JPS6231056B2 - - Google Patents

Info

Publication number
JPS6231056B2
JPS6231056B2 JP54129667A JP12966779A JPS6231056B2 JP S6231056 B2 JPS6231056 B2 JP S6231056B2 JP 54129667 A JP54129667 A JP 54129667A JP 12966779 A JP12966779 A JP 12966779A JP S6231056 B2 JPS6231056 B2 JP S6231056B2
Authority
JP
Japan
Prior art keywords
atm
rare earth
oersted
elements
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54129667A
Other languages
Japanese (ja)
Other versions
JPS5655533A (en
Inventor
Katsuhiko Yahagi
Moryoshi Hata
Hideaki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP12966779A priority Critical patent/JPS5655533A/en
Publication of JPS5655533A publication Critical patent/JPS5655533A/en
Publication of JPS6231056B2 publication Critical patent/JPS6231056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 本発明は希土類元素(Rと称する)とそれ以外
の元素の合金の粉末を成型し、焼結・焼鈍の熱処
理として製造する希土類磁石の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a rare earth magnet, which involves molding powder of an alloy of a rare earth element (referred to as R) and other elements, and performing heat treatments such as sintering and annealing.

従来、希土類磁石(以後R・M磁石と称す。M
は希土類元素R以外の元素である。)は磁気特性
が優れるため小型、薄型機器に広く用いられつつ
ある。
Conventionally, rare earth magnets (hereinafter referred to as R/M magnets.M
is an element other than the rare earth element R. ) is becoming widely used in small and thin devices due to its excellent magnetic properties.

そして高い磁気特性を得るにはR・M合金粉末
を圧縮成形し高温で焼結し又場合によつてはその
後焼鈍等の熱処理をする必要がある。
In order to obtain high magnetic properties, it is necessary to compression mold the R/M alloy powder, sinter it at a high temperature, and, depending on the case, to perform heat treatment such as annealing afterwards.

しかしこれらの熱処理は高温700℃〜1300℃の
範囲で行なわれるためにR・M合金中の成形が蒸
発してしまい組成ずれ等が生じて磁気特性の劣化
がおきる欠点を有している。
However, since these heat treatments are carried out at high temperatures in the range of 700 DEG C. to 1300 DEG C., they have the disadvantage that the molding in the R.M alloy evaporates, causing compositional deviations and the like, resulting in deterioration of magnetic properties.

本発明は上記欠点等を改良し磁気特性の優れた
希土類磁石を可能とした製造方法を提供すること
を目的としたものである。
The object of the present invention is to provide a manufacturing method that improves the above-mentioned drawbacks and makes it possible to produce rare earth magnets with excellent magnetic properties.

R・M磁石は希土類元素R(Sc、Y、La、
Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、
Ho、Er、Tm、Yb、Lu)とその他の元素Mは
Co、Fe、Cu、を主成分とする場合が多いが、そ
の他にも次の元素が加えられ磁気特性の向上に有
効である。たとえば遷移金属のTi、Zr、Hfや
、、、族元素、Mg、Ca、Ag、Zn、
B、Al、Ga、In、C、Si、Ge、Sn、Pb、P、
As、Sb、Bi、S、Te、Se、Po、Tl、等が有効で
ある。
R/M magnets are made of rare earth elements R (Sc, Y, La,
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu) and other elements M are
Co, Fe, and Cu are often the main components, but the following elements are also added and are effective in improving magnetic properties. For example, the transition metals Ti, Zr, Hf, group elements Mg, Ca, Ag, Zn, etc.
B, Al, Ga, In, C, Si, Ge, Sn, Pb, P,
As, Sb, Bi, S, Te, Se, Po, Tl, etc. are valid.

これらの元素は秤量され溶解冷却によつて合金
インゴツトが製造され、その後粉砕されて粉末が
得られる。粉末は一般に単磁区粒子にするために
10μ以下である。この粉末は磁場中プレスで圧縮
成形され更に高密度にするために焼結をしその後
必要に応じて焼鈍等の熱処理工程を経て製造され
る。
These elements are weighed, melted and cooled to produce an alloy ingot, and then crushed to obtain powder. Powders are generally made into single domain particles.
It is 10μ or less. This powder is compression molded using a press in a magnetic field, sintered to further increase the density, and then subjected to a heat treatment process such as annealing if necessary.

しかしこのような熱処理は700℃〜1300℃の高
温で行われ又Ar、H2、N2等の大気圧雰囲気で行
われているために、どうしても蒸発しやすい元素
例えば希土類元素RやCu、Mg、Zn、In、Pb等が
蒸発し組成ずれが生ずるため磁気特性の劣化が生
じてしまう。
However, since such heat treatment is performed at high temperatures of 700°C to 1300°C and in an atmospheric pressure atmosphere such as Ar, H 2 , N 2 etc., elements that easily evaporate, such as rare earth elements R, Cu, Mg , Zn, In, Pb, etc. evaporate and a compositional shift occurs, resulting in deterioration of magnetic properties.

