JPS63150968A - Manufacture of mos semiconductor device - Google Patents

Manufacture of mos semiconductor device

Info

Publication number
JPS63150968A
JPS63150968A JP29657486A JP29657486A JPS63150968A JP S63150968 A JPS63150968 A JP S63150968A JP 29657486 A JP29657486 A JP 29657486A JP 29657486 A JP29657486 A JP 29657486A JP S63150968 A JPS63150968 A JP S63150968A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
gate
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29657486A
Other languages
Japanese (ja)
Inventor
Naoyuki Shigyo
直之 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29657486A priority Critical patent/JPS63150968A/en
Publication of JPS63150968A publication Critical patent/JPS63150968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate

Abstract

PURPOSE:To accelerate the operation of an element by forming a P-type impurity layer (P-pocket layer) for preventing a punch through in a self-aligning manner with respect to a gate in a desired small region, thereby reducing the bonding capacities of a source, a drain and a substrate. CONSTITUTION:After a gate oxide film 2 is formed on a P-type semiconductor substrate 1 and a gate electrode 3 is further formed on the film 2, an oxide film 4 is deposited on the whole surface. The film 4 is roughly bonded at a corner region 5 in contact with the electrode 3 and the substrate 1. Thus, an etching is advanced faster than the other region, and a thin oxide film 4a is formed on the region 5. Then, an ion implanted layer for preventing a punch through is implanted to the substrate 1. The film 4a is removed by etching to form by ion implanting source, drain regions 8, 9. Thus, a P-pocket layer 7 for preventing a punch-through is formed in a self-aligning manner with respect to the gate 3 and in the source, the drain and an intrinsic transistor region.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 不発明は、バンチスルー防止層を有するMOS型半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a MOS type semiconductor device having a bunch-through prevention layer.

(従来の技術) 最近のMOS集積回路の高集積化に伴ない素子の微細化
も著しいが、この微細化が進むにつれてMOSデバイス
の特性に問題がでてくる。例えば、短チヤネルMOSト
ランジスタにおいて印加されたドレイン電圧によってお
こるソース、ドレイン間のパンチスルー現象である。こ
の現象は、サブスレッショルド領域におけるドレイン電
流−ゲート電圧特性の悪化をもたらす。即ち、短チヤネ
ルMOSトランジスタでは容易にバンチスルー電流が流
れてドレイン電流が完全にビンチオフレないという好1
しくない特性を−示す。
(Prior Art) With the recent increase in the degree of integration of MOS integrated circuits, the miniaturization of elements has become remarkable, but as this miniaturization progresses, problems arise in the characteristics of MOS devices. For example, there is a punch-through phenomenon between the source and drain caused by the drain voltage applied to a short channel MOS transistor. This phenomenon causes deterioration of drain current-gate voltage characteristics in the subthreshold region. In other words, in a short channel MOS transistor, a bunch through current easily flows, and the drain current does not completely deplete.
exhibiting unusual characteristics.

これは、例えばMOSダイナミックRAMでは情報とし
て蓄積された電荷が1洩するという不都合をもたらす。
For example, in a MOS dynamic RAM, this causes a problem in that one charge stored as information leaks.

通常このパンチスルー現象を防止するために、ソース、
ドレインと逆導電型の高濃度のイオン注入層を、チャネ
ル領域内部の深い位置に形成することが行なわれる。と
ころが、このようなイオン注入層の形成は、基板の全面
にわたり行なわれる。
Usually, to prevent this punch-through phenomenon, the source,
A highly doped ion-implanted layer of a conductivity type opposite to that of the drain is formed deep inside the channel region. However, such an ion implantation layer is formed over the entire surface of the substrate.

基板バイアスをかけると空乏層が基板表面からチャネル
領域の下の前記イオン注入層まで伸び、これによりしき
い電圧の基板バイアスに対する依存性が生ずる。従って
、前記イオン注入層が高濃度であるので、その存在によ
って基板バイアスに大きな影響を与えてしまうのである
Applying a substrate bias causes a depletion layer to extend from the substrate surface to the implanted layer below the channel region, resulting in a dependence of the threshold voltage on the substrate bias. Therefore, since the ion implantation layer has a high concentration, its presence has a large influence on the substrate bias.

これを防ぐために、チャネルの下の領域にはパンチスル
ー防止用のイオン注入層を形成しないP−ポケットと呼
ばれる構造のMOS型半導体装置が提案されている。
In order to prevent this, a MOS type semiconductor device having a structure called a P-pocket has been proposed in which an ion implantation layer for punch-through prevention is not formed in the region below the channel.

