JPS63149316A - Production of bar steel and wire rod by hot continuous rolling mill - Google Patents

Production of bar steel and wire rod by hot continuous rolling mill

Info

Publication number
JPS63149316A
JPS63149316A JP29430986A JP29430986A JPS63149316A JP S63149316 A JPS63149316 A JP S63149316A JP 29430986 A JP29430986 A JP 29430986A JP 29430986 A JP29430986 A JP 29430986A JP S63149316 A JPS63149316 A JP S63149316A
Authority
JP
Japan
Prior art keywords
rolled material
rolling
cooling
point
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29430986A
Other languages
Japanese (ja)
Inventor
Koro Takatsuka
公郎 高塚
Mitsuru Moritaka
森高 満
Motoo Sato
始夫 佐藤
Yoichi Akutagawa
芥川 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29430986A priority Critical patent/JPS63149316A/en
Publication of JPS63149316A publication Critical patent/JPS63149316A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a bar steel and wire rod having prestructure, which easily attains spheroidizing structure, by hot-rolling a carbon steel and adjusting recuperating heat time till coming to the next rolling mill after forced-cooling the surface part to the Ms point or lower. CONSTITUTION:After heating the carbon steel billet containing 0.03-1.5% C in a heating furnace 20, it is rough-rolled by a rougher rolling mill line 21 and an intermediate rolling mill line 22. Next, the rolled material is forcedly cooled in the intermediate cooling zone 24 at the Ms point or lower on the surface part, to form the quenching structure, such as martensite. Next, by adjusting the recuperating heat time till the rolled material attains the finish rolling mill line 23, the temp. of the central part of rolled material is lowered to the Ar1 point or lower, to a pearlite transformation. Then, plate-like or bar-like carbide is cut into pieces by the finish rolling and the prestructure, which easily forms the spheroidizing structure, is obtd. Next, the rolled material is carried to a cooling bed 26 through the latter part cooling zone 25.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は棒鋼及び線材の熱間連続圧延による製造に係り
、特に熱間連続圧延工程により或いはその直後の温度制
御により、以後の球状化焼なましで球状化組織を得やす
くし或いは球状化焼きなまし処理を省略して直接球状化
ffi織を得ることが可能な方法に関する。 (従来の技術) 冷間鍛造用鋼や軸受鋼、工具鋼などの高炭素鋼では、冷
間での加工に先立ち、延性を付与したり。 硬さを減じてその加工性を改善することを目的として、
一般に球状化焼なまし処理が行われることが多い。この
球状化焼なましの方法としては、従来から、■A1点直
下の温度に適当時間加熱保持した後、冷却する長時間加
熱法、■A0点とA1点との間の二相域に加熱後、徐冷
して変態を終了させる徐冷法、■A□点をはさんでその
直上と直下の温度に繰り返し加熱冷却する繰り返し法、
等々の方法がある。 このような球状化焼なまし処理は、熱間圧延によって棒
鋼、線材などに成形した後、別ラインの熱処理炉で所定
の温度まで再加熱して実施されるのが通常であるが、こ
れには一般に10〜15時間程度の極めて長い処理時間
を要するため、生産性が低く、熱処理コストが高くなり
、またエネルギー節減等の観点からも、上記熱処理方法
は好ましいとは云えない。 そこで、そのための改讐策としては、球状化を容易にす
る方法として前組織を調整する方法、或いは、更には、
熱間圧延後に実施する球状化焼なまし処理そのものを省
略する方法が試みられている。 前者の方法は、例えば、熱間圧延後の急冷によってマル
テンサイトのような焼入組織或いは中間組織とする方法
であるが、この方法により熱間圧延後の急冷で圧延材全
断面積にわたって上記焼入組織或いは中間組織とするに
は、多量の冷却水の使用及び/又は多くの冷却時間を費
しても容易ではなく、圧延材中心部に層状パーライトが
生成するのが通例である。したがって、所望の前組織の
調整が可能なのは上記焼入組織或いは中間組織が比較的
容易に得られる圧延材表面部に限られるという問題があ
る。 また、後者の球状化焼なまし処理自体を省略できる方法
、すなわち、熱間圧延時及び圧延後の温度コントロール
等によって球状化組織を直接得る方法としては、例えば
特開昭59−136421号、同59−13024号な
どに示されている方法がある。しかし、いずれの方法も
熱間圧延中にこれらの温度コントロールを圧延材中心部
に至る全断面にわたって実現するのは不可能であり、熱
間圧延仕上りで圧延材全断面にわたる球状化組織は得ら
れないという問題がある。 本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、熱間連続圧延により以後の球状化焼
なまし処理で圧延材全断面にわたって球状化組織を得や
すい前組織を実現する方法。 更には圧延直後の温度制御により圧延材全断面にわたっ
て直接球状化組織を得る方法を提供することを目的とす
るものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、まず熱間連続圧
延の圧延仕上りで、以後の球状化焼なまし処理により圧
延材中心部まで全断面内にわたって球状化組織の形成が
容易となるような球状化の前組織を得る圧延方法を見い
出すべく実験研究を重ねた。その結果、仕上圧延後の圧
延材には一般にオーステナイト状態からの変態によって
以後の熱処理工程で球状化しにくい層状パーライト組織
がその中心部或いは断面内の他の領域にも存在するので
、熱間連続圧延の圧延仕上りで所望の前組織を実現する
ためにはこの層状パーライト組織の板状或いは棒状の炭
化物を熱間連続圧延工程中での圧下によって分断乃至分
断促進させておく必要があるが、そのためには通常仕上
圧延後に生じるオーステナイト組織からのパーライト変
態を熱間連続圧延工程中、特に仕上圧延前に終了させて
おけばよいことを着目し、そのための具体的方策につい
て更に研究を重ねたところ、圧延工程中で強冷と強冷後
の復熱時間の調節により圧延材断面内の未変態組織であ
るオーステナイト組織の変態を完了させると、少なくと
も仕上圧延での加工により板状或いは棒状の炭化物が分
断乃至分断促進され、仕上り時には以後の球状化焼なま
し処理で球状化組織の形成の容易となる前組織が得られ
ることを見い出したものである。 更に本発明者の研究によれば、この仕上り材は。 勿論以後の球状化焼なまし処理で容易に且つ短時間で球
状化組織となるが、上記前組織を有するため、このよう
な旧来のオフラインによる球状化処理によらず、圧延直
後に加熱徐冷する適切な温度制御を行うならば、圧延過
程で調整された組織中の炭化物の一部がオーステナイト
中へ固溶し、その後の徐冷過程において固溶炭素が残存
炭化物を核として析出し、成長することにより直接球状
化組織が得られることを見い出したものである。 すなわち、本発明に係る熱間連続圧延による棒鋼及び線
材の製造方法は、0.03〜1.5%Cを含む炭素鋼又
は合金鋼の棒鋼又は線材の熱間連続圧延工程の途中で、
圧延材表層部をMs点以下に強冷し、該圧延材が次圧延
機に到達するまでの間の強冷後の復熱時間を調節するこ
とにより、復熱過程において圧延材中心部をAr1点点
以下温度に降下させてパーライト変態させ、更に必要に
応じて、仕上圧延直後にAc1点〜Ac3点の温度域に
加熱した後、50℃/hr以下の冷却速度で徐冷するこ
とを特徴とするものである。 以下に本発明を実施例に基づいて詳細に説明する。 第1図は球状化組織の形成が容易となるような組織を圧
延仕上りで実現するための熱間連続圧延ラインの一例を
示したもので、図中、20はビレット等を加熱するため
の加熱炉で、この後段にはNα1〜NQ8の圧延機から
なる粗圧延機列21と、&9〜Na12の圧延機からな
る中間圧延機列22と、413〜&16の圧延機からな
る仕上圧延機列23が直列状に配置されている。24は
中間圧延機列22と仕上圧延機列23との間に設けられ
た中間冷却帯であり、この冷却帯24で圧延材に供給す
る冷却水流量はプロセスコンピュータを含む制御装置2
9により制御されるようになっている。30.31.3
2は圧延材の表面温度を測定する温度計であり、25は
仕上圧延機列23と冷却床26との間に設けられた後段
冷却帯である。 上記圧延ラインにおいて、加熱炉20から抽出されたビ
レット等は粗圧延機列21及び中間圧延機列22で順次
圧延され、この圧延材を中間冷却帯24で強冷により表
層部をMs点以下としてマルテンサイト等の焼入れ組織
とし、次いで中間冷却帯24と仕上圧延機列23との間
での表層部の復熱過程において復熱時間を調節すること
により中心部の温度をAr1点点以下してパーライト変
態を生じさせ、仕上圧延前に圧延材断面内の未変態組織
(オーステナイト組織)の変態を完了させる。 これにより、仕上圧延機列23での圧延開始前の組織と
しては、第2図に圧延材表層部及び中心部の温度パター
ンを模型化したCCT曲線に示すように、圧延材表層部
はマルテンサイト等の焼入組織で、同中心部はフェライ
ト・パーライト組織となり、その他の断面領域では中間
組織を含むこれらの混合組織が得られる。勿論、中間冷
却帯24を粗圧延機21と中間圧延機列22との間に設
けても同様の結果が得られる。 このような熱間連続圧延工程中、特に仕上圧延前に上記
組織に調整しておく理由は、これらの組織の中で最も球
状化しにくい層状パーライト組織は次の仕上圧延機列2
3での圧延加工によってその板状或いは棒状の炭化物が
分断乃至分断促進されて球状化組織の形成が容易な前組
織となると共に、圧延材表層部の焼入組織等は圧延加工
による歪エネルギーの増加などによって、より球状化組
織の形成が容易な前組織となるためである。 そのため、具体的には、まず棒鋼又は線材の素材となる
0、03〜1.5%+1%のCを含む炭素鋼又は合金鋼
のビレット等を加熱後、粗圧延又は粗圧延と中間圧延を
実施し、中間冷却帯で水等の冷却剤を用いて強制冷却す
るが、強制冷却開始前の圧延材断面的組織としては、変
態後の組織の均一性の点でオーステナイト状態であるこ
とが望ましいが、断面内に一部フエライト等の組織が存
在していても1本発明の効果を何ら損うものではない。 本発明の効果を得るために必要な冷却水流量及び復熱時
間を決定するに当たっては、中間冷却帯の使用長さは必
