JP2000192147A - Directly spheroidized annealing method of low alloy wire rod - Google Patents

Directly spheroidized annealing method of low alloy wire rod

Info

Publication number
JP2000192147A
JP2000192147A JP10369092A JP36909298A JP2000192147A JP 2000192147 A JP2000192147 A JP 2000192147A JP 10369092 A JP10369092 A JP 10369092A JP 36909298 A JP36909298 A JP 36909298A JP 2000192147 A JP2000192147 A JP 2000192147A
Authority
JP
Japan
Prior art keywords
temperature
temp
transformation point
sec
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10369092A
Other languages
Japanese (ja)
Other versions
JP3815095B2 (en
Inventor
Takuya Atsumi
卓彌 厚見
Yoshio Yamazaki
義男 山崎
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP36909298A priority Critical patent/JP3815095B2/en
Publication of JP2000192147A publication Critical patent/JP2000192147A/en
Application granted granted Critical
Publication of JP3815095B2 publication Critical patent/JP3815095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To directly obtain a spheroidized structure in a short time with inexpensive equipment without needing to troublesome rolling control. SOLUTION: Hot rolling is applied to a low alloy steel material containing 0.1-1.2 mass % C, 0.25-1.60 mass % Cr under condition of 900-1,200 deg.C the last finish temp. to make a wire rod and successively, after cooling to the temp. of <= (Ar1 transformation temp. -30 deg.C), when this wire rod is heated and cooled to execute the spheroidized annealing, the max. heating temp. is regulated to the temp. range of (Ac1 transformation temp. +30 deg.C) to (Ar1 transformation temp. +70 deg.C) at the heating time of the wire rod, and the cooling speed from (Ar1 transformation temp. -30 deg.C) to the max. heating temp. is regulated to <=1.0 deg.C/sec, and thereafter, the wire rod is continuously cooled at the cooling speed of 0.2-5 deg.C/sec from the max. heating temp. to the temp. of <= (Ar1 transformation temp.).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、合金鋼線材の直
接球状化焼なまし方法に関し、とりわけ熱間圧延後、直
接球状化焼なましを施す場合に、簡単な方法で焼なまし
時間の有利な短縮を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for direct spheroidizing annealing of an alloy steel wire rod, and more particularly, to a method for reducing the annealing time by a simple method when performing direct spheroidizing annealing after hot rolling. It is intended to achieve advantageous shortening.

【0002】[0002]

【従来の技術】一般に、合金鋼線材を冷間で鍛造または
切削して成形を行う機械部品は、鋼線材のスケール除去
を目的とした一次酸洗を行った後、球状化焼なましを行
い、次いで、この球状化焼なましにより生じた脱炭層及
びスケールの除去を目的とした二次酸洗を行い、更に寸
法精度の向上を目的として約10%程度の伸線加工を行っ
た後に潤滑処理を施して成形加工される。上記したよう
な合金鋼線材の球状化焼なましは、成形加工時の材料の
硬さを十分に低下させて良好な加工性を確保する上で不
可欠のプロセスであり、通常は、線材をコイルに巻いた
状態でポット炉に装入し、所定の熱履歴を付与すること
により行われる。
2. Description of the Related Art In general, a machine part formed by cold forging or cutting an alloy steel wire is subjected to primary pickling for the purpose of removing the scale of the steel wire and then to spheroidizing annealing. Next, a secondary pickling is performed to remove the decarburized layer and scale generated by the spheroidizing annealing, and a wire drawing process of about 10% is performed to further improve dimensional accuracy. It is processed and molded. The spheroidizing annealing of the alloy steel wire as described above is an indispensable process for sufficiently reducing the hardness of the material at the time of forming to secure good workability. This is carried out by charging into a pot furnace in a state of being wound around and giving a predetermined heat history.