特に希土類元素は蒸発しやすくそのために磁気
特性の内部保磁力(Hcと称す。)の低下が大きく
優れた磁石を製造することが困難であつた。
In particular, rare earth elements tend to evaporate easily, which makes it difficult to manufacture excellent magnets with a large drop in internal coercive force (referred to as Hc), which is a magnetic characteristic.

このような困難を解決する方法として本発明で
は前記の熱処理工程において、Ar、N2、H2等の
ガス圧を高めることによつて、元素の蒸発を少な
くすることにより磁気特性、特にHcの低下を防
ぎ、優れた磁石を製造することが可能となつた。
In order to solve these difficulties, the present invention improves the magnetic properties, especially Hc, by increasing the gas pressure of Ar, N 2 , H 2, etc. in the heat treatment process to reduce the evaporation of elements. It has become possible to prevent this deterioration and manufacture excellent magnets.

次に本発明による磁石の製造方法について述べ
る。
Next, a method for manufacturing a magnet according to the present invention will be described.

まず希土類元素Rとその他の元素Mをはかりで
秤量し、真空後置換したAr等の不活性ガス中で
溶解した後金型に鋳造してR・Mの合金インゴツ
トを製造する。
First, the rare earth element R and other elements M are weighed on a scale, melted in an inert gas such as Ar which is substituted after vacuum, and then cast into a mold to produce an R/M alloy ingot.

場合によつては成分の偏析を均一化するために
このインゴツトを溶体化熱処理をする時がある。
In some cases, this ingot is subjected to solution heat treatment in order to homogenize the segregation of components.

次にインゴツトは不活性ガス中や真空中又は、
水分や不純物を含有しない有機溶媒中例えばトル
エン、アルコール、ダイフロン等にてスタンプミ
ルやクラツシヤー、ハンドミル、ジエツトミル、
振動ミル、ボールミル等の方法で粉砕する。この
粉末を磁場中成形又は単にプレス成形をする、更
に密度を高めるために、真空後Ar、Ne、He、Ne
等の不活性ガス又はN2ガス中で焼結をする。更
にその後焼鈍をし磁気特性を高める。
Next, the ingot is placed in an inert gas, vacuum, or
Stamp mill, crusher, hand mill, jet mill, etc. in an organic solvent containing no water or impurities, such as toluene, alcohol, Diflon,
Grind by vibration mill, ball mill, etc. This powder is molded in a magnetic field or simply press molded, and in order to further increase the density, Ar, Ne, He, Ne,
Sintering is carried out in an inert gas such as or N2 gas. Furthermore, it is then annealed to improve its magnetic properties.

しかしいずれも焼結あるいは焼鈍等の熱処理工
程が行なわれ、温度範囲は700℃〜1300℃であ
る。これより低くしても又高くしても磁気特性が
得られない。
However, both require a heat treatment process such as sintering or annealing, and the temperature range is 700°C to 1300°C. Even if it is lower or higher than this, magnetic properties cannot be obtained.

又この時ガスの圧力は大気圧より高くする程好
ましいが、3気圧以下では効果が少ない又100気
圧以上は装置上高価となり、工業上難かしい。そ
して我々も装置上100気圧以上での製造は出きな
かつた。
At this time, it is preferable to make the gas pressure higher than atmospheric pressure, but if it is less than 3 atm, the effect is small, and if it is more than 100 atm, the equipment becomes expensive and industrially difficult. We were also unable to manufacture the product at a pressure higher than 100 atmospheres due to our equipment.

以下実施例をあげて本発明の説明をする。 The present invention will be explained below with reference to Examples.

実施例 1 金属Sm(99.9%>)を36重量%、金属Co
(99.9%>)を64重量%を秤量し、これを真空引
き後Arガス置換した雰囲気中で高周波溶解し金
型に鋳造し合金インゴツトを製造した。これは
1200℃、Ar中で10時間溶体化処理を行なつた。
Example 1 36% by weight of metal Sm (99.9%>), metal Co
(99.9%>) was weighed out, and after being evacuated, it was high-frequency melted in an atmosphere replaced with Ar gas and cast into a mold to produce an alloy ingot. this is
Solution treatment was performed at 1200°C in Ar for 10 hours.

このインゴツトはN2ガス中でクラツシヤーで
粉砕し、その後ステンレスポツト中で8mmφ鋼球
とダイフロン溶媒中で振動ミルで粉砕し約10μ以
下までの粒子とする。
This ingot is crushed with a crusher in N 2 gas, and then crushed with a vibration mill in a stainless steel pot using 8 mm diameter steel balls and Diflon solvent to obtain particles of about 10 μm or less.