要冷却水量に応じて変化するものであること、圧延材中
心部の温度をAr1点以下とするに必要な復熱時間は主
に中間冷却帯での温度降下量、圧研材の直径や断面円温
度分布等の物理的要因によって支配されるものであるこ
とを考慮する必要がある。勿論、中間冷却帯の長さ及び
その後の復熱域(中間冷却帯と次スタンド間の距離)の
長さが余りに大きすぎると、圧延機列間或いは圧延機間
の距離が長くなってレイアウト上、操業上好ましくなく
、また余りに短かすぎると、必要な温度降下量及び復熱
時間が得られなくなり、また中間冷却帯と次スタンド間
に通常配置されるルーパ等の設置が困難になる等の設備
上の支障が生ずるので、中間冷却帯の長さ及び中間冷却
帯と次スタンド間の距離(復熱域)は、通常、各々10
〜15m程度に設定しておくのが適当である。 このような設備を使用する場合、圧延材表層部の温度を
Ms点以下とし、その後の復熱過程において中心部をA
r1点以下の温度にしてパーライト変態を生じさせるた
めに必要な冷却水流量は、圧延材直径に対して第3図に
示すような流量になる。 但し、同図は実機において詳細に把握した冷却帯冷却能
の実験式を用いた温度解析により求めた結果であり、A
r□点は厳密には鋼種、冷却速度等によって異なるが、
ここではAr1点〜550℃とみなした。またこの冷却
水流量は、中間冷却帯及び復熱域の長さが各々15mで
、抽出温度をオーステナイト化に必要な最小限の温度(
〜800℃)、圧延速度を操業可能な程度に最も遅くし
た場合(粗圧延機列のNα1スタンドで0.1m/5e
e)の値であり1本発明を実施するための必要最小流量
である。 この冷却水流量を圧延材直径に対して表示すれば、次式
(1)のようになる。 ここで、W:冷却水流量(rn″/hr)D:圧延材直
径(m+=) なお、中間冷却帯での冷却水流量としては、多いほど冷
却帯での温度降下量を大きくとることができ、強冷後の
復熱過程において中心部の温度をAr1点以下としてパ
ーライト変態を生じさせるのに必要な復熱時間が短かく
できるので操業上有利であるが、余りに多すぎると冷却
設備や所要動力が大規模となり、実用上好ましいもので
はない。 中間冷却帯での実用上の最大流量は冷却域1m当たりl
oom’/hr程度であるので、ここでは上述の中間冷
却帯の長さを考慮して必要最大流量を1500 rn’
/hrとした。 次に、必要な最小復熱時間について説明する。 前述のように、圧延速度を遅くして冷却時間を長くし、
冷却水流量を多くすれば、温度降下量を大きくとること
ができるため、強冷後の復熱過程において圧延材中心部
の温度をAr□点以下としてパーライト変態させるため
の復熱時間は短かくなる。したがって、圧延速度を操業
可能な程度に最も遅くすることによって冷却時間を最も
長くし、中間冷却帯での最大流量を用いて冷却した後の
復熱過程において圧延材中心部がA r 1点以下とな
るような時間が必要最小復熱時間となる。 この必要最小復熱時間は圧延材直径に対して第4図に示
すようになり、次式(2)のように表わすことができる
。 Trmin=0.00015D2−0.002D+0.
60  ・=(2)ここで、Trmin:必要最小復熱
時間(see)D :圧延材直径(+=m) なお、この値は、前述の中間冷却帯長さの場合において
、圧延速度を操業可能な程度に最も遅くしく粗圧延機列
のNα1スタンドで0 、1 m /5ec)、実用上
の最大流量(冷却帯1m当たり100 rn’/hr)
を使用したときに強制後の復熱過程において圧延材中心
部の温度がAr1点点以下なるような復熱時間を上述の
ような実機で詳細に把握した冷却帯冷却能の実験式を用
いた温度解析によって算出した値である。 一方、復熱時間の上限値は、設備長さく中間冷却帯及び
復熱域の各長さ)及び圧延速度の最下限値から定まるも
のであり、前述の設備長さく中間冷却帯及び復熱域の各
長さ15m)で圧延速度を操業可能な程度に最も遅くし
た場合(粗圧延機列のNo1スタンドで0.1m/5e
c)、圧延材直径に対して第5図に示すようになり、次
式(3)のように表わすことができる。但し、使用冷却
帯長さは冷却水流量によって調整するため、復熱域の最
大長さを25mとした。 Trmax= 0 、015 D”      ・・・
(3)ここで、Tra+ax:復熱時間の上限値(se
e)D :圧延材直径(、n、) なお、上記例では、圧延材表層部の温度をMs点以下と
し、その後の復熱過程において中心部をAr1点以下の
温度としてパーライト変態を生じさせるための強冷を中
間圧延機列22と仕上圧延機列23との間に設けた中間
冷却帯によって実施する例を示したが、圧延パススケジ
ュール等の操業上の必要性に応じて、粗圧延機列21と
中間圧延機列22との間、或いは各圧延機間に冷却設備
を配置することにより実施してもよいことは云うまでも
ない。 以上の態様により、仕上圧延役得られる圧延材は全断面
内に球状化の容易な組織が形成される。 このような前組織を有する圧延材に対して1本発明では
、好ましくは、仕上圧延直後に適切な温度制御を行って
圧延材全断面にわたって直接球状化組織を得るものであ
る。すなわち、該圧延材を仕上圧延直後にAc1点〜A
c、点の温度範囲に加熱して炭化物の一部をオーステナ
イト中に固溶させ、その後の徐冷過程で固溶炭素を残存
炭化物を核として析出させ、成長させることによって直
接球状化組織を得る。なお、Ac、点を超える温度域に
加熱すると、炭化物のオーステナイトへの溶は込み量が
多くなって以後の徐冷過程での炭化物の析出核が消失し
てしまい、球状化が困難となり、勿論、Ac1点未満で
はオーステナイト中への炭化物の溶は込みが不可能とな
る。徐冷過程では少なくとも650℃までの温度域を5
0℃/hr以下の冷却速度度徐冷するのが好ましい。 第6図はそのための熱間連続圧延ラインの一例を示した
もので、第1図のラインに対し、冷却床26の後段に、
仕上圧延機23を通過した圧延材を加熱及び徐冷するだ
めの熱処理炉27が配置されている。 第7図は、1550ビレツトからの30φ捧鋼(545
C)への圧延過程における中間冷却帯24での強制水冷
及び水冷後、仕上圧延機列23に到達するまでの復熱過
程で圧延材全所面内組織のマルテンサイト、パーライト
等への変態を終了させた後、仕上圧延を実施し、その直
後に熱処理炉27において740℃に加熱し、この温度
域から650℃までを徐冷した場合の各種冷却速度と得
られた硬さの関係を示したものである。 同図かられかるように、冷却速度が50℃/hr以下に
なると硬さが顕著に低下している。すなわち、これらの
範囲内の冷却速度であれば、徐冷過程で炭化物の析出、
成長が生じて球状化組織が得られる。一方、冷却速度が
およそ50℃/hrを超えると、硬さが比較的高いレベ
ルにとどまっている。これは、粒状炭化物或いは層状パ
ーライトを含んだ組織となるためであり、このような冷
却速度では良好な球状化組織は得られない。また、およ
そ650℃よりも高い温度域で徐冷を終了すれば、その
後の冷却過程において層状パーライトが混入した組織に
なりやすく、良好な球状化m織が得られない。 なお、第7図は、圧延材中心部の仕上圧延前の組織がフ
ェライト+パーライトの場合について示したものである
が、圧延材表層部の焼入れ組織の場合についても同様に
上記の冷却速度の範囲内(≦50℃/hr)で徐冷過程
中に炭化物が析出、成長して球状化組織が得られる。 このように、別ラインで球状化焼なまし処理をしなくと
も、仕上圧延後に適切な温度制御を行えば、圧延過程で
調整された粒状炭化物組織等の前組織から直接、圧延材
全断面にわたって良好な球状化組織を短時間内に得るこ
とが可能となる。
(Industrial Application Field) The present invention relates to the manufacture of steel bars and wire rods by hot continuous rolling, and in particular, the spheroidized structure is formed in the subsequent spheroidizing annealing by the continuous hot rolling process or by controlling the temperature immediately thereafter. The present invention relates to a method that can easily obtain a spheroidized FFI fabric or directly obtain a spheroidized FFI fabric by omitting a spheroidizing annealing process. (Conventional technology) For high carbon steels such as cold forging steel, bearing steel, and tool steel, ductility is imparted to them prior to cold working. With the aim of reducing hardness and improving its workability,
Generally, spheroidizing annealing treatment is often performed. Conventionally, methods for this spheroidizing annealing include: (1) a long-time heating method in which heating is maintained at a temperature just below the A1 point for an appropriate period of time, and then cooling; (2) heating to a two-phase region between the A0 point and the A1 point; A slow cooling method in which the transformation is then completed by slow cooling; ■ A repeated method in which the A
There are other methods. This type of spheroidizing annealing treatment is normally carried out by hot rolling to form a steel bar, wire rod, etc., and then reheating it to a predetermined temperature in a heat treatment furnace on a separate line. Generally, the above heat treatment method requires an extremely long treatment time of about 10 to 15 hours, resulting in low productivity and high heat treatment cost.Also, the above heat treatment method cannot be said to be preferable from the viewpoint of energy saving. Therefore, as a remedy for this, there is a method of adjusting the anterior tissue as a method to facilitate spheroidization, or furthermore,