【0003】しかしながら、上記の球状化焼なまし法に
は、以下に述べるような問題があった。 (a) コイルに巻いた状態で加熱または冷却する熱履歴を
付与するため、昇温・冷却に長時間(通常、20〜30時間
程度)を要し、しかもバッチ処理であるから生産性が低
く、熱処理コストが嵩む。 (b) コイル内の各部位で熱履歴が大幅に異なるため、焼
なまし後の線材品質のばらつきが大きい。 (c) 生産性を向上させるためにコイル重量を大きくして
も、大重量のコイルを処理するためには、より大型のポ
ット炉が必要となることから、過剰な設備投資が必要に
なるだけでなく、その維持のためのコストが大幅に増大
する。
[0003] However, the above-mentioned spheroidizing annealing method has the following problems. (a) It takes a long time (usually about 20 to 30 hours) to heat and cool to provide a heat history of heating or cooling in the state of being wound on the coil, and low productivity due to batch processing. , Heat treatment costs increase. (b) Since the heat histories are significantly different at each part in the coil, there is a large variation in the quality of the wire after annealing. (c) Even if the coil weight is increased to improve productivity, a large pot furnace is required to process a heavy coil, so only excessive capital investment is required. Instead, the cost of maintaining it increases significantly.

【0004】上記の問題を解消するものとして、特開昭
63−230821号公報には、C:0.10〜1.00mass%
を含有する鋼片を熱間圧延し、仕上圧延機群の入側にお
ける被圧延材の温度を 650〜850 ℃となし、仕上圧延機
群の出側における前記被圧延材の最終仕上温度を 750〜
900 ℃となして鋼線材を調整し、次いで、前記鋼線材を
2℃/秒以上の冷却速度で 650℃以下の温度まで冷却
し、次いで、冷却された前記鋼線材を2℃/秒以上の加
熱速度でAc1 〜Ac1 +160 ℃の温度域まで加熱し、そし
て、前記温度域において5分間以内の時間保持し、次い
で前記温度域に加熱、保持された前記鋼線材を、 1) 任意の冷却速度でAr1 〜Ar1 −160 ℃の温度まで冷
却し、そして、前記温度域において5〜60分間の時間保
持するか、または 2) 任意の冷却速度でAr1 の温度まで冷却し、次いで、
前記温度に冷却された前記鋼線材を、2℃/秒以下の冷
却速度でAr1 −80℃の温度まで冷却することを特徴とす
る熱間圧延鋼線材の直接球状化処理方法が開示されてい
る。
To solve the above-mentioned problem, Japanese Patent Application Laid-Open No. 63-230821 discloses C: 0.10 to 1.00 mass%.
Is hot rolled, the temperature of the material to be rolled on the entrance side of the group of finishing mills is set to 650 to 850 ° C., and the final finishing temperature of the material to be rolled on the exit side of the group of finishing mills is 750. ~
The steel wire is adjusted to 900 ° C., and then the steel wire is cooled at a cooling rate of 2 ° C./sec or more to a temperature of 650 ° C. or less, and then the cooled steel wire is cooled to 2 ° C./sec or more. at a heating rate to a temperature range of Ac 1 to Ac 1 +160 ° C. by heating, and, to the time maintained within 5 minutes in the temperature range, then heated to the temperature range, retained the steel wire rod, 1) any Cooling at a cooling rate to a temperature of Ar 1 to Ar 1 −160 ° C. and holding in said temperature range for 5 to 60 minutes, or 2) cooling to the temperature of Ar 1 at any cooling rate, then ,
A method for directly spheroidizing a hot-rolled steel wire, characterized in that the steel wire cooled to the temperature is cooled to a temperature of Ar 1 -80 ° C. at a cooling rate of 2 ° C./sec or less. I have.

【0005】[0005]

【発明が解決しようとする課題】上記した特開昭63−
230821号公報に開示の方法では、球状化時間の短
縮を目的として、微細なオーステナイト組織を得て、パ
ーライト析出サイトを増大させることにより、オーステ
ナイトからフェライトへの変態を促進する方法を採って
いる。このため、仕上圧延前後の温度をかなり低くする
必要があり、仕上圧延前に水冷ゾーンを設置したり、圧
延機の能力を増大させるといった設備の新規な設置や改
造が不可欠であるため、設備費が著しく嵩むところに問
題を残していた。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No.
In the method disclosed in Japanese Patent No. 230821, for the purpose of shortening the spheroidizing time, a method of obtaining a fine austenite structure and increasing the number of pearlite precipitation sites is employed to promote the transformation from austenite to ferrite. For this reason, the temperature before and after finish rolling needs to be considerably reduced, and new installation or modification of equipment such as installing a water cooling zone before finishing rolling or increasing the capacity of the rolling mill is indispensable. Had a problem where it was extremely bulky.