すなわち、第4図(a)に示すように、まずP型基板(
lG上にゲートとなる酸化膜Iを形成し、更にその上に
多結晶シリコンよりなる電極局を形成した後、前記酸化
膜4′D及びゲート電極(6)をバターニングする。次
に、前記パターニングした電極ρをマスクとしてパンチ
スルー防止のためにP型不純物+i!!(Pボケッ)/
1)IJを基板&l□の深部にイオン→の注入により形
成し、さらに第4図(b)に示すようにソース、ドレイ
ン領域4L1Gをそれぞれゲート電極→をマスクとして
n型不純物イオン47)を注入し、基板40の表面付近
に形成する。しかる後、第4図(C)に示すように全面
にCVD法により絶縁膜tet被覆した後、コンタクト
ホール・場を形成して電極ωを埋め込む。ここで、図示
されていないがゲート→にも同様に電極が形成されてい
る。このようにして形成したMOS型半導体装置であれ
ば、パンチスルー防止用のP型不純物層四がチャネル領
域61)に存在しないので、しきい電圧の基板バイアス
依存性を弱めることができる。
That is, as shown in FIG. 4(a), first a P-type substrate (
After forming an oxide film I to serve as a gate on IG and further forming an electrode station made of polycrystalline silicon on it, the oxide film 4'D and the gate electrode (6) are patterned. Next, using the patterned electrode ρ as a mask, P-type impurity +i! is added to prevent punch-through. ! (P-blur)/
1) Form an IJ in the deep part of the substrate &l□ by implanting ions →, and then implant n-type impurity ions 47) into the source and drain regions 4L1G using the gate electrode → as a mask, as shown in FIG. 4(b). and is formed near the surface of the substrate 40. Thereafter, as shown in FIG. 4C, the entire surface is covered with an insulating film tet by CVD, and then a contact hole/field is formed and an electrode ω is buried therein. Here, although not shown, an electrode is similarly formed on the gate →. In the MOS type semiconductor device formed in this way, since the P-type impurity layer 4 for preventing punch-through is not present in the channel region 61), the dependence of the threshold voltage on the substrate bias can be weakened.

しかしながら、上記Pポケット構造のMOS型半導体装
置においては、ソース、ドレイン領域曲に)の下部の広
い範囲にわたりP型不純物層4が、前記ソース、ドレイ
ン領域(旧、(イ)と接しているために、その接合容量
によってソース、ドレインと基板間の容量が低減されず
、回路動作が高速化されないという問題がある。
However, in the above-mentioned P pocket structure MOS type semiconductor device, the P type impurity layer 4 is in contact with the source and drain regions (formerly, (a)) over a wide range below the source and drain regions. Another problem is that the capacitance between the source, drain, and substrate cannot be reduced due to the junction capacitance, and the circuit operation cannot be increased in speed.

(発明が解決しようとする問題点) 本発明は、上記構造のMOS型半導体装置の問題であっ
たノース、−ドレインと基板とのPn接合容量が低減さ
れず素子の高速化が実現できないという問題を解決し、
ソース、ドレイン間のパンチスルー現象を効果的に抑制
し、かつソース、ドレインと基板とのPn接合容量を低
下させ、高速動作の可能なMOSF’ETの製造方法を
提供することを目的とする。
(Problems to be Solved by the Invention) The present invention solves the problem of the MOS type semiconductor device having the above structure, which is that the Pn junction capacitance between the north, -drain and the substrate is not reduced, making it impossible to achieve high-speed devices. solve,
It is an object of the present invention to provide a method for manufacturing a MOSF'ET capable of high-speed operation by effectively suppressing the punch-through phenomenon between the source and drain, and reducing the Pn junction capacitance between the source and drain and the substrate.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明においてはバンチス
ルー防止用の不純物層をゲートに対して自己整合的にソ
ース、ドレイン及びチャネル領域と接する限定された領
域にのみ形成することにより、前記接合容量を低減し、
高速動作が可能となるようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, an impurity layer for preventing bunch-through is formed in a limited region in contact with the source, drain, and channel regions in a self-aligned manner with respect to the gate. The junction capacitance is reduced by forming only
It is designed to enable high-speed operation.

(作 用) Pn接合容量は、高濃度の接合部分の長さを減少させる
ととにより、低減できる。
(Function) The Pn junction capacitance can be reduced by reducing the length of the high concentration junction.