Attempts have been made to omit the spheroidizing annealing treatment performed after hot rolling. The former method is, for example, a method in which a quenched structure such as martensite or an intermediate structure is formed by quenching after hot rolling. It is not easy to obtain a deep structure or an intermediate structure even if a large amount of cooling water and/or a long cooling time are used, and layered pearlite is usually formed in the center of the rolled material. Therefore, there is a problem in that the desired pre-structure can be adjusted only in the surface portion of the rolled material where the above-mentioned hardened structure or intermediate structure can be obtained relatively easily. In addition, as a method that can omit the latter spheroidizing annealing process itself, that is, a method of directly obtaining a spheroidized structure by temperature control during and after hot rolling, there are, for example, JP-A-59-136421; There is a method shown in No. 59-13024. However, with either method, it is impossible to achieve temperature control over the entire cross section of the rolled material during hot rolling, and it is impossible to obtain a spheroidized structure over the entire cross section of the rolled material in the hot rolled finish. The problem is that there is no. The present invention has been made in order to solve the problems of the above-mentioned conventional technology, and the present invention has been made by continuously hot rolling to create a pre-structure that makes it easy to obtain a spheroidized structure over the entire cross section of the rolled material in the subsequent spheroidizing annealing treatment. How to make it happen. Furthermore, it is an object of the present invention to provide a method for directly obtaining a spheroidized structure over the entire cross section of a rolled material by controlling the temperature immediately after rolling. (Means for Solving the Problems) In order to achieve the above object, the present inventor first developed a method for rolling the finished product of continuous hot rolling, and then applying a subsequent spheroidizing annealing treatment to the center of the rolled material within the entire cross section. Experimental research was carried out to find a rolling method to obtain a pre-spheroidized structure that would facilitate the formation of a spheroidized structure. As a result, the rolled material after finish rolling generally has a layered pearlite structure in the center or other regions within the cross section due to transformation from the austenite state that is difficult to spheroidize in the subsequent heat treatment process. In order to achieve the desired prestructure in the rolling finish, it is necessary to break up or accelerate the breakup of the plate-like or rod-like carbides in the layered pearlite structure by rolling during the continuous hot rolling process. focused on the fact that the pearlite transformation from the austenite structure that normally occurs after finish rolling should be completed during the continuous hot rolling process, especially before finish rolling, and after further research on specific measures for this purpose, they found that When the transformation of the untransformed austenite structure in the cross section of the rolled material is completed by adjusting the strong cooling and recuperation time after strong cooling during the process, the plate-like or rod-like carbides are separated at least by finish rolling. It has been found that a pre-structure is obtained in which the spheroidized structure is facilitated in the subsequent spheroidizing annealing treatment. Furthermore, according to the research of the present inventor, this finishing material. Of course, the subsequent spheroidizing annealing process easily turns into a spheroidal structure in a short time, but since it has the above-mentioned previous structure, it can be heated and slowly cooled immediately after rolling without using the conventional offline spheroidizing process. If proper temperature control is carried out, some of the carbides in the structure adjusted during the rolling process will dissolve into the austenite, and during the subsequent slow cooling process, the solute carbon will precipitate with the remaining carbides as nuclei, causing growth. It was discovered that a spheroidized tissue could be obtained directly by doing this. That is, in the method for producing steel bars and wire rods by hot continuous rolling according to the present invention, during the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C,
By strongly cooling the surface layer of the rolled material to below the Ms point and adjusting the reheating time after the hard cooling until the rolled material reaches the next rolling mill, the central part of the rolled material is heated to Ar1 in the reheating process. It is characterized by lowering the temperature to below the point point to cause pearlite transformation, and if necessary, immediately after finish rolling, heating it to a temperature range of Ac1 point to Ac3 point, and then slowly cooling it at a cooling rate of 50 ° C / hr or less. It is something to do. The present invention will be explained in detail below based on examples. Figure 1 shows an example of a hot continuous rolling line for achieving a rolled finish with a structure that facilitates the formation of a spheroidized structure. In the furnace, in the latter stage there is a rough rolling mill row 21 consisting of rolling mills Nα1 to NQ8, an intermediate rolling mill row 22 consisting of rolling mills &9 to Na12, and a finishing rolling mill row 23 consisting of rolling mills 413 to &16. are arranged in series. 24 is an intermediate cooling zone provided between the intermediate rolling mill row 22 and the finishing rolling mill row 23, and the flow rate of cooling water supplied to the rolled material in this cooling zone 24 is controlled by a control device 2 including a process computer.
