JPS63151068A - Coms semiconductor integrated circuit device - Google Patents

Coms semiconductor integrated circuit device

Info

Publication number
JPS63151068A
JPS63151068A JP61299364A JP29936486A JPS63151068A JP S63151068 A JPS63151068 A JP S63151068A JP 61299364 A JP61299364 A JP 61299364A JP 29936486 A JP29936486 A JP 29936486A JP S63151068 A JPS63151068 A JP S63151068A
Authority
JP
Japan
Prior art keywords
transistor
semiconductor integrated
crystal islands
single crystal
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61299364A
Other languages
Japanese (ja)
Inventor
Shigeharu Yamamura
山村 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61299364A priority Critical patent/JPS63151068A/en
Publication of JPS63151068A publication Critical patent/JPS63151068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the breakdown of elements due to latch-up and to improve the reduction in chip size and the yield rate, by forming MOS transistors having different conductivities of channel regions in a plurality of single crystal islands, which are insulated with a dielectric film, and forming one of them by a self-aligning method so as to have a doublediffusion structure. CONSTITUTION:Two P-type conductive diffused layer having the different polarity with respect to single crystal islands are formed in one of a plurality of single-crystal islands 13, and a P-channel type MOS transistor 18 is formed. Then, P-type conductive diffused layers 19 having the different polarity with respect to single-crystal islands are formed in one of other single crystal islands 13, and an N-channel type MOS transistor 24 is formed. The transistor 24 is formed by double diffusions in self-aligning manner. Then, gate terminals 17, 22 and 23 and drain terminals 15 and 21 of the transistors 18 and 24 are short-circuited by wiring layers. A source terminal 20 of the transistor 24 is connected to the side of a negative potential with a wiring layer. A source terminal 16 of the transistor 18 is connected to the side of a high potential with a wiring layer. In the CMOS semiconductor integrated device obtained in this way, each MOS is formed in the insulated and isolated island. Therefore a punch- through current is not generated from the high-potential side to the low potential side due to a parasitic transistor.

Description

【発明の詳細な説明】 F産業上の利用分野コ 本発明は誘電体分離方式によるCMOS半導体集積回路
装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a CMOS semiconductor integrated circuit device using a dielectric isolation method.

[従来の技術] 従来のNチャネル型MOSトランジスタとPチャネル型
MOSトランジスタを備えたCMOS半導体集積回路v
c置を第2図により説明する。
[Prior art] CMOS semiconductor integrated circuit equipped with a conventional N-channel MOS transistor and a P-channel MOS transistorv
The position c will be explained with reference to FIG.

CMOS半導体集積回路装置30は、N型基板31中に
P型ウェル32が形成されており、P型ウェル32の外
にはP型のドレイン端子33とソース端子34を備え、
トレイン端子33とソース端子34のあいだには絶縁膜
(図示省略)を介してゲート端子35を備えたPチャネ
ル型MOSトランジスタ36が形成されろ。またP型ウ
ェル32の内にはN型のドレイン端子37とソース端子
38を備え、トレイン端子37とソース端子38のあい
だには絶縁膜(図示省略)を介してゲート端子39を備
えたNチャネル型MOSt−ランジスタ40が形成され
ている。この2つのMOS型トランジスタはそのゲート
端子35゜39及びドレイン端子33.37は互いに配
線層で′fJ:i絡され(図示省略)、Nチャネル型M
OSI−ランジスタ40のソース端子38は負電位側に
、Pチャネル型MOSトランジスタ36のソース端子3
4は高電位側にそれぞれ配線層で接続されている。
The CMOS semiconductor integrated circuit device 30 has a P-type well 32 formed in an N-type substrate 31, and a P-type drain terminal 33 and a P-type source terminal 34 outside the P-type well 32.
A P-channel MOS transistor 36 having a gate terminal 35 is formed between the train terminal 33 and the source terminal 34 via an insulating film (not shown). Furthermore, an N-type drain terminal 37 and a source terminal 38 are provided in the P-type well 32, and a gate terminal 39 is provided between the train terminal 37 and the source terminal 38 via an insulating film (not shown). A type MOSt-transistor 40 is formed. These two MOS transistors have their gate terminals 35.39 and drain terminals 33.37 connected to each other in a wiring layer (not shown), and are N-channel type MOS transistors.
The source terminal 38 of the OSI transistor 40 is connected to the negative potential side, and the source terminal 38 of the P-channel MOS transistor 36 is connected to the negative potential side.
4 are connected to the high potential side through wiring layers.