本発明では、高濃度のパンチスルー防止層をゲートに対
して自己整合的に、かつ小さな領域で形成せしめること
により容量の低減化と動作の高速化を図った。
In the present invention, the capacitance is reduced and the operation speed is increased by forming a highly concentrated punch-through prevention layer in a small region in self-alignment with the gate.

(実施例) 以下、本発明の詳細について図面を用いて説明する。(Example) Hereinafter, details of the present invention will be explained using the drawings.

第1の実施例 第1図は、本発明による第1の実施例を示す製造工程断
面図である。
First Embodiment FIG. 1 is a sectional view showing the manufacturing process of a first embodiment of the present invention.

まず、第1図(a)に示すように、P型半導体基板(1
)上に周知の技術によりゲート酸化膜(2)、更にその
上にゲート11r、極を形成した後、バイアス・スパッ
タ法又はプラズマCVD法により、全面に酸化膜(41
を例えば0.5μmの膜厚に堆積せしめる。
First, as shown in FIG. 1(a), a P-type semiconductor substrate (1
) on the gate oxide film (41
is deposited to a thickness of, for example, 0.5 μm.

次いで、例えば弗化アンモニウム等で化学的にエツチン
グを行なうと、第1図(b)に示すように前記酸化膜は
、ゲート電極(3)および基板(1)と接しでいるコー
ナー領域(5)では結合が疎であるため、他次いで、パ
ンチスルー防止のイオン注入層を形成するために、例え
ば、ボロンβ)イオン(6)を加速エネルギー120K
eV、  ドーズ量2X10”151”T:!基板(1
)に打込む。これにより、第1図(C)に示すようにゲ
ート(3)に対して自己整合的にかつ、後述するソース
及びドレインと真性トランジスタ領域内にバンチスルー
防止用のP型不純物4 (Pポケット層)(7)を形成
せしめることができる。
Next, when chemical etching is performed using, for example, ammonium fluoride, the oxide film is etched into corner regions (5) in contact with the gate electrode (3) and the substrate (1), as shown in FIG. 1(b). Since the bond is loose in this case, in order to form an ion-implanted layer to prevent punch-through, for example, boron β) ions (6) are accelerated at 120 K.
eV, dose 2X10”151”T:! Substrate (1
). As a result, as shown in FIG. 1(C), P-type impurity 4 (P pocket layer )(7) can be formed.

しかる後、第1図(d)に示すように前記酸化膜(4a
)をエツチング除去して、ソース、ドレイン領域+81
. +91をヒ素(As)  又はリン(P)のイオン
注入により形成する。
After that, as shown in FIG. 1(d), the oxide film (4a
) is removed by etching to form source and drain regions +81
.. +91 is formed by ion implantation of arsenic (As) or phosphorus (P).

以下、第1図(e)に示すように通常の工程に従い全面
にCVD法等により酸化膜u1を形成した後、RIB等
によりソース、ドレイン+81. +91にそれぞれ接
続するコンタクトホールα1)、 Q3を形成して、タ
ングステン等の電極材料を埋め込んで電極α3゜rsを
形成し、MOSFETを形成する。
Thereafter, as shown in FIG. 1(e), an oxide film u1 is formed on the entire surface by CVD or the like according to a normal process, and then the source, drain +81. Contact holes α1) and Q3 connected to +91 are formed, and an electrode material such as tungsten is buried to form an electrode α3°rs to form a MOSFET.

このようにして製造されたMOSFETは、Pボケク)
 M OS F E Tの利点であるしきい電圧の基板
バイアスに対する依存性の低減に加え、不純物層(7)
す々わちPポケット層がゲートに対して自己整合的に、
かつソース、ドレイン+81. +91領域の高電界と
なる部分にのみPポケット層を形成できるので基板とソ
ース、ドレインの接合容量が小さくでき、MOSFET
の高速化が図れる。
The MOSFET manufactured in this way is
In addition to reducing the dependence of the threshold voltage on the substrate bias, which is an advantage of MOS FET, the impurity layer (7)
In other words, the P pocket layer is self-aligned with the gate,
And source, drain +81. Since the P pocket layer can be formed only in the +91 region where the electric field is high, the junction capacitance between the substrate and the source and drain can be reduced, making it possible to reduce the MOSFET
The speed can be increased.