9. 30.31.3
2 is a thermometer that measures the surface temperature of the rolled material, and 25 is a rear cooling zone provided between the finishing rolling mill row 23 and the cooling bed 26. In the above rolling line, billets and the like extracted from the heating furnace 20 are sequentially rolled in a rough rolling mill row 21 and an intermediate rolling mill row 22, and the rolled material is strongly cooled in an intermediate cooling zone 24 to bring the surface layer below the Ms point. A quenched structure such as martensite is formed, and then, by adjusting the recuperation time in the reheating process of the surface layer between the intermediate cooling zone 24 and the finishing rolling mill row 23, the temperature in the center is reduced to below 1 point Ar and becomes pearlite. Transformation is caused, and the transformation of the untransformed structure (austenite structure) in the cross section of the rolled material is completed before finish rolling. As a result, as for the structure before the start of rolling in the finishing rolling mill row 23, as shown in the CCT curve modeling the temperature pattern of the surface layer and center of the rolled material in FIG. 2, the surface layer of the rolled material is martensite. With such a quenched structure, a ferrite/pearlite structure is obtained in the central part, and a mixed structure including an intermediate structure is obtained in the other cross-sectional areas. Of course, the same result can be obtained even if the intermediate cooling zone 24 is provided between the rough rolling mill 21 and the intermediate rolling mill row 22. The reason why the structure is adjusted to the above structure during such a hot continuous rolling process, especially before finish rolling, is that among these structures, the layered pearlite structure that is the most difficult to form into spherules is produced in the next finish rolling mill row 2.
By the rolling process in step 3, the plate-like or rod-like carbide is divided or accelerated to become a pre-structure in which a spheroidized structure can easily be formed, and the quenched structure in the surface layer of the rolled material is affected by the strain energy caused by the rolling process. This is because, by increasing the number of particles, it becomes a pre-tissue in which it is easier to form a spheroidized structure. Therefore, specifically, after heating a billet of carbon steel or alloy steel containing 0.03 to 1.5% + 1% C, which is the raw material for steel bars or wire rods, it is subjected to rough rolling or rough rolling and intermediate rolling. The rolled material is forcibly cooled using a coolant such as water in an intermediate cooling zone, but it is desirable that the cross-sectional structure of the rolled material before forced cooling is in an austenitic state from the viewpoint of uniformity of the structure after transformation. However, even if a part of the structure such as ferrite exists in the cross section, the effects of the present invention are not impaired in any way. When determining the cooling water flow rate and reheating time required to obtain the effects of the present invention, it is important to note that the length of the intermediate cooling zone to be used varies depending on the required amount of cooling water, and that the temperature at the center of the rolled material is It should be considered that the reheating time required to reduce the temperature to below Ar1 point is mainly controlled by physical factors such as the amount of temperature drop in the intermediate cooling zone, the diameter of the abrasive material, and the cross-sectional circular temperature distribution. There is a need. Of course, if the length of the intercooling zone and the subsequent recuperation zone (distance between the intermediate cooling zone and the next stand) are too large, the distance between rows of rolling mills or between rolling mills will become long, which will cause layout problems. However, if it is too short, it will not be possible to obtain the necessary temperature drop and recuperation time, and it will be difficult to install a looper, etc., which is normally placed between the intermediate cooling zone and the next stand. To avoid equipment problems, the length of the intercooling zone and the distance between the intercooling zone and the next stand (recuperation zone) are usually set at 10% each.
It is appropriate to set the distance to about 15 m. When using such equipment, the temperature of the surface layer of the rolled material is kept below the Ms point, and during the subsequent reheating process, the center part is heated to A.
The flow rate of cooling water necessary to bring about the pearlite transformation at a temperature below the r1 point is as shown in FIG. 3 with respect to the diameter of the rolled material. However, this figure is the result obtained by temperature analysis using the experimental formula for the cooling zone cooling capacity, which was understood in detail in the actual machine, and A
Strictly speaking, the r□ point differs depending on the steel type, cooling rate, etc.
Here, it was assumed that Ar1 point to 550°C. In addition, this cooling water flow rate is such that the intercooling zone and recuperation zone are each 15 m in length, and the extraction temperature is set to the minimum temperature necessary for austenitization (
~800℃), when the rolling speed is set to the slowest possible operating speed (0.1m/5e at the Nα1 stand of the rough rolling mill row)
e) is the minimum flow rate required to carry out the present invention. If this cooling water flow rate is expressed with respect to the diameter of the rolled material, the following equation (1) is obtained. Here, W: Cooling water flow rate (rn''/hr) D: Rolled material diameter (m+=) Note that the larger the cooling water flow rate in the intermediate cooling zone, the greater the temperature drop in the cooling zone. This is advantageous in terms of operation because it can shorten the reheating time required to bring about pearlite transformation by keeping the temperature at the center below Ar1 point in the reheating process after strong cooling, but if it is too high, the cooling equipment and The required power is large, which is not practical. The maximum practical flow rate in the intermediate cooling zone is 1 liter per meter of cooling zone.
oom'/hr, so here we set the required maximum flow rate to 1500 rn' taking into account the length of the intercooling zone mentioned above.
/hr. Next, the required minimum recuperation time will be explained. As mentioned above, by slowing down the rolling speed and increasing the cooling time,
If the flow rate of cooling water is increased, the amount of temperature drop can be increased, so the reheating time is shortened to bring the temperature of the center of the rolled material below the Ar□ point and transform it into pearlite in the reheating process after strong cooling. Become. Therefore, by setting the rolling speed to the slowest possible operational level, the cooling time is maximized, and in the reheating process after cooling using the maximum flow rate in the intermediate cooling zone, the central part of the rolled material is reduced to A r 1 point or less. The required minimum recuperation time is the time such that: This required minimum recuperation time is shown in FIG. 4 with respect to the diameter of the rolled material, and can be expressed as in the following equation (2). Trmin=0.00015D2-0.002D+0.
60 ・=(2) Here, Trmin: Required minimum recuperation time (see) D: Diameter of rolled material (+=m) In addition, in the case of the above-mentioned intermediate cooling zone length, this value depends on the operating speed of the rolling The slowest possible speed is 0.1 m/5ec) at the Nα1 stand of the rough rolling mill row, and the maximum practical flow rate (100 rn'/hr per 1 m of cooling zone).
The temperature is calculated using the empirical formula for the cooling zone cooling capacity, which has been determined in detail using actual equipment, such as the one described above, which takes the recuperation time such that the temperature at the center of the rolled material becomes below the Ar1 point during the forced recuperation process when using the This is a value calculated by analysis. On the other hand, the upper limit of the reheating time is determined from the equipment length (the length of the intercooling zone and the recuperation zone) and the lowest rolling speed. each length of 15 m), and the rolling speed is set to the slowest possible operating speed (0.1 m/5 e in the No. 1 stand of the rough rolling mill row).
c), the diameter of the rolled material is as shown in FIG. 5, and can be expressed as the following equation (3). However, since the length of the cooling zone used was adjusted by the flow rate of cooling water, the maximum length of the recuperation zone was set to 25 m. Trmax=0,015D”...
(3) Here, Tra+ax: upper limit of reheating time (se
e) D: Diameter of rolled material (,n,) In the above example, the temperature of the surface layer of the rolled material is set to below Ms point, and in the subsequent reheating process, the temperature of the central part is set to below Ar1 point to cause pearlite transformation. Although an example is shown in which strong cooling is carried out in an intermediate cooling zone provided between the intermediate rolling mill row 22 and the finishing rolling mill row 23, rough rolling It goes without saying that cooling equipment may be provided between the mill row 21 and the intermediate rolling mill row 22 or between each rolling mill. According to the above embodiment, the rolled material obtained by finish rolling has a structure that easily becomes spheroidized in the entire cross section. In the present invention, for a rolled material having such a pre-structure, it is preferable to perform appropriate temperature control immediately after finish rolling to obtain a spheroidized structure directly over the entire cross section of the rolled material. That is, immediately after finish rolling, the rolled material has an Ac1 point to A
c. A part of the carbide is dissolved in the austenite by heating to the temperature range of point c, and in the subsequent slow cooling process, the solid solution carbon is precipitated with the remaining carbide as a nucleus and grown to directly obtain a spheroidized structure. . In addition, when heated to a temperature range exceeding the Ac point, the amount of carbide dissolution into austenite increases, and the carbide precipitation nuclei disappear in the subsequent slow cooling process, making it difficult to spheroidize. , Ac less than 1 point makes it impossible to dissolve carbides into austenite. In the slow cooling process, the temperature range up to at least 650℃ is
It is preferable to perform slow cooling at a cooling rate of 0° C./hr or less. FIG. 6 shows an example of a continuous hot rolling line for this purpose.
A heat treatment furnace 27 is arranged to heat and slowly cool the rolled material that has passed through the finishing mill 23. Figure 7 shows a 30φ steel plate (545) made from a 1550 billet.