[発明が解決しようとする問題点] 上述した従来構造のCMOS半導体集積回路装置は奇性
トランジスタ(ラテラルPNPトランジスタとバーチカ
ルNPNトランジスタで構成されるPNPNスイッチ)
により、高電位側から低電位側へ貫通電流が流れ(この
動作を一般にラッチ・アップと呼ぶ。) 、CMOS半
導体集積回路装置を破壊に至らしめることが必り、これ
を防止するため、Pチャネル型MOSトランジスタとN
チャネル型MOSトランジスタを幾何学的に離す必要性
を生じチップサイズの増大などの欠点を有していた。
[Problems to be Solved by the Invention] The CMOS semiconductor integrated circuit device with the conventional structure described above uses an odd transistor (a PNPN switch composed of a lateral PNP transistor and a vertical NPN transistor).
As a result, a through current flows from the high potential side to the low potential side (this operation is generally called latch up), which inevitably leads to destruction of the CMOS semiconductor integrated circuit device. type MOS transistor and N
This has disadvantages such as an increase in chip size due to the necessity of geometrically separating the channel type MOS transistors.

本発明の目的はラッチ・アップによる素子の破壊をなく
すとともに、チップサイズの縮小化を図るCMOS半導
体集積回路装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a CMOS semiconductor integrated circuit device that eliminates element destruction due to latch-up and reduces chip size.

[問題点を解決するための手段] 本発明は誘電体分離方式による半導体集積回路装置にお
いて、誘電体膜により互いに絶縁された複数の単結晶の
島を有し、該島内にチャネル領域の導電性の異なるMO
Sトランジスタを形成し、少なくともその1つを自己整
合による2重拡散MOSI造にて形成したことを特徴と
するCMOS半導体集積回路装置である。
[Means for Solving the Problems] The present invention provides a semiconductor integrated circuit device using a dielectric isolation method, which has a plurality of single crystal islands insulated from each other by a dielectric film, and has a conductive channel region within the islands. different MO of
This is a CMOS semiconductor integrated circuit device characterized in that S transistors are formed, and at least one of them is formed in a double diffusion MOSI structure using self-alignment.

[実施例] 次に本発明の実施例について図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

第1図【よ本発明の一実施例を示すCMOS半導体集積
回路装置の断面図である。第1図において、先ず公知の
技術で製作された誘電体分離基板10は多結晶シリコン
層11中に5i02等の誘電体膜12にて分離された同
一導電性の複数個の単結晶の島13を有し、該誘電体膜
12の近傍の単結晶は単結晶の島と同一導電性の高温度
埋込層14を有している。
FIG. 1 is a sectional view of a CMOS semiconductor integrated circuit device showing one embodiment of the present invention. In FIG. 1, a dielectric isolation substrate 10 manufactured using a known technique includes a plurality of monocrystalline islands 13 of the same conductivity separated by a dielectric film 12 such as 5i02 in a polycrystalline silicon layer 11. The single crystal near the dielectric film 12 has a high temperature buried layer 14 having the same conductivity as the single crystal island.

ここで、説明を容易にするため、単結晶の島としてN形
導電性を持ち、異種の導電性としてP形導電性の場合に
関して説明を行なう。
Here, for ease of explanation, a case will be described in which a single crystal island has N-type conductivity and a different type of conductivity has P-type conductivity.