ここで、Pポケット層+71の位置は、真性トランジス
タ領域αυ内のゲート直下以外であればソース、ドレイ
ンと接していなくてもよい。
Here, the position of the P pocket layer +71 does not need to be in contact with the source or drain as long as it is not directly under the gate within the intrinsic transistor region αυ.

@2の実施例 第2図は、本発明の第2の実施例を示すLDD構造のP
ポケットMOSFETの製造工程を示す断面図である。
Embodiment @2 Figure 2 shows the P of the LDD structure showing the second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of a pocket MOSFET.

第1図と同一部分は閤−の符号を付して示した。The same parts as in FIG. 1 are indicated with the symbol 閤-.

まず、第2図(a)に示すようにP型半導体基板11)
上に通常の工程に従い、ゲート酸化膜(2)およびゲー
ト電極(3)を形成する。次いで、低濃度のn−不純物
領域■、@をイオン注入により形成した後、l X I
 Q ” / m ’以上のリン■を含む酸化膜@をプ
ラズマCVD法により全面に0.5μm堆積する。
First, as shown in FIG. 2(a), a P-type semiconductor substrate 11)
A gate oxide film (2) and a gate electrode (3) are formed thereon according to a normal process. Next, after forming low concentration n- impurity regions ■ and @ by ion implantation, l
An oxide film @ containing phosphorus (Q)/m' or more is deposited to a thickness of 0.5 μm over the entire surface by plasma CVD.

次に酸化膜@を弗化アンモニウムでエツチングすると第
2図(b)に示すようにゲート電極+3)および基板(
1)と接しているコーナー領域(5)では結合が疎であ
るため、他の領域よりもエツチングが進行し、前記コー
ナ領域(5)の膜厚の薄い酸化g (22a)が形ロン
(J3)イオン(6)を加速エネルギー120KeV1
ドーズ量2X10 7cmでイオン注入する。このイオ
ン注入により形成されるP型不純物層(7)は、ゲート
(3)に対して自己整合的にかつ、後述する高濃度のn
+ソース、ドレイン領域の端の領域に効果的に形成せし
めることができる。
Next, when the oxide film @ is etched with ammonium fluoride, the gate electrode +3) and the substrate (
Since the bonding is loose in the corner region (5) that is in contact with the corner region (5), etching progresses more than in other regions, and the thin oxide film (22a) in the corner region (5) becomes ) Accelerate ion (6) with energy 120KeV1
Ion implantation is performed at a dose of 2×10 7 cm. The P-type impurity layer (7) formed by this ion implantation is self-aligned with the gate (3) and has a high concentration of n, which will be described later.
+It can be effectively formed in the end regions of the source and drain regions.

その後、950℃の熱雰囲気中で30分間熱処lt+/
S (22b )となる。次に、この電化された膜(22b
)をRIE等のエツチングにより、第2図(e)に示す
ように、P型不純物層(7)の上部のゲート電極(3)
側壁に酸化膜(22C)を残存せしめる。
After that, heat treatment lt+/ for 30 minutes in a thermal atmosphere of 950°C
S (22b). Next, this electrified membrane (22b
) is etched by RIE or the like, as shown in FIG. 2(e), the gate electrode (3) above the P-type impurity layer (7) is removed.
An oxide film (22C) is left on the side wall.

しかる後、第2図(f)に示すようにゲート電極(3)
およびこのゲート電極(3)側壁の酸化膜(22C)を
マスクとして、高濃度のヒ素(As )又はリン(p)
のイオン(ハ)注入を行ないn+ソース、ドレイン領域
■。
After that, as shown in FIG. 2(f), the gate electrode (3)
Using the oxide film (22C) on the side wall of this gate electrode (3) as a mask, a high concentration of arsenic (As) or phosphorus (p) is applied.
Perform ion (III) implantation to form n+ source and drain regions.

に)を形成する。form).

以下、第1の実施例と同様に、DVD等により全面に酸
化M IIG ”を被覆した後、コンタクトホールQ1
1.Q3に電極(13,α4を埋み込み、MOSFhi
Tを形成する。ここで、酸化膜uGの形成はゲー)I1
1壁の酸化膜(22C)を完全に除去した後、行なって
ももちろんよい。
Hereinafter, similarly to the first embodiment, after coating the entire surface with oxide M IIG'' using a DVD or the like, the contact hole Q1
1. Q3 has an electrode (13, α4 embedded, MOSFhi
Form a T. Here, the formation of the oxide film uG is
It is of course possible to perform this after completely removing the oxide film (22C) on one wall.