In the rolling process to C), after forced water cooling in the intermediate cooling zone 24 and water cooling, the in-plane structure of the rolled material is transformed into martensite, pearlite, etc. throughout the rolled material in the reheating process until reaching the finishing rolling mill row 23. After finishing, finish rolling is carried out, and immediately after that, it is heated to 740 ° C. in the heat treatment furnace 27, and the relationship between various cooling rates and the obtained hardness is shown when slowly cooling from this temperature range to 650 ° C. It is something that As can be seen from the figure, when the cooling rate is 50° C./hr or less, the hardness decreases significantly. In other words, if the cooling rate is within these ranges, precipitation of carbides and
Growth occurs and a spheroidized tissue is obtained. On the other hand, when the cooling rate exceeds approximately 50° C./hr, the hardness remains at a relatively high level. This is because the structure contains granular carbide or layered pearlite, and a good spheroidized structure cannot be obtained at such a cooling rate. Furthermore, if slow cooling is terminated in a temperature range higher than about 650° C., a structure containing layered pearlite tends to form in the subsequent cooling process, and a good spheroidized m weave cannot be obtained. Note that although Fig. 7 shows the case where the structure before finish rolling in the center of the rolled material is ferrite + pearlite, the above cooling rate range is also applied to the case where the structure in the surface layer of the rolled material is quenched. During the slow cooling process (≦50°C/hr), carbides precipitate and grow to obtain a spheroidal structure. In this way, even without performing spheroidizing annealing on a separate line, if proper temperature control is performed after finish rolling, the granular carbide structure and other structures adjusted during the rolling process can be directly transferred to the entire cross section of the rolled material. It becomes possible to obtain a good spheroidized tissue within a short time.

【以下余白】[Left below]

(実施例) 次に本発明の実施例を示す。 実施例1 第1図に示す熱間連続圧延ラインにおいて、鋼種548
Cの1550ビレツトを900℃に加熱した後、熱間連
続圧延し、仕上圧延機列前の中間冷却帯にて圧延材(直
径46φ)の表層部温度をMs点(約350’C)以下
とするために300 rn”/hrの冷却水量で5秒間
強制水冷した。このときの最表面部の冷却速度は約50
0℃/secである。強制水冷後、仕上圧延機列のNα
13圧延機に到達するまでの約12秒の圧延材表層部の
復熱過程においては、圧延材中心部の温度はAr1点点
以下約550℃)となって仕上圧延前にパーライト変態
が終了し、またこのときの最表面温度は約450℃まで
復熱し、引き続き仕上圧延を実施して38φ捧鋼に仕上
げた後、常温まで空冷した。仕上材中心部の組織は、第
8図に示すように、最も球状化しにくい層状パーライト
組織の板状或いは棒状の炭化物が仕上圧延加工によって
分断されて球状化組織を呈し1球状化組織の形成が促進
され得る前組織となっている。 この棒鋼を熱処理ライン(第1図に図示せず)で740
℃に再加熱後、1.5hr恒温保持し、680℃までを
30℃/hrの冷却速度で徐冷し、以後空冷した。熱処
理後の組織は、第9図に示すように表層部では球状化組
織Nα2で、中心部でも第10図に示す如く同Nα3程
度の球状化組織がそれぞれ得られた。このように従来よ
りも著しく処理時間を短縮しても、圧延材全断面内にわ
たって球状化組99 Na 3以上の組織が得られ、ま
た硬さも圧延材全断面内でHv180以下となり、従来
の球状化焼なまし材と同レベルの値が得られた。 実施例2 実施例1と同様に、第1表に示す化学成分の鋼種5Cr
420の1550ビレツトを930℃に加熱した後、熱
間連続圧延し、仕上圧延機列前の中間冷却帯にて圧延材
(直径46φ)の表層部温度をMs点(約380℃)以
下とするために260rn’/hrの冷却水量で6秒間
強制水冷した。強制水冷後、仕上圧延機列のNα13圧
延機に到達するまでの約10秒の圧延材表層部の復熱過
程においては、圧延材中心部の温度はAr□点(約57
0℃)となって仕上圧延前にパーライト変態が終了し、
またこのときの最表面温度は約440℃まで復熱し、引
き続き仕上圧延を実施して38φ+IP鋼に仕上げた後
、常温まで空冷した。この場合も、圧延材中心部は層状
パーライトの板状或いは棒状の炭化物が仕上圧延加工に
よって分断されて粒状組織を呈していた。 この棒鋼を熱処理ラインで770℃に再加熱後、1.5
hr恒温保持し、680℃までを30℃/hrの冷却速
度で徐冷し、以後空冷した。このように従来よりも著し
く処理時間を短縮しても、第11図に示す表層部の組織
及び第12図に示す中心部の組織からも明らかなとうり
、全断面内でほぼ球状化組織N02程度の球状化組織が
得られた。また。 硬さも全断面内でHv140程度となり、従来の球状化
焼なまし材と同レベルの値が得られた。 比較例1,2 比較例1として実施例1の場合と同じ鋼種5450につ
き、また比較例2として実施例2の場合と同じ鋼種S 
Cr420につき、各々同様の1150ビレツトの38
φ棒鋼への熱間連続圧延工程において、圧延材表層部の
焼入れ組織等の適冷組織を回避するために、各々中間冷
却帯での冷却終了時の圧延材表面温度がMs点よりも高
い温度域にとどまるような冷却を実施したところ、仕上
圧延機列Nα13圧延機までの圧延材表層部の復熱過程
において中心部温度はいずれもAr1点まで降下せずに
オーステナイト域にあった。そのため、仕上圧延後にそ
れぞれ実施例1.2と同じ再加熱熱処理を実施しても、
いずれの鋼種も圧延材表層部のごく一部を除く大部分の
断面領域で球状化組織は得られなかった。 ヌ〕1辺」− 第6図に示す熱間連続圧延ラインにおいて、第1表に示
す化学成分の鋼種S 45 C(Ac1点〜720℃)
の1550ビレツトを900 ℃に加熱した後、熱間連
続圧延し、仕上圧延機列前の中間冷動帯にて圧延材(直
径45φ)の表層部温度をMs点(約350℃)以下と
するために280 rn’/hrの冷却水流量で5秒間
強制水冷した。このときの最表面部の冷却速度は約50
0℃/seeである。強制水冷後、仕上圧延機列のNc
i13圧延機に到達するまでの約12秒の圧延材表層部
の復熱過程においては、圧延材中心部の温度はAr□点
以下(約550℃)となってパーライト変態し、仕上圧
延開始までに圧延材中心部で代表される断面内の未変態
組!(オーステナイト)の変態が終了し、またこのとき
の圧延材最表面温度は約450’Cまで復熱した。引き
続いて仕上圧延を実施して30φの棒鋼に仕上げた。こ
の場合、圧延材中心部で代表される最も球状化しにくい
層状パーライト組織の板状或いは棒状の炭化物は仕上圧
延によって分断されて粒状組織を呈しており、また圧延
材表層部の焼入れ組織は仕上圧延加工による歪エネルギ
ーの増加等により、各々球状化組織の形成が容易な組織
となっていた。 仕上圧延直後に圧延材(30φ捧鋼)を熱処理炉27で
Ac、意思上の740℃に加熱した後、この温度から6
50℃までの温度域をおよそ30℃/hrの冷却速度で
徐冷し、以後空冷した。得られた組織としては、表層部
では第13図に示す如く球状化組織Nα2程度であり、
中心部でも第14図に示す如く球状化組wtHa 3程
度の球状化組織であった。このように熱間連続圧延後の
適切な温度制御により、圧延材全断面内にわたって球状
化組織Nα3以上の直接球状化組織が得られ、また硬さ
も全断面内でHV180以下となり、従来のオフライン
での球状化焼なまし材と同レベルの値がオフライン処理
で得られた。 実施例4 実施例3の場合と同様、第1表に示す化学成分の鋼種S
 Cr420 (Ac、点〜725℃)の1550ビレ
ツトを930℃に加熱した後、熱間連続圧延し、仕上圧
延機列前の中間冷却帯にて圧延材(直径45φ)の表層
部温度をMs点(約380℃)以下とするために240
rr//hrの冷却水流量で6秒間強制水冷した。強制
水冷後、仕上圧延機列の&13圧延機に到達するまでの
約10秒の圧延材表層部の復熱過程においては、圧延材
中心部の温度はAr1点以下(約570℃)となってパ
ーライト変態し、仕上圧延開始までに圧延材中心部で代
表される断面内の未変態組織(オーステナイト)の変態
が終了し、またこのときの圧延材最表面温度は約440
℃まで復熱した。引き続いて仕上圧延を実施して30φ
捧鋼に仕上げた。この場合も、圧延材中心部で代表され
る最も球状化しにくい層状パーライト組織の板状或いは
棒状の炭化物は仕上圧延によって分断されて粒状組織を
呈しており、また圧延材表層部の焼入れ組織は仕上圧延
加工による歪エネルギーの増加等により、各々球状化の
容易な組織となっていた。 仕上圧延直後に圧延材(30φ棒鋼)を熱処理炉27で
Ac1点以上の770℃に加熱した後、この温度から6
50℃までの温度域をおよそ300C/hrの冷却速度
で徐冷し、以後空冷した。得られた組織としては第15
図(圧延材表層部)及び第16図(圧延材中心部)に示
すように、低合金鋼においても熱間連続圧延後の適切な
温度制御により、圧延材全断面ではゾ球状化組織Nα2
程度の直接球状化組織が得られ、硬さも全断面内でHv
140程度となり、従来のオフラインでの球状化焼なま
し材と同レベルの値がオフライン処理で得られた。 比較例3 実施例3の場合と同じ鋼種545Cにつき、同様に15
50ビレツトの30φ捧鋼への熱間連続圧延工程を経て
、仕上圧延直後に740℃に加熱し、この温度から65
0’Cまでの温度域を80℃/hrの速度で冷却したと
ころ、粒状炭化物及び層状パーライトを含んだ組織とな
っており、良好な球状化組織は得られなかった。 比較例4 実施例4の場合と同じ鋼種5Cr420につき、同様に
1550ビレツトの30φ棒鋼への熱間連続圧延工程を
経て、仕上圧延直後に770℃に加熱し、この温度から
650℃までの温度域を80’C/ h rの冷却速度
で冷却したところ、比較例3の場合と同様、粒状炭化物
及び層状パーライトを含んだ組織となっており、良好な
球状化組織は得られなかった。 なお、以上の各実施例では棒鋼の場合について示したが
、本発明は仕上圧延後にコイル状に巻き取られる線材に
対しても全く同様に実施でき、同様の効果が得られる。 また、第1表に示した鋼種に限らず、0.03〜1.5