この粉末は磁気プレス中で磁界約10000エルス
テツド、1〜5t/cm2で湿式プレス成形された。こ
の成形体は400℃で約1h保つことにより溶媒を取
り除ぞかれた。
This powder was wet pressed in a magnetic press with a magnetic field of about 10,000 oersted and 1 to 5 t/cm 2 . This molded body was kept at 400°C for about 1 hour to remove the solvent.

この成形体を真空後高圧ステンレスチヤンバー
内をAr雰囲気にし焼結・焼鈍の熱処理を行なつ
た。
After vacuuming, this compact was heat-treated by sintering and annealing in an Ar atmosphere in a high-pressure stainless steel chamber.

Arガス圧はほぼ大気圧(1気圧)、2気圧、3
気圧、10気圧、50気圧、100気圧で行ない、熱処
理は同一プログラムであり、1170℃×1h焼結後
室温近くまで急冷、その後830℃×3h焼鈍後室温
まで急冷をするパターンである。この結果、磁気
特性のHc(保磁力)は次の通りである。なお残
留磁束密度(Br)はいずれもほぼ同一で8700ガ
ウスである。
Ar gas pressure is approximately atmospheric pressure (1 atm), 2 atm, 3 atm.
The heat treatment was carried out at atmospheric pressure, 10 atmospheres, 50 atmospheres, and 100 atmospheres, and the heat treatment was performed using the same program: sintering at 1170°C for 1 hour, followed by rapid cooling to near room temperature, followed by annealing at 830°C for 3 hours, followed by rapid cooling to room temperature. As a result, the magnetic properties Hc (coercive force) are as follows. The residual magnetic flux density (Br) is almost the same in all cases, 8700 Gauss.

大気圧でHc=14200エルステツド。 Hc = 14200 oersted at atmospheric pressure.

2気圧でHc=14300エルステツド。 Hc = 14300 oersted at 2 atm.

3気圧でHc=15800エルステツド。 Hc = 15800 oersted at 3 atm.

10気圧でHc=20600エルステツド。 Hc = 20600 oersted at 10 atm.

50気圧でHc=22700エルステツド。 Hc = 22700 oersted at 50 atm.

100気圧でHc=25300エルステツド。 Hc = 25300 oersted at 100 atm.

以上のように3気圧以上で効果が出ており、特
に10気圧以上で大きな特性の向上がみられる。
As mentioned above, it is effective at temperatures above 3 atm, and particularly significant improvements in properties are seen at temperatures above 10 atm.

実施例 2 Smを24重量%、Cuを10重量%、Feを15重量
%、Zrを2%、Vを0.2%、Nbを0.2%、Taを0.2
%、Ti、Cr、Mn、Niを各0.1%、残りをCo金属
とした、合金を実施例1と同様して合金インゴツ
トを作り、同様にして粉末を成形した。又ガス圧
等も同一の製造である。ただし熱処理プログラム
は次のようにした。1300℃×1h焼結更に1.250℃
×1h溶体化処理後室温まで急冷した。その後850
℃×1h焼鈍し更に700℃×1h焼鈍した後室温まで
急冷した。その結果を下に示す。なおBrはいず
れもほぼ11900ガウスである。
Example 2 24% by weight of Sm, 10% by weight of Cu, 15% by weight of Fe, 2% of Zr, 0.2% of V, 0.2% of Nb, 0.2% of Ta
An alloy ingot was prepared in the same manner as in Example 1, with Ti, Cr, Mn, and Ni at 0.1% each and the remainder being Co metal, and powder was molded in the same manner. Also, gas pressure, etc. are manufactured in the same way. However, the heat treatment program was as follows. 1300℃×1h sintering and further 1.250℃
After solution treatment for ×1 h, the mixture was rapidly cooled to room temperature. then 850
℃×1h, further annealed at 700℃×1h, and then rapidly cooled to room temperature. The results are shown below. Note that Br is approximately 11,900 Gauss in both cases.

大気圧でHc=5500エルステツド。 Hc = 5500 oersted at atmospheric pressure.

2気圧でHc=5500エルステツド。 Hc = 5500 oersted at 2 atm.

3気圧でHc=5800エルステツド。 Hc = 5800 oersted at 3 atm.

10気圧でHc=6200エルステツド。 Hc = 6200 oersted at 10 atm.

50気圧でHc=6700エルステツド。 Hc = 6700 oersted at 50 atm.

100気圧でHc=7200エルステツド。 Hc = 7200 oersted at 100 atm.