この実施例により形成されたM OS型半導体装置であ
れば、第1の実施例で得られた効果の他にLDD構造構
造特電界の緩和も達成できる。
With the MOS type semiconductor device formed according to this embodiment, in addition to the effects obtained in the first embodiment, relaxation of the special electric field of the LDD structure can also be achieved.

又、この実施例では第2図(dJの工程において熱処理
?行ない酸化膜(22a)を事i化したが、次のように
してもよい。つtね、第2図(C)でイオン(6)を注
入後、酸化膜(22a)上に例えばリンをI X 10
”/15含む酸化膜をCVD法等で全面に被覆した後。
In addition, in this embodiment, the oxide film (22a) was transformed into an oxide film by heat treatment in the dJ process shown in FIG. 6), for example, phosphorus is injected onto the oxide film (22a) at I x 10
After covering the entire surface with an oxide film containing ``/15'' by CVD method or the like.

反応性イオンエツチングによりゲート(3)の側壁部分
に酸化膜を残存せしみる。以下、第2の実施例と全く同
様にして高濃度のソース、ドレイン領域を形成し、CV
D酸化膜を形成した後、電極い。
An oxide film is left on the side walls of the gate (3) by reactive ion etching. Thereafter, highly doped source and drain regions are formed in exactly the same manner as in the second embodiment, and CV
After forming the D oxide film, the electrodes are formed.

第3の実施例 次に第2の実施例の変形例である第3の実施例を、第3
図を用いて説明する。第2図と同一部分は、同一の符号
を付して示し、詳細な説明は省略する。
Third Example Next, a third example, which is a modification of the second example, will be described.
This will be explained using figures. Components that are the same as those in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

まず、第3図(a)に示すように多結晶シリコンよりな
るゲート(3)を形成し、全面をCVD酸化膜で被覆し
た後、この酸化膜を弗化アンモニウム等でエツチングす
ることにより、コーナ領域+51で膜厚の薄い酸化膜(
22a)に形成する。しかる後、ポロン(B)等のP型
の高濃度のイオン(6)を加速エネルギー 120Ke
V、  ドーズ量2x10 /1S でイオン注入し、
基板(1)内部にゲートに対して自己整合的にP型不純
物層(7)を形成するのは4@2の実施例と同様である
First, a gate (3) made of polycrystalline silicon is formed as shown in FIG. A thin oxide film in the region +51 (
22a). After that, high concentration P-type ions (6) such as poron (B) are accelerated with an energy of 120Ke.
V, ion implantation at a dose of 2x10/1S,
Similar to the 4@2 embodiment, a P-type impurity layer (7) is formed inside the substrate (1) in a self-aligned manner with respect to the gate.

この実施例では、次いで第3図(b)に示すように前記
酸化膜(22a)を除去した後、熱処理により前記多結
晶シリコンゲート(3)を酸化し、ゲート(3)の少な
くとも側壁に酸化膜(至)を形成せしめる。続いて、こ
の酸化膜■をマスクとしてヒ素(As )又はリン(P
)のイオンe3を注入し高濃度のn ソース、ドレイン
領域(至)、(に)を形成する。
In this embodiment, as shown in FIG. 3(b), after removing the oxide film (22a), the polycrystalline silicon gate (3) is oxidized by heat treatment, so that at least the side walls of the gate (3) are oxidized. Form a film. Next, using this oxide film as a mask, arsenic (As) or phosphorus (P) is applied.
) ions e3 are implanted to form high concentration n source and drain regions (to) and (to).

以下、第2の実施例と同様の工程でMOSFgTを製作
する。ここで、ゲート(3)に形成した酸化膜■は除去
してもよいし、そのtま、上から絶縁膜を被覆してもよ
い。
Thereafter, MOSFgT is manufactured using the same steps as in the second embodiment. Here, the oxide film (2) formed on the gate (3) may be removed, or an insulating film may be covered from above until then.

以上のようにしてMOS型半導体装置を形成すれば、パ
ンチスルー防止用のP型不純物層をゲートに対して自己
整合的に位置ずれなく基板内部の小領域に形成すること
ができる。又、このようにして形成されたMOS型半導
体装置であればソース、ドレインと基板との接合容量を
減らすことができ、高速化を図ることが可能である。
By forming a MOS type semiconductor device as described above, a P-type impurity layer for preventing punch-through can be formed in a small region inside the substrate in self-alignment with respect to the gate without misalignment. Further, in the MOS type semiconductor device formed in this manner, the junction capacitance between the source, drain and substrate can be reduced, and the speed can be increased.