%Cを含む他の炭素鋼及び合金鋼に対しても同様に適用
することができる。 (発明の効果) 以上詳述したとうり、本発明によれば、棒鋼及び線材の
熱間連続圧延による製造に際し、以後の熱処理工程で球
状化組織の形成が容易な前組織を圧延仕上りで、しかも
圧延材全断面内にわたって実現することができるので、
圧延材全断面内で目標とする球状化組織を得るための熱
処理時間を従来に比べて著しく短縮でき、熱処理生産性
の向上及びエネルギー節減等に極めて大き6な効果をも
たらすものである。特に仕上圧延直後のオンラインで適
切な温度制御を行うならば、直接球状化組織を得ること
ができ、従来オフラインで長時間を要していた球状化焼
なまし処理工程自体を省略することが可能となり、工程
の簡略化及びエネルギー節減等の効果は更に顕著である
(Example) Next, an example of the present invention will be shown. Example 1 In the hot continuous rolling line shown in Fig. 1, steel type 548
After heating the 1550 billet C to 900°C, it is continuously hot rolled, and the temperature of the surface layer of the rolled material (diameter 46φ) is kept below the Ms point (approximately 350'C) in the intermediate cooling zone in front of the finishing rolling mill row. In order to
The temperature is 0°C/sec. After forced water cooling, Nα of finishing mill row
13 During the reheating process of the surface layer of the rolled material for about 12 seconds before reaching the rolling mill, the temperature at the center of the rolled material becomes below the Ar1 point (approximately 550°C), and the pearlite transformation is completed before finish rolling. Moreover, the outermost surface temperature at this time was reheated to about 450° C., and then finish rolling was performed to finish the barbed steel with a diameter of 38, followed by air cooling to room temperature. As shown in Figure 8, the structure at the center of the finished material is such that the plate-like or rod-like carbides of the layered pearlite structure, which is the most difficult to form into spheroids, are divided by the finish rolling process and form a spheroidized structure. It has become a pre-organization that can be promoted. This steel bar is processed through a heat treatment line (not shown in Fig. 1) at 740°C.
After reheating to .degree. C., the temperature was kept constant for 1.5 hours, and the temperature was slowly cooled to 680.degree. C. at a cooling rate of 30.degree. C./hr, followed by air cooling. The structure after heat treatment was a spheroidized structure Nα2 in the surface layer as shown in FIG. 9, and a spheroidized structure of about Nα3 was obtained in the center as shown in FIG. In this way, even if the processing time is significantly reduced compared to the conventional method, a spheroidized structure of 99 Na 3 or more can be obtained over the entire cross section of the rolled material, and the hardness is Hv 180 or less within the entire cross section of the rolled material, which is different from the conventional spherical structure. Values on the same level as annealed material were obtained. Example 2 Similar to Example 1, steel type 5Cr with the chemical composition shown in Table 1 was used.
After heating the 1550 billet of 420 to 930°C, it is continuously hot rolled, and the temperature of the surface layer of the rolled material (diameter 46φ) is lowered to below the Ms point (about 380°C) in the intermediate cooling zone before the finish rolling mill row. For this purpose, forced water cooling was performed for 6 seconds at a cooling water flow rate of 260 rn'/hr. After forced water cooling, during the reheating process of the surface layer of the rolled material for approximately 10 seconds until it reaches the Nα13 rolling mill in the finishing mill row, the temperature at the center of the rolled material reaches the Ar□ point (approximately 57
0°C) and pearlite transformation is completed before finish rolling.
Further, the outermost surface temperature at this time was reheated to about 440° C., and then finish rolling was performed to finish the steel into 38φ+IP steel, which was then air cooled to room temperature. In this case as well, the central part of the rolled material had a granular structure in which plate-like or rod-like carbides of layered pearlite were separated by the finish rolling process. After reheating this steel bar to 770℃ in a heat treatment line,
The temperature was maintained at a constant temperature for hr, and the mixture was gradually cooled down to 680°C at a cooling rate of 30°C/hr, and then air-cooled. Even though the processing time is significantly reduced compared to the conventional method, as is clear from the structure of the surface layer shown in FIG. 11 and the structure of the center part shown in FIG. A somewhat spheroidized tissue was obtained. Also. The hardness was also approximately Hv140 within the entire cross section, which was the same level as the conventional spheroidized annealed material. Comparative Examples 1 and 2 Comparative Example 1 uses the same steel type 5450 as in Example 1, and Comparative Example 2 uses the same steel type S as in Example 2.
38 of each similar 1150 billet per Cr420
In the hot continuous rolling process for φ steel bars, in order to avoid suitable cooling structures such as quenched structures in the surface layer of the rolled material, the surface temperature of the rolled material at the end of cooling in each intermediate cooling zone is higher than the Ms point. When cooling was carried out so as to remain within the Ar1 point, during the reheating process of the surface layer of the rolled material up to the Nα13 rolling mill in the finishing mill row, the temperature at the center did not drop to the Ar1 point and remained in the austenite region. Therefore, even if the same reheating heat treatment as in Example 1.2 is performed after finish rolling,
In all steel types, no spheroidized structure was obtained in most of the cross-sectional area except for a small part of the surface layer of the rolled material. [1 side] - In the hot continuous rolling line shown in Fig. 6, steel type S45C (Ac1 point ~ 720°C) with the chemical composition shown in Table 1 was used.