【0006】この発明の主たる目的は、安価な設備の下
で、繁雑な圧延制御を行う必要なしに直接球状化組織を
得ることができる、合金鋼線材の直接球状化焼なまし方
法を提案することにある。
A main object of the present invention is to propose a direct spheroidizing annealing method of an alloy steel wire rod capable of directly obtaining a spheroidized structure without having to perform complicated rolling control under inexpensive equipment. It is in.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、上記
の目的に鑑み、設備費の増加を招かないことおよび繁雑
な圧延制御を行う必要がないことを前提として、合金鋼
線材の直接球状化焼なまし方法(線材圧延後、引き続き
オンラインで球状化焼なましを行う方法)について検討
を行った。
Means for Solving the Problems In view of the above-mentioned objects, the present inventors have assumed that there is no increase in equipment costs and that there is no need to perform complicated rolling control, and the direct production of alloy steel wires is A spheroidizing annealing method (a method of continuously performing spheroidizing annealing online after wire rod rolling) was studied.

【0008】一般的に、球状化焼なましとは、材料をAc
1 変態点以上に加熱して層状のパーライトの一部を固溶
させた後、Ar1 変態点を徐冷(徐冷法)又はAr1 変態点
以下に等温保持(2段法)して、フェライト中と比較し
て過飽和に固溶したオーステナイト中のCを残留炭化物
の核をもとに析出させる熱処理である。このように、球
状化焼なまし法としては、徐冷法と2段法とが知られて
いて、それぞれ図1(a), (b)に熱履歴が示される。この
徐冷法及び2段法による球状化焼なまし処理時間は、図
1においてそれぞれYで示す処理時間を要する。ここで
重要なことは、冷却中は新しい核は生成しないので、徐
冷前の残留炭化物の数と最終的に得られる球状化炭化物
の数とが等しいことである。
[0008] Generally, spheroidizing annealing is a method in which a material is Ac
After heating above the transformation point to partially dissolve part of the layered pearlite, the Ar 1 transformation point is slowly cooled (slow cooling method) or isothermically maintained below the Ar 1 transformation point (two-step method), This is a heat treatment for precipitating C in the supersaturated austenite as a solid solution based on the core of the residual carbide. As described above, as the spheroidizing annealing method, the slow cooling method and the two-step method are known, and the thermal history is shown in FIGS. 1 (a) and (b), respectively. The spheroidizing annealing processing time by the slow cooling method and the two-step method requires the processing time indicated by Y in FIG. What is important here is that the number of residual carbides before slow cooling is equal to the number of finally obtained spheroidized carbides because no new nuclei are formed during cooling.

【0009】さて、完全な球状化組織を得るために必要
な時間は、図1においてXで示す加熱後の残留炭化物が
多いほど短くなる。このため、焼なまし時間の短縮化に
は、一般に、図1のXで示す時点での残留炭化物を多く
することが必要であると考えられる。しかし、この残留
炭化物が多過ぎると、焼なまし後の線材の硬度が所定の
値まで下がらないという問題が出てくる。これは、残留
炭化物が多いほどパーライト析出サイトが増えるために
変態は促進され、焼なまし処理時間は短くなるものの、
最終的に得られる炭化物の個数が多くなる傾向がある。
この炭化物による分散強化が行われるために、硬度が十
分に下がらないものと考えられる。したがって、処理時
間の短縮と十分な軟化を同時に達成する直接球状化焼な
まし法が要請される。
The time required to obtain a complete spheroidized structure becomes shorter as the amount of residual carbide after heating indicated by X in FIG. 1 increases. For this reason, in order to shorten the annealing time, it is generally considered necessary to increase the amount of residual carbide at the point indicated by X in FIG. However, if this residual carbide is too large, there arises a problem that the hardness of the wire after annealing does not decrease to a predetermined value. This is because, as the amount of residual carbides increases, the number of pearlite precipitation sites increases, so that the transformation is promoted and the annealing time is shortened.
The number of carbides finally obtained tends to increase.
It is considered that the hardness is not sufficiently reduced due to the dispersion strengthening by the carbide. Therefore, there is a need for a direct spheroidizing annealing method that simultaneously achieves a reduction in processing time and sufficient softening.