本発明は、上記したggl乃至第3の実施例に何ら限定
されるものでな〈発明の要旨を逸脱しない範囲で適宜変
更してもよい。
The present invention is not limited to the above-mentioned embodiments to the third embodiment, and may be modified as appropriate without departing from the gist of the invention.

例えば、ゲートの形成後に全面に被覆された酸化膜のエ
ッチャントとしては、弗酸等、化学反応でエツチングす
るもので、結合が疎である部分のエツチングが進行する
ものであれば何でもよい。
For example, as the etchant for the oxide film that is entirely covered after the gate is formed, any etchant that etches through a chemical reaction, such as hydrofluoric acid, may be used as long as it etches the portions where the bonds are loose.

又、基板がn星の基板の場介は基板と同導電型のP型の
パンチスルー防止層を形成すればよい。
If the substrate is an n-star substrate, a P-type punch-through prevention layer of the same conductivity type as the substrate may be formed.

〔発明の効果〕〔Effect of the invention〕

以上、述べてきたように本発明によればパンチスルーを
防止するPポケット層をゲートに対して自己整合的に、
所望の小領域に形成でき、ソース、ドレインと基板との
接合容量を減らし、素子の高速化を図ることができるう
As described above, according to the present invention, the P pocket layer for preventing punch-through is formed in a self-aligned manner with respect to the gate.
It can be formed in a desired small area, reduces the junction capacitance between the source/drain and the substrate, and increases the speed of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

ag1図は、本発明の第1の実施例を示す工程断面図、
第2図は、本発明の第2の実施例を示す工程断面図、第
3図は、本発明の第3の実施例を示す工程断面図、第4
図は、従来例を説明するための工程断面図である。 l・・・・・・基板     2・・・・・・ゲート絶
縁膜3・・・・・・ゲート電極  4.4a・・・・・
・酸化膜7・・・・・・Pポケット層 8.9.・・・
・・・ソース、ドレイン22a、 22b、 22C・
・・・・・不純物添加の酸化膜24、25・・・・・・
ソース、ドレイン代理人弁理士  則 近 憲 佑 同     竹 花 喜久男 第1図 ¥ 2 ― 第2図 72θ 2f7 第2図 第3図
Figure ag1 is a process sectional view showing the first embodiment of the present invention,
FIG. 2 is a process sectional view showing a second embodiment of the present invention, FIG. 3 is a process sectional view showing a third embodiment of the invention, and FIG.
The figure is a process sectional view for explaining a conventional example. l...Substrate 2...Gate insulating film 3...Gate electrode 4.4a...
- Oxide film 7...P pocket layer 8.9. ...
...source, drain 22a, 22b, 22C・
....Oxide films 24, 25 with impurity addition...
Source, Drain Representative Patent Attorney Yudo Nori Chika Kikuo Takehana Figure 1 ¥ 2 - Figure 2 72θ 2f7 Figure 2 Figure 3

Claims (15)