After heating the 1550 billet to 900 °C, it is continuously hot rolled, and the temperature of the surface layer of the rolled material (diameter 45φ) is lowered to the Ms point (approximately 350 °C) or lower in the intermediate cooling zone in front of the finishing rolling mill row. For this purpose, forced water cooling was performed for 5 seconds at a cooling water flow rate of 280 rn'/hr. The cooling rate of the outermost surface at this time is approximately 50
It is 0°C/see. After forced water cooling, Nc of finishing mill row
During the reheating process of the surface layer of the rolled material for about 12 seconds before reaching the i13 rolling mill, the temperature at the center of the rolled material falls below the Ar□ point (approximately 550°C) and undergoes pearlite transformation, until the start of finish rolling. The untransformed set in the cross section represented by the center of the rolled material! The transformation of (austenite) was completed, and the outermost surface temperature of the rolled material at this time was reheated to about 450'C. Subsequently, finish rolling was performed to produce a 30φ steel bar. In this case, the plate-like or rod-like carbides of the layered pearlite structure, which is the most difficult to form into spherules, represented by the center of the rolled material, are broken up by finish rolling and exhibit a granular structure, and the quenched structure of the surface layer of the rolled material is the result of finishing rolling. Due to the increase in strain energy due to processing, etc., the formation of spheroidized structures was easy for each structure. Immediately after finish rolling, the rolled material (30φ steel bar) is heated in the heat treatment furnace 27 to Ac, the intended temperature of 740°C, and then heated to 640°C from this temperature.
The temperature range up to 50°C was slowly cooled at a cooling rate of about 30°C/hr, and then air cooling was performed. The obtained structure is a spheroidized structure Nα2 in the surface layer as shown in FIG.
Even in the center, as shown in FIG. 14, there was a spheroidized structure with a spheroidization group wtHa of about 3. In this way, by appropriately controlling the temperature after continuous hot rolling, a direct spheroidized structure with a spheroidized structure Nα3 or more can be obtained over the entire cross section of the rolled material, and the hardness is also less than HV180 within the entire cross section, which is different from conventional offline rolling. A value similar to that of the spheroidized annealed material was obtained in offline processing. Example 4 As in Example 3, steel type S with the chemical composition shown in Table 1
A 1550 billet of Cr420 (Ac, point ~725°C) is heated to 930°C, then continuously hot rolled, and the temperature of the surface layer of the rolled material (diameter 45φ) is brought to the Ms point in an intermediate cooling zone in front of the finishing rolling mill row. (approximately 380℃) or less
Forced water cooling was performed for 6 seconds at a cooling water flow rate of rr//hr. After forced water cooling, during the reheating process of the surface layer of the rolled material for about 10 seconds until it reaches the &13 rolling mill in the finishing mill row, the temperature at the center of the rolled material is below Ar1 point (approximately 570°C). Pearlite transformation occurs, and the transformation of the untransformed structure (austenite) in the cross section represented by the center of the rolled material is completed by the start of finish rolling, and the outermost surface temperature of the rolled material at this time is approximately 440°C.
It was reheated to ℃. Successively finish rolling to 30φ
Finished with dedicated steel. In this case as well, the plate-like or rod-like carbides of the layered pearlite structure, which is the most difficult to form into spherules, represented by the center of the rolled material, are separated by finish rolling and exhibit a granular structure, and the quenched structure of the surface layer of the rolled material is the same as the finish rolling. Due to the increase in strain energy caused by rolling, each structure had become easily spheroidized. Immediately after finish rolling, the rolled material (30φ steel bar) is heated to 770°C, which is the Ac1 point or higher, in the heat treatment furnace 27, and then
The temperature range up to 50°C was slowly cooled at a cooling rate of about 300C/hr, and then air cooling was performed. The obtained tissue is the 15th.
As shown in Figure 16 (surface layer of rolled material) and Figure 16 (center of rolled material), even in low-alloy steel, due to appropriate temperature control after continuous hot rolling, the whole cross section of the rolled material has a zo-spheroidized structure Nα2.
A directly spheroidized structure with a degree of hardness can be obtained, and the hardness is Hv
The value was about 140, which is the same level as that of the conventional offline spheroidized annealed material, which was obtained by offline processing. Comparative Example 3 For the same steel type 545C as in Example 3, 15
After the continuous hot rolling process of 50 billet to 30φ bar steel, it is heated to 740℃ immediately after finishing rolling, and from this temperature it is heated to 65℃.
When the sample was cooled at a rate of 80°C/hr in the temperature range down to 0'C, a structure containing granular carbide and layered pearlite was obtained, and a good spheroidized structure could not be obtained. Comparative Example 4 The same steel type 5Cr420 as in Example 4 was similarly hot-continuously rolled into a 1550 billet 30φ steel bar, heated to 770°C immediately after finish rolling, and then rolled in a temperature range from this temperature to 650°C. When the sample was cooled at a cooling rate of 80'C/hr, as in Comparative Example 3, the structure contained granular carbide and layered pearlite, and a good spheroidized structure was not obtained. Although the above embodiments have been described with respect to a steel bar, the present invention can be applied to a wire rod wound into a coil after finish rolling, and the same effects can be obtained. In addition, not only the steel types shown in Table 1, but also 0.03 to 1.5
% C can be similarly applied to other carbon steels and alloy steels. (Effects of the Invention) As described in detail above, according to the present invention, when manufacturing steel bars and wire rods by continuous hot rolling, a pre-structure in which a spheroidized structure is easily formed in the subsequent heat treatment process is rolled, Moreover, it can be realized over the entire cross section of the rolled material.
The heat treatment time required to obtain the target spheroidized structure within the entire cross section of the rolled material can be significantly shortened compared to the conventional method, and this has extremely large effects in improving heat treatment productivity and saving energy. In particular, if appropriate temperature control is performed online immediately after finish rolling, a spheroidized structure can be obtained directly, and the spheroidizing annealing process itself, which conventionally took a long time offline, can be omitted. Therefore, the effects of process simplification and energy saving are even more remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いる熱間連続圧延ラインの一
例を示す図、 第2図は圧延材表層部及び中心部の温度パターンと模式
化したOCT曲線を示す図、 第3図は強冷時の最小冷却水流量と圧延材直径の関係を
示す図。 第4図は最小復熱時間と圧延材直径の関係を示す図、 第5図は最大復熱時間と圧延材直径の関係を示す図、 第6図は本発明の実施に用いる熱間連続圧延ラインの他
の例を示す図。 第7図は熱間連続圧延後の温度制御における各種冷却速
度と得られる圧延材の硬さの関係を示す図、 第8図乃至第10図は本発明の実施例1における圧延材
の金属組織を示す顕微鏡写真であって。 第8図は圧延仕上材中心部の粒状組織(x4000)を
示し、第9図は熱処理後の圧延材表層部の球状化組織(
X 400)を示し、第10図は熱処理後の圧延材中心
部の球状化組N&(X400)を示し。 第11図及び第12図は本発明の実施例2における熱処
理後の圧延材の金属組織を示す顕微鏡写真であって、第
11図は圧延材表層部の球状化組r&(X400)を示
し、第12図は圧延材中心部の球状化組織(X 400
)を示し、 第13図及び第14図は本発明の実施例3における熱間
連続圧延直後の温度制御により得られた圧延材の金属組
織を示す顕vIl鏡写真であって、第13図は圧延材表
層部の球状化組織(X 400)を示し、第14図は圧
延材中心部の球状化組織(X400)を示し、 第15図及び第16図は本発明の実施例4における熱間
連続圧延直後の温度制御により得られた圧延材の金属組
織を示す顕微鏡写真であって、第15図は圧延材表層部
の球状化組織(X400)を示し、第16図は圧延材中
心部の球状化組織(X 400)を示している。 1〜16・・・圧延機、20・・・加熱炉、21・・・
粗圧延機列、22・・・中間圧延機列、23・・・仕上
圧延機列、24・・・中間冷却帯、25・・後段冷却帯
、26・・・冷却床、27・・・熱処理炉、29・・・
制御装置、30〜32・・・温度計。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 fx K jl 熱M PA (5eC)纏 (口 区 示小領部時間(sec) 第・1図      第一2図 第゛13図     第14図 第15図 第16図
Fig. 1 is a diagram showing an example of a hot continuous rolling line used for carrying out the present invention, Fig. 2 is a diagram showing temperature patterns of the surface layer and center of the rolled material, and a schematic OCT curve, and Fig. 3 is a diagram showing a schematic OCT curve. A diagram showing the relationship between the minimum cooling water flow rate during cooling and the diameter of the rolled material. Fig. 4 is a diagram showing the relationship between the minimum recuperation time and the diameter of the rolled material, Fig. 5 is a diagram showing the relationship between the maximum recuperation time and the diameter of the rolled material, and Fig. 6 is a diagram showing the relationship between the maximum recuperation time and the diameter of the rolled material. The figure which shows the other example of a line. FIG. 7 is a diagram showing the relationship between various cooling rates in temperature control after continuous hot rolling and the hardness of the obtained rolled material, and FIGS. 8 to 10 are metal structures of the rolled material in Example 1 of the present invention. This is a microscopic photograph showing. Figure 8 shows the granular structure (x4000) in the center of the rolled finished material, and Figure 9 shows the spheroidized structure (x4000) in the surface layer of the rolled material after heat treatment.