以上の結果においても3気圧以上で効果が見ら
れ保磁力Hcの増大が得られる。
In the above results, the effect is seen at 3 atm or higher, and an increase in coercive force Hc can be obtained.

このように雰囲気ガスの圧力を高めることによ
つて蒸発が押えられ組成のずれが少ないため高い
磁気特性、特にHcが優れたものとなつた。
By increasing the pressure of the atmospheric gas in this way, evaporation is suppressed and there is little deviation in composition, resulting in high magnetic properties, especially excellent Hc.

Claims (1)

【特許請求の範囲】 1 希土類元素とその他の元素からなる合金の粉
末を圧粉成型した後、高圧不活性ガス雰囲気中で
焼結・焼鈍の熱処理をすることを特徴とする希土
類磁石の製造方法。 2 高圧ガスの圧力が、3気圧から100気圧であ
る特許請求の範囲第1項記載の希土類磁石の製造
方法。 3 焼結・焼鈍の熱処理温度が700℃から1300℃
の範囲である特許請求の範囲第1項記載の希土類
磁石の製造方法。
[Claims] 1. A method for producing a rare earth magnet, which comprises compacting powder of an alloy consisting of rare earth elements and other elements, and then subjecting the powder to sintering and annealing in a high-pressure inert gas atmosphere. . 2. The method for producing a rare earth magnet according to claim 1, wherein the pressure of the high pressure gas is from 3 atm to 100 atm. 3 Heat treatment temperature for sintering and annealing is 700℃ to 1300℃
A method for manufacturing a rare earth magnet according to claim 1, which is within the scope of claim 1.
JP12966779A 1979-10-08 1979-10-08 Manufactre of rare earth element magnet Granted JPS5655533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12966779A JPS5655533A (en) 1979-10-08 1979-10-08 Manufactre of rare earth element magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12966779A JPS5655533A (en) 1979-10-08 1979-10-08 Manufactre of rare earth element magnet

Publications (2)

Publication Number Publication Date
JPS5655533A JPS5655533A (en) 1981-05-16
JPS6231056B2 true JPS6231056B2 (en) 1987-07-06

Family

ID=15015163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12966779A Granted JPS5655533A (en) 1979-10-08 1979-10-08 Manufactre of rare earth element magnet

Country Status (1)

Country Link
JP (1) JPS5655533A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070102A (en) * 1983-08-19 1985-04-20 Tohoku Metal Ind Ltd Atmosphere sintering method
JPS60131949A (en) * 1983-12-19 1985-07-13 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet
JP5969750B2 (en) * 2011-10-14 2016-08-17 日東電工株式会社 Rare earth permanent magnet manufacturing method
JP5969781B2 (en) * 2012-03-12 2016-08-17 日東電工株式会社 Rare earth permanent magnet manufacturing method
JP5969782B2 (en) * 2012-03-12 2016-08-17 日東電工株式会社 Rare earth permanent magnet manufacturing method
JP5969783B2 (en) * 2012-03-12 2016-08-17 日東電工株式会社 Rare earth permanent magnet manufacturing method
CN105164765A (en) * 2014-03-20 2015-12-16 株式会社东芝 Permanent magnet, motor, and generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103698A (en) * 1976-02-27 1977-08-31 Fujitsu Ltd Preparing rare earth cobalt magnet
JPS5353514A (en) * 1976-10-26 1978-05-16 Fujitsu Ltd Production of rare earth elemens cobalt magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103698A (en) * 1976-02-27 1977-08-31 Fujitsu Ltd Preparing rare earth cobalt magnet
JPS5353514A (en) * 1976-10-26 1978-05-16 Fujitsu Ltd Production of rare earth elemens cobalt magnet

Also Published As

Publication number Publication date
JPS5655533A (en) 1981-05-16

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
JP2007266199A (en) Manufacturing method of rare earth sintered magnet
JPS6231056B2 (en)
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH0336895B2 (en)
JPS61295342A (en) Manufacture of permanent magnet alloy
JPH0146574B2 (en)
JPH0475303B2 (en)
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JPH0582319A (en) Permanent magnet
JPS61143553A (en) Production of material for permanent magnet
JPH048923B2 (en)
JPH0323256B2 (en)
JP2000021614A (en) Manufacture of rare earth magnet powder superior in magnetic anisotropy
JP2551797B2 (en) Method of manufacturing permanent magnet material
JPH0641617A (en) Production of fe-n or fe-si-n soft magnetic powder having high saturation magnetic flux density
JPH1022110A (en) Rare-earth permanent magnet and method for manufacturing the same, and rare-earth permanent bond magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS646260B2 (en)
JPS59154004A (en) Manufacture of permanent magnet
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPH04216601A (en) Material of permanent magnet, manufacture thereof and bonded magnet