【特許請求の範囲】[Claims] (1)半導体基板上にゲート部を形成する工程と、この
ゲート部および前記基板の全面に酸化膜を被覆する工程
と、前記ゲート側壁部分を被覆する酸化膜の膜厚が他の
酸化膜の部分の膜厚よりも薄くなるようにエッチングす
る工程と、前記基板と同導電型の高濃度不純物を前記薄
く形成した酸化膜部分から基板の深部にイオン注入し、
パンチスルー防止層として形成する工程と、少なくとも
前記ゲート両側の基板上に形成された酸化膜を除去した
後、ゲート部をマスクとして、その両側の基板表面にソ
ース、ドレイン形成する工程を具備したMOS型半導体
装置の製造方法。
(1) A step of forming a gate portion on a semiconductor substrate, a step of coating the gate portion and the entire surface of the substrate with an oxide film, and a step in which the thickness of the oxide film covering the gate sidewall portion is greater than that of other oxide films. a step of etching the film to be thinner than the thickness of the oxide film, and implanting ions of high concentration impurities of the same conductivity type as the substrate into the deep part of the substrate from the thinly formed oxide film part;
A MOS comprising a step of forming a punch-through prevention layer, and a step of removing at least an oxide film formed on the substrate on both sides of the gate, and then forming a source and a drain on the substrate surface on both sides using the gate part as a mask. A method for manufacturing a type semiconductor device.
(2)前記ゲート部は、半導体基板上に形成されたゲー
ト酸化膜と、この酸化膜上に形成されたゲート電極から
形成されたものである特許請求の範囲第1項記載のMO
S型半導体装置の製造方法。
(2) The MO according to claim 1, wherein the gate portion is formed from a gate oxide film formed on a semiconductor substrate and a gate electrode formed on this oxide film.
A method for manufacturing an S-type semiconductor device.
(3)前記ゲート側壁部分を被覆する酸化膜とは、ゲー
ト側壁と基板が形成するコーナ部分の酸化膜である特許
請求の範囲第1項記載のMOS型半導体装置の製造方法
(3) The method for manufacturing a MOS type semiconductor device according to claim 1, wherein the oxide film covering the gate sidewall portion is an oxide film at a corner portion formed by the gate sidewall and the substrate.
(4)前記パンチスルー防止層は、ゲートの下のソース
、ドレイン端部に接するように形成しておくことを特徴
とする特許請求の範囲第1項記載のMOS型半導体装置
の製造方法。
(4) The method for manufacturing a MOS type semiconductor device according to claim 1, wherein the punch-through prevention layer is formed so as to be in contact with the end portions of the source and drain under the gate.
(5)前記酸化膜のエッチングは、弗化アンモニウムを
用いて行なうことを特徴とする特許請求の範囲第1項記
載のMOS型半導体装置の製造方法。
(5) The method for manufacturing a MOS type semiconductor device according to claim 1, wherein the etching of the oxide film is performed using ammonium fluoride.
(6)ゲート部を形成する工程と、酸化膜を被覆する工
程の間に、ゲート部をマスクとして前記基板表面に基板
と逆導電型の低濃度不純物層を形成する工程を含む特許
請求の範囲第1項記載のMOS型半導体装置の製造方法
(6) A claim that includes a step of forming a low concentration impurity layer of a conductivity type opposite to that of the substrate on the substrate surface using the gate portion as a mask between the step of forming the gate portion and the step of covering the oxide film. 2. A method for manufacturing a MOS semiconductor device according to item 1.
(7)ソース、ドレインは、前記低濃度不純物層よりも
深くイオン注入して形成することを特徴とした特許請求
の範囲第6項記載のMOS型半導体装置の製造方法。
(7) The method of manufacturing a MOS type semiconductor device according to claim 6, wherein the source and drain are formed by ion implantation deeper than the low concentration impurity layer.
(8)パンチスルー層の形成後、ソース、ドレインの形
成前に前記酸化膜をエッチング除去し、ゲート電極を酸
化膜で被覆する工程を具備した特許請求の範囲第1項及
び第2項記載の半導体装置の製造方法。
(8) The method according to claims 1 and 2, further comprising a step of etching away the oxide film after forming the punch-through layer and before forming the source and drain, and covering the gate electrode with the oxide film. A method for manufacturing a semiconductor device.
(9)半導体基板上にゲート部を形成する工程と、この
ゲート部および前記基板の全面に不純物を含有した酸化
膜を被覆する工程と、前記ゲート側壁部分を被覆する酸
化膜の膜厚が他の酸化膜の部分の膜厚よりも薄くなるよ
うにエッチングする工程と、基板と同導電型の高濃度不
純物を前記薄く形成した酸化膜部分から基板の深部にイ
オン注入し、パンチスルー防止層として形成する工程と
、次いで前記酸化膜の少くとも薄く形成した部分を肉厚
化した後、エッチングしてゲート側壁に酸化膜を残す工
程と、前記ゲート部及びゲート側壁の酸化膜をマスクと
してイオン注入を行ないソース、ドレインを形成する工
程とを具備したMOS型半導体装置の製造方法。
(9) A step of forming a gate portion on a semiconductor substrate, a step of coating the gate portion and the entire surface of the substrate with an oxide film containing impurities, and a step of forming the oxide film covering the gate sidewall portion in a different thickness. A process of etching the oxide film so that it is thinner than the thickness of the oxide film, and implanting ions of highly concentrated impurities of the same conductivity type as the substrate deep into the substrate from the thinly formed oxide film to form a punch-through prevention layer. a step of forming the oxide film, a step of thickening at least the thinly formed portion of the oxide film, and then etching it to leave the oxide film on the gate sidewall; and a step of ion implantation using the oxide film of the gate portion and the gate sidewall as a mask. A method for manufacturing a MOS type semiconductor device, comprising a step of forming a source and a drain.
(10)ゲート部を形成した後、酸化膜を被覆する前に
、このゲート部をマスクとして基板表面に基板と逆導電
型の低濃度不純物層を形成する特許請求の範囲第9項記
載のMOS型半導体装置の製造方法。
(10) The MOS according to claim 9, wherein after forming the gate portion and before coating the oxide film, a low concentration impurity layer of a conductivity type opposite to that of the substrate is formed on the substrate surface using the gate portion as a mask. A method for manufacturing a type semiconductor device.
(11)ソース、ドレインは前記低濃度不純物層よりも
深くイオン注入して形成するものである特許請求の範囲
第10項記載のMOS型半導体装置の製造方法。
(11) The method of manufacturing a MOS type semiconductor device according to claim 10, wherein the source and drain are formed by ion implantation deeper than the low concentration impurity layer.
(12)前記最初のエッチングは、弗化アンモニウムを
用いて行なう特許請求の範囲第9項記載のMOS型半導
体装置の製造方法。
(12) The method for manufacturing a MOS type semiconductor device according to claim 9, wherein the first etching is performed using ammonium fluoride.
(13)前記不純物を含有した酸化膜は、1×10^2
^0cm^−^3以上のリンを含むものである特許請求
の範囲第9項記載のMOS型半導体装置の製造方法。
(13) The impurity-containing oxide film has a size of 1×10^2
The method of manufacturing a MOS type semiconductor device according to claim 9, which contains phosphorus of ^0 cm^-^3 or more.
(14)前記酸化膜の肉厚化は、前記酸化膜を熱処理す
ることにより行なう特許請求の範囲第9項記載のMOS
型半導体装置の製造方法。
(14) The MOS according to claim 9, wherein the oxide film is thickened by heat-treating the oxide film.
A method for manufacturing a type semiconductor device.
(15)前記酸化膜の肉厚化は、前記酸化膜上に、新た
な酸化膜を被覆することにより行なう特許請求の範囲第
9項記載のMOS型半導体装置の製造方法。
(15) The method of manufacturing a MOS type semiconductor device according to claim 9, wherein the oxide film is thickened by coating a new oxide film on the oxide film.
JP29657486A 1986-12-15 1986-12-15 Manufacture of mos semiconductor device Pending JPS63150968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29657486A JPS63150968A (en) 1986-12-15 1986-12-15 Manufacture of mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29657486A JPS63150968A (en) 1986-12-15 1986-12-15 Manufacture of mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS63150968A true JPS63150968A (en) 1988-06-23