Figure 10 shows the spheroidized set N&(X400) at the center of the rolled material after heat treatment. 11 and 12 are micrographs showing the metallographic structure of the rolled material after heat treatment in Example 2 of the present invention, and FIG. 11 shows the spheroidized set r&(X400) of the surface layer of the rolled material, Figure 12 shows the spheroidized structure at the center of the rolled material (X 400
), and FIGS. 13 and 14 are microscopic photographs showing the metallographic structure of the rolled material obtained by temperature control immediately after hot continuous rolling in Example 3 of the present invention, and FIG. FIG. 14 shows the spheroidized structure (X 400) in the surface layer of the rolled material, FIG. 14 shows the spheroidized structure (X 400) in the center of the rolled material, and FIGS. These are micrographs showing the metallographic structure of the rolled material obtained by temperature control immediately after continuous rolling. FIG. 15 shows the spheroidized structure (X400) in the surface layer of the rolled material, and FIG. 16 shows the spheroidized structure (X400) in the center of the rolled material. Spheroidized tissue (X 400) is shown. 1 to 16...Rolling mill, 20...Heating furnace, 21...
Rough rolling mill row, 22... Intermediate rolling mill row, 23... Finishing rolling mill row, 24... Intermediate cooling zone, 25... Later cooling zone, 26... Cooling bed, 27... Heat treatment Furnace, 29...
Control device, 30-32... thermometer. Patent Applicant Kobe Steel Co., Ltd. Representative Patent Attorney Nao Nakamura fx K jl Heat MPA (5eC) (Expression time (sec) Fig. 1 Fig. 12 Fig. 13 Fig. 14 Figure 15 Figure 16

Claims (1)

【特許請求の範囲】 (1)0.03〜1.5%Cを含む炭素鋼又は合金鋼の
棒鋼又は線材の熱間連続圧延工程の途中で、圧延材表層
部をMs点以下に強冷し、該圧延材が次圧延機に到達す
るまでの間の強冷後の復熱時間を調節することにより、
復熱過程において圧延材中心部をAr_1点以下の温度
に降下させてパーライト変態させることを特徴とする熱
間連続圧延による棒鋼及び線材の製造方法。 (2)前記強冷は、圧延機列間及び/又は圧延機間での
冷却水流量w(m^3/hr)を圧延材直径D(mm)
に対して 1500.0≧w≧3050.0/D−0.95D+8
0.0の範囲で供給することにより行い、前記復熱時間
Trは圧延材直径(mm)に対して次式の最小復熱時間
Trmin(sec)以上、最大復熱時間Trmax(
sec)以下の範囲で調節する特許請求の範囲第1項記
載の方法。 Trmin=0.00015D^2−0.002D+0
.60Trmax=0.015D^2 (3)0.03〜1.5%Cを含む炭素鋼又は合金鋼の
棒鋼又は線材の熱間連続圧延工程の途中で、圧延材表層
部をMs点以下に強冷し、該圧延材が次圧延機に到達す
るまでの間の強冷後の復熱時間を調節することにより、
復熱過程において圧延材中心部をAr_1点以下の温度
に降下させてパーライト変態させ、仕上圧延直後にAc
_1点〜Ac_3点の温度域に加熱した後、50℃/h
r以下の冷却速度で徐冷することを特徴とする熱間連続
圧延による棒鋼及び線材の製造方法。
[Scope of Claims] (1) During the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C, the surface layer of the rolled material is strongly cooled to below the Ms point. By adjusting the reheating time after strong cooling until the rolled material reaches the next rolling mill,
A method for manufacturing steel bars and wire rods by continuous hot rolling, characterized by lowering the temperature of the center of the rolled material to a temperature below Ar_1 point in the reheating process to cause pearlite transformation. (2) In the strong cooling, the cooling water flow rate w (m^3/hr) between rolling mill rows and/or between rolling mills is calculated as the diameter of the rolled material D (mm).
for 1500.0≧w≧3050.0/D-0.95D+8
The reheating time Tr is equal to or more than the minimum recuperation time Trmin (sec), and the maximum recuperation time Trmax (
sec) The method according to claim 1, wherein the method is adjusted in the following range. Trmin=0.00015D^2-0.002D+0
.. 60Trmax=0.015D^2 (3) During the hot continuous rolling process of carbon steel or alloy steel bars or wire rods containing 0.03 to 1.5% C, the surface layer of the rolled material is strengthened to below the Ms point. By adjusting the reheating time after strong cooling until the rolled material reaches the next rolling mill,
In the reheating process, the temperature of the center of the rolled material is lowered to below the Ar_1 point to cause pearlite transformation, and immediately after finish rolling, the center of the rolled material is
After heating to a temperature range of _1 point to Ac_3 point, 50℃/h
A method for manufacturing steel bars and wire rods by continuous hot rolling, characterized by slow cooling at a cooling rate of r or less.
JP29430986A 1986-12-10 1986-12-10 Production of bar steel and wire rod by hot continuous rolling mill Pending JPS63149316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29430986A JPS63149316A (en) 1986-12-10 1986-12-10 Production of bar steel and wire rod by hot continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29430986A JPS63149316A (en) 1986-12-10 1986-12-10 Production of bar steel and wire rod by hot continuous rolling mill

Publications (1)

Publication Number Publication Date
JPS63149316A true JPS63149316A (en) 1988-06-22

Family

ID=17806024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29430986A Pending JPS63149316A (en) 1986-12-10 1986-12-10 Production of bar steel and wire rod by hot continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS63149316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275263A (en) * 2008-05-15 2009-11-26 Sumitomo Metal Ind Ltd Method for manufacturing steel material for bearing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275263A (en) * 2008-05-15 2009-11-26 Sumitomo Metal Ind Ltd Method for manufacturing steel material for bearing steel

Similar Documents

Publication Publication Date Title
US5080727A (en) Metallic material having ultra-fine grain structure and method for its manufacture
JP2004100016A (en) Rolled wire rod for bearing and drawn wire rod
JP3031484B2 (en) Method for producing steel wire rod or steel bar having spheroidized structure
JPS6233289B2 (en)
JPH0576524B2 (en)
JPS63149316A (en) Production of bar steel and wire rod by hot continuous rolling mill
JP2564535B2 (en) Direct spheroidizing method for hot rolled steel wire rod
JPH02213416A (en) Production of steel bar with high ductility
JPH0570685B2 (en)
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
JPS63149317A (en) Production of bar steel and wire rod by temperature control during and just after hot continuous rolling
JPH01259123A (en) Manufacture of steel bar and wire rod by continuous hot rolling
JP7389909B2 (en) Bearing wire rod and its manufacturing method
KR102326245B1 (en) Steel wire rod for cold forging and methods for manufacturing thereof
JPH01215924A (en) Manufacture of hot rolled steel bar
JPS59136423A (en) Preparation of rod steel and wire material having spheroidal structure
JP3544625B2 (en) Hot-rolled direct-quenched steel bar and its manufacturing method
JP2000192147A (en) Directly spheroidized annealing method of low alloy wire rod
KR100973922B1 (en) Non-Annealing Steel Having Ferrite Formed by Strain Induced Dynamic Transformation and Method for Manufacturing the Steel
KR100973921B1 (en) Short-time Annealing Steel Having Ferrite Formed by Strain Induced Dynamic Transformation and Method for Manufacturing the Steel
JPH08246040A (en) Rapid continuous spheroidizing annealing treatment for steel material
JP2002060841A (en) Method for producing bar or wire rod
JPH10298641A (en) Production of steel excellent in spheroidize-annealing treatability
JPH02301516A (en) Production of hot working steel stock having superfine structure
JPH0674453B2 (en) Manufacturing method of spheroidized steel