複数個の単結晶の島13の1つに、単結晶の島とは極性
の異なるP型置電性の2つの拡散層を形成し、その拡散
層の1つをドレイン端子15、他の1つをソース端子1
6とし、ドレイン端子15とソース端子16のあいだに
は絶縁膜(図示省略)を介してゲート端子17を設け、
Pチャネル型MOSトランジスタ18を形成する。
Two diffusion layers of P-type charging property, which have polarities different from those of the single crystal islands, are formed on one of the plurality of single crystal islands 13, and one of the diffusion layers is connected to the drain terminal 15, and the other one is connected to the drain terminal 15. one source terminal 1
6, a gate terminal 17 is provided between the drain terminal 15 and the source terminal 16 via an insulating film (not shown),
A P-channel MOS transistor 18 is formed.

次に、他の単結晶の島13の1つに、単結晶の島とは極
性の異なるP形導電性の拡散層19を形成し、続いて、
その拡散層19の内側に2重に、拡散層19と極−性が
異なる、すなわち単結晶の島と同一導電性のN形導電性
の拡散層を形成し、ソース端子20とし、誘電体膜12
の近傍のN 高濃度埋込層14をドレイン端子21とす
る。
Next, a P-type conductive diffusion layer 19 having a polarity different from that of the single crystal island is formed on one of the other single crystal islands 13, and then,
Inside the diffusion layer 19, an N-type conductive diffusion layer having a polarity different from that of the diffusion layer 19, that is, having the same conductivity as the single crystal island, is formed as a source terminal 20, and a dielectric film is formed. 12
The N high concentration buried layer 14 near the drain terminal 21 is assumed to be the drain terminal 21.

ざらに、ソース端子20とドレイン端子21のあいだの
最初にP形導電性を拡散した拡散層19の領域を絶縁膜
(図示省略)を介してゲート端子22.23を設け、N
チャネル型MOSトランジスタ24を形成する。
Roughly, gate terminals 22 and 23 are provided in the region of the diffusion layer 19 between the source terminal 20 and the drain terminal 21 where P-type conductivity is first diffused via an insulating film (not shown), and the N
A channel type MOS transistor 24 is formed.

このNチャネル型MOSトランジスタ24の形成方法は
公知の技術で一般に自己整合による2重拡散MOS(D
MOS: Double Diffused MOS 
)と呼ばれる。
The method for forming this N-channel type MOS transistor 24 is a known technique, and is generally a self-aligned double diffusion MOS (D
MOS: Double Diffused MOS
) is called.

次に、2つのMOSトランジスタ18.24のゲート端
子17.22.23及びドレイン端子15.21は各々
配線層により短絡され(図示省略)、Nチャネル型MO
Sトランジスタ24のソース端子20は負電位側に、P
チャネル型MOSトランジスタ18のソース端子16は
高電位側に各々配線層で接続(図示省略)されCMOS
半導体集積回路装置25を形成する。
Next, the gate terminals 17, 22, 23 and drain terminals 15, 21 of the two MOS transistors 18, 24 are each short-circuited by a wiring layer (not shown), and the N-channel type MO
The source terminal 20 of the S transistor 24 is connected to the negative potential side,
The source terminals 16 of the channel type MOS transistors 18 are connected to the high potential side through wiring layers (not shown), and the CMOS
A semiconductor integrated circuit device 25 is formed.

ここで、単結晶の島として、N形導電性を持も、異種の
導電性としてP形導電性について説明したが、この導電
性を逆にしても差支えないことは勿論である。
Here, the description has been given of N-type conductivity as a single crystal island and P-type conductivity as a different type of conductivity, but it goes without saying that this conductivity may be reversed.

このようにしてjqられたCMOS半導体集積回路装置
は各MOSが絶縁分離された島内に形成されるため、奇
性トランジスタにより、高電位側から低電位側への貫通
電流が生じることがない。
In the CMOS semiconductor integrated circuit device jqed in this way, each MOS is formed in an isolated island, so that no through current occurs from the high potential side to the low potential side due to the odd transistor.