Family

ID=17835300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29657486A Pending JPS63150968A (en) 1986-12-15 1986-12-15 Manufacture of mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS63150968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209105A (en) * 1992-11-13 1994-07-26 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
JP2002009283A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Semiconductor device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209105A (en) * 1992-11-13 1994-07-26 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
EP0607658A2 (en) * 1992-11-13 1994-07-27 AT&T Corp. MOSFET manufacture
EP0607658A3 (en) * 1992-11-13 1995-08-30 At & T Corp MOSFET manufacture.
JP2002009283A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US4342149A (en) Method of making very short channel length MNOS and MOS devices by double implantation of one conductivity type subsequent to other type implantation
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6566208B2 (en) Method to form elevated source/drain using poly spacer
JPS63150968A (en) Manufacture of mos semiconductor device
JP2633104B2 (en) Method for manufacturing semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JP2757491B2 (en) Method for manufacturing semiconductor device
JPS61234077A (en) Mis type field effect transistor
KR100197656B1 (en) Fabricating method of s.o.i. semiconductor device
JP3316023B2 (en) Semiconductor device
JPH0621451A (en) Manufacture of semiconductor device
JPH07273329A (en) Semiconductor device and its manufacture
KR100260366B1 (en) Method for fabricating semiconductor device
JPS6381978A (en) Semiconductor integrated circuit device
JPH0521455A (en) Manufacture of semiconductor integrated circuit device
JP2931568B2 (en) Semiconductor device and manufacturing method thereof
JP3656867B2 (en) Manufacturing method of fine MOS transistor
JPH053135B2 (en)
JPH01187870A (en) Semiconductor device and its manufacture
JP3123598B2 (en) LSI and manufacturing method thereof
JPH05335568A (en) Semiconductor device and manufacture
JPS63150965A (en) Manufacture of semiconductor device
JPH0629383A (en) Production of semiconductor device
JPS6346773A (en) Manufacture of mos transistor
JPH07106569A (en) Semiconductor device and its manufacture