【0010】ここに、発明者らは、球状化焼なましによ
り硬さを十分に低下させ、かつ、その球状化焼なまし時
間を効果的に短縮するには、球状化焼なましの温度パタ
ーンを厳密に制御することが重要であることを見いだし
た。すなわち、仕上圧延前後における温度を格別に低く
しなくとも、上述の球状化焼なまし時の加熱温度範囲及
び各温度に対応する加熱速度、冷却時における冷却速度
と冷却停止温度を所定の範囲に規制することにより、加
熱後の残留炭化物の個数が同じであっても、処理時間が
短くなることの知見を得た。かくして、処理時間を短く
して硬さも満足する球状化焼なまし条件を設定すること
ができた。この発明は、上記の知見に立脚するものであ
る。
Here, in order to sufficiently reduce the hardness by the spheroidizing annealing and effectively shorten the spheroidizing annealing time, the inventors have determined the temperature of the spheroidizing annealing. We found that strict control of the pattern was important. That is, even if the temperature before and after the finish rolling is not particularly low, the heating temperature range during the spheroidizing annealing and the heating speed corresponding to each temperature, the cooling speed during cooling and the cooling stop temperature within a predetermined range. By controlling, even if the number of residual carbides after heating is the same, it was found that the processing time was shortened. Thus, it was possible to set spheroidizing annealing conditions that shorten the processing time and satisfy the hardness. The present invention is based on the above findings.

【0011】すなわち、この発明は、 C:0.1 〜1.2 mass%、 Cr:0.25〜1.60mass% を含有する低合金鋼鋼材に熱間圧延を最終仕上温度:90
0 〜1200℃の条件で行って線材とし、次いで( Ar1変態
点−30℃) 以下の温度まで冷却した後、この線材を加
熱、冷却して球状化焼なましを行うに当たり、上記線材
の加熱の際に、最高加熱温度を( Ac1変態点+30℃)〜
( Ac1変態点+70℃)の温度範囲とし、かつ、( Ar1
態点−30℃)の温度から当該最高加熱温度までの冷却速
度を1.0 ℃/秒以下とし、上記最高加熱温度から(Ar1
変態点)以下の温度までを0.2 〜5℃/秒の冷却速度で
連続的に冷却することを特徴とする低合金線材の直接球
状化焼なまし方法。
That is, according to the present invention, a low-alloy steel material containing 0.1 to 1.2 mass% of C and 0.25 to 1.60 mass% of Cr is hot-rolled to a final finishing temperature of 90%.
The temperature is reduced to a temperature of (Ar 1 transformation point −30 ° C.) or lower, and then the wire is heated and cooled to perform spheroidizing annealing. When heating, set the maximum heating temperature to (Ac 1 transformation point + 30 ° C)
(Ac 1 transformation point + 70 ° C) and the cooling rate from the temperature of (Ar 1 transformation point -30 ° C) to the maximum heating temperature is 1.0 ° C / sec or less. 1
(Transformation point) A direct spheroidizing annealing method for a low alloy wire, characterized by continuously cooling at a cooling rate of 0.2 to 5 ° C./sec to the following temperature.

【0012】この発明においては、上記冷却速度を、0.
2 〜5℃/秒の範囲内で、線材の炭素含有量に応じて定
めることが、より好ましい。
In the present invention, the cooling rate is set to 0.
It is more preferable to determine within the range of 2 to 5 ° C./sec according to the carbon content of the wire.

【0013】ここで、鋼線材の圧延後の球状化焼なまし
は、1本通しあるいは数ループ単位で行うほうが、加熱
および冷却が短時間で済むだけでなく、温度の制御も容
易である。もっとも、コイル状態あるいは棒鋼でもこの
発明を適用すれば球状化時間の短縮が図れることは言う
までもない。
Here, when the spheroidizing annealing after rolling of the steel wire is performed in a single thread or in units of several loops, not only heating and cooling are completed in a short time, but also temperature control is easy. However, it is needless to say that the spheroidization time can be shortened by applying the present invention to a coil state or a steel bar.

