類−鉄系合金からなる薄帯および/または
粉・片状体を600℃以上の温度で塑性変形させて磁気
的異方性を付与することを特徴とする異方性永久磁石の
製造方法。
(1) Magnetic anisotropy is imparted by plastically deforming ribbons and/or powders/flakes made of rare earth-iron alloys whose coercive force at room temperature has been reduced to 3 KOe or less by ultra-quenching at temperatures of 600°C or higher. A method for manufacturing an anisotropic permanent magnet, characterized by:
(2)希土類−鉄系合金が、R_1_−_α_−_β_
−_γ_−_δ{Fe(Ni、Mn、Co)}_αX_
βM_γA_δで表わされ、Rが希土類元素のうちの1
種以上、XがB、C、N、Si、Pのうちの1種以上、
MがTi、Zr、Hf、V、Nb、Ta、Cr、Mo、
W、Al、Zn、Ga、In、Tlのうちの1種以上、
AがRu、Rh、Pd、Os、Ir、Ptのうちの1種
以上であって、0.60≦α≦0.85、0<β≦0.
15、0≦γ≦0.01、0≦δ≦0.02からなるも
のであることを特徴とする特許請求の範囲第(1)項に
記載の異方性永久磁石の製造方法。
(2) Rare earth-iron alloy is R_1_-_α_-_β_
−_γ_−_δ{Fe(Ni, Mn, Co)}_αX_
It is expressed as βM_γA_δ, and R is one of the rare earth elements.
species or more, X is one or more of B, C, N, Si, P,
M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
One or more of W, Al, Zn, Ga, In, Tl,
A is one or more of Ru, Rh, Pd, Os, Ir, and Pt, and 0.60≦α≦0.85, 0<β≦0.
15, 0≦γ≦0.01, 0≦δ≦0.02, The method for manufacturing an anisotropic permanent magnet according to claim (1).
(3)超急冷した希土類−鉄系合金からなる薄帯および
/または粉・片状体は、アモルファス量が50体積%以
上であることを特徴とする特許請求の範囲第(1)項ま
たは第(2)項に記載の異方性永久磁石の製造方法。
(3) The ultra-quenched rare earth-iron alloy ribbon and/or powder/flake has an amorphous content of 50% by volume or more. The method for manufacturing an anisotropic permanent magnet according to item (2).
(4)超急冷した希土類−鉄系合金からなる薄帯および
/または粉・片状体は、ロール周速15m/sec以上
で回転するロール上に合金溶湯を噴射させる工程を経て
製造されたものであることを特徴とする特許請求の範囲
第(1)項ないし第(3)項のいずれかに記載の異方性
永久磁石の製造方法。
(4) The thin strip and/or powder/flake made of ultra-quenched rare earth-iron alloy is manufactured through a process in which molten alloy is injected onto a roll rotating at a peripheral speed of 15 m/sec or more. A method for manufacturing an anisotropic permanent magnet according to any one of claims (1) to (3).
JP61298696A 1986-12-17 1986-12-17 Manufacture of permanent magnet Pending JPS63152110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61298696A JPS63152110A (en) 1986-12-17 1986-12-17 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61298696A JPS63152110A (en) 1986-12-17 1986-12-17 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS63152110A true JPS63152110A (en) 1988-06-24

Family

ID=17863097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61298696A Pending JPS63152110A (en) 1986-12-17 1986-12-17 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS63152110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148804A (en) * 1987-07-23 1991-06-25 Hitachi Metals Ltd Permanent magnet excellent in thermal stability and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment
JPS60162750A (en) * 1984-02-01 1985-08-24 Nippon Gakki Seizo Kk Rare earth magnet and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment
JPS60162750A (en) * 1984-02-01 1985-08-24 Nippon Gakki Seizo Kk Rare earth magnet and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148804A (en) * 1987-07-23 1991-06-25 Hitachi Metals Ltd Permanent magnet excellent in thermal stability and manufacture thereof

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JP5543970B2 (en) Magnetostrictive material and method for preparing the same
JPS63152110A (en) Manufacture of permanent magnet
JPH01276705A (en) Rare earth resin permanent magnet and manufacture thereof
JPH03260018A (en) Manufacture of anisotropic rare earth metal permanent magnet
JPS6231056B2 (en)
JPH03194906A (en) Manufacture of rare earth magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH02138706A (en) Anisotropic permanent magnet
JPS61129802A (en) Heat treatment of iron-rare earth metal-boron system permanent magnet
JPH1173608A (en) Inductive head
JPH0475302A (en) R-fe-b bond magnet production method
JPH01297807A (en) Manufacture of permanent magnet
JPS61119005A (en) Manufacture of iron-rareearth-boron permanent magnet
JPS6321804A (en) Manufacture of permanent magnet of rare-earth iron
JPS61133317A (en) Production of permanent magnet
JPH032349A (en) Production of difficult-to-work material
JPH02205604A (en) Manufacture of permanent magnet material
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy
JPH0641617A (en) Production of fe-n or fe-si-n soft magnetic powder having high saturation magnetic flux density
JPH03141610A (en) Rare-earth magnet and its manufacture
JPH01196103A (en) Manufacture of rare earth alloy magnet
JPH03247703A (en) Manufacture of permanent magnet
JPS6390813A (en) Manufacture of rare earth alloy permanent magnet