[発明の効果] 以上説明したように本発明は誘電体膜により絶縁分離さ
れた島内にチャネル領域の導電性の異なるMOSトラン
ジスタを設り、少なくともその1つをDMO8(Dou
ble [)iffused MOS>構造で形成する
ことにより、奇性トランジスタの形成を防止でき、ラッ
チ・アップによる素子の破壊が無くなり、チップサイズ
の縮小2歩留りの向上を図ることかできる効果がある。
[Effects of the Invention] As explained above, the present invention provides MOS transistors whose channel regions have different conductivities within an island insulated and isolated by a dielectric film, and at least one of them is connected to a DMO8 (Double
ble [) fused MOS> structure, it is possible to prevent the formation of odd transistors, eliminate element destruction due to latch-up, and have the effect of reducing chip size and improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すCMOS半導体集積回
路装置の断面図、第2図は従来のCMOS半導体集積回
路装置の断面図である。 10・・・誘電体分離基板  11・・・多結晶シリコ
ン層12・・・誘電体膜     13・・・単結晶の
島14・・・高濃度埋込層 15、21.33.37・・・ドレイン端子16、20
.34.38・・・ソース端子17、22.23.35
.39・・・ゲート端子18、36・・・Pチャネル型
MOSトランジスタ19・・・拡散層 24、40・・・Nチャネル型MOSトランジスタ25
、30・・・CMOS半導体集積回路装置31・・・N
型基板     32・・・P型つェル第1図
FIG. 1 is a sectional view of a CMOS semiconductor integrated circuit device showing an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional CMOS semiconductor integrated circuit device. 10... Dielectric isolation substrate 11... Polycrystalline silicon layer 12... Dielectric film 13... Single crystal island 14... High concentration buried layer 15, 21.33.37... Drain terminals 16, 20
.. 34.38...Source terminal 17, 22.23.35
.. 39... Gate terminal 18, 36... P channel type MOS transistor 19... Diffusion layer 24, 40... N channel type MOS transistor 25
, 30...CMOS semiconductor integrated circuit device 31...N
Type board 32...P type twelf Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)誘電体分離方式による半導体集積回路装置におい
て、誘電体膜により互いに絶縁された複数の単結晶の島
を有し、該島内にチャネル領域の導電性の異なるMOS
トランジスタを形成し、少なくともその1つを自己整合
による2重拡散MOS構造にて形成したことを特徴とす
るCMOS半導体集積回路装置。
(1) A semiconductor integrated circuit device using a dielectric isolation method has a plurality of single-crystal islands insulated from each other by a dielectric film, and MOSs with channel regions of different conductivity are arranged in the islands.
A CMOS semiconductor integrated circuit device comprising transistors, at least one of which is formed in a self-aligned double diffusion MOS structure.
JP61299364A 1986-12-16 1986-12-16 Coms semiconductor integrated circuit device Pending JPS63151068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299364A JPS63151068A (en) 1986-12-16 1986-12-16 Coms semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299364A JPS63151068A (en) 1986-12-16 1986-12-16 Coms semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63151068A true JPS63151068A (en) 1988-06-23

Family

ID=17871599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299364A Pending JPS63151068A (en) 1986-12-16 1986-12-16 Coms semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63151068A (en)

Similar Documents

Publication Publication Date Title
US4825275A (en) Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
US5087579A (en) Method for fabricating an integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
US4912054A (en) Integrated bipolar-CMOS circuit isolation process for providing different backgate and substrate bias
US5060044A (en) Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
US5184203A (en) Semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors--all formed in a single semiconductor substrate
US5260228A (en) Method of making a semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors
JP2549726B2 (en) Semiconductor integrated circuit and manufacturing method thereof
US5254864A (en) Semiconductor device
JPH10275824A (en) Semiconductor device and manufacture thereof
JPS63151068A (en) Coms semiconductor integrated circuit device
JPS6362904B2 (en)
JPS61265859A (en) Complementary mos semiconductor device
JP2730450B2 (en) Semiconductor device
JPH02294063A (en) Semiconductor integrated circuit
JPH09191054A (en) Cmos transistor
JPH0794741A (en) Semiconductor device
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
JPH07221196A (en) High load driver and semiconductor integrated device for the same
JP2738602B2 (en) Semiconductor device
JPS63186463A (en) Complementary insulated-gate field-effect semiconductor device
JP2678081B2 (en) Semiconductor integrated circuit device
JPH03116863A (en) Semiconductor integrated circuit device
JPS61208863A (en) Cmos semiconductor device
JPS6298764A (en) Semiconductor device