【0014】[0014]

【発明の実施の形態】以下、この発明について具体的に
説明する。まず、この発明で対象とする鋼材について説
明すると、この発明は、製造過程において球状化焼なま
し処理を不可欠とする機械部品用の鋼材すべてに適用す
ることができる。参考のため、その代表鋼種を掲げる
と、高炭素クロム軸受鋼鋼材(JIS G 4805;例えばSUJ
2)、機械構造用炭素鋼鋼材(JIS G 4051;例えばS45
C)およびクロム鋼鋼材(JIS G 4104;例えばSCr420)
等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, a steel material targeted in the present invention will be described. The present invention can be applied to all steel materials for mechanical parts which require spheroidizing annealing in a manufacturing process. For reference, the representative steel types are high carbon chromium bearing steel (JIS G 4805; for example, SUJ
2) Carbon steel for machine structure (JIS G 4051; for example, S45
C) and chrome steel (JIS G 4104; for example, SCr420)
And the like.

【0015】次に、上記したような機械部品用鋼材につ
いて、その成分中、特にC及びCrを上記の範囲に限定し
た理由について説明する。 C:0.1 〜1.2 mass% Cは固溶して基地を強化し、機械部品としての十分な強
度、耐摩耗性を向上させる有用な成分である。C含有量
が0.1 mass%未満では、冷間加工前に球状化焼なましを
行う必要がないことから、Cの下限は 0.1mass%とし
た。一方、Cが 1.2mass%を超えると初析セメンタイト
がネット状に析出し、冷間加工性が劣化することから、
Cの上限は 1.2mass%とした。
Next, the reasons for limiting the above-mentioned components, particularly C and Cr, of the steel materials for machine parts as described above will be described. C: 0.1 to 1.2 mass% C is a useful component that forms a solid solution to strengthen the matrix and improves sufficient strength and wear resistance as mechanical parts. If the C content is less than 0.1 mass%, it is not necessary to perform spheroidizing annealing before cold working, so the lower limit of C was set to 0.1 mass%. On the other hand, when C exceeds 1.2 mass%, proeutectoid cementite precipitates in a net shape, and the cold workability deteriorates.
The upper limit of C was set to 1.2 mass%.

【0016】Cr:0.25〜1.60mass% Crは、鋼材の焼入れ性改善と炭化物の球状化のために有
効に寄与する。Cr含有量が0.25mass%未満ではその効果
が小さく、いかに球状化焼なまし条件を変化させても層
状パーライトが析出するため良好な球状化組織は得られ
ない。一方、Cr量が1.60mass%を超えると切削性の低下
及び化学組成からみてコストアップとなるので、Cr量は
0.25〜1.60mass%の範囲で添加するものとした。以上、
必須成分について説明したが、この発明では、これら2
成分が上記の範囲を満足していれば、その他の成分につ
いては特に限定されることはなく、各鋼材において必要
とされる特性値に応じて適宜含有させることができる。
Cr: 0.25 to 1.60 mass% Cr effectively contributes to improving the hardenability of the steel material and spheroidizing the carbide. If the Cr content is less than 0.25 mass%, the effect is small, and no matter how the spheroidizing annealing conditions are changed, a good spheroidized structure cannot be obtained because lamellar pearlite is precipitated. On the other hand, if the Cr content exceeds 1.60 mass%, the machinability decreases and the cost increases in view of the chemical composition.
It was added in the range of 0.25 to 1.60 mass%. that's all,
Although the essential components have been described, in the present invention, these two components are used.
As long as the component satisfies the above range, the other components are not particularly limited, and can be appropriately contained according to the characteristic value required for each steel material.

【0017】次に、この発明において、圧延条件及び球
状化焼なまし条件を前記の範囲に限定した理由について
説明する。 仕上圧延温度:900 〜1200℃ この発明では、仕上圧延温度が 900℃未満でも、この発
明の目的である直接球状化組織を得ることは可能である
が、低すぎると熱間圧延時の変形抵抗が増大し圧延機の
増強が必要となるため、 900℃以上とした。一方、仕上
圧延温度が1200℃を超えると脱炭量が多くなり、また、
表面欠陥が急激に増加するため1200℃を上限とした。
Next, the reason why the rolling conditions and the spheroidizing annealing conditions in the present invention are limited to the above ranges will be described. Finish rolling temperature: 900 to 1200 ° C. In the present invention, even if the finish rolling temperature is lower than 900 ° C., it is possible to obtain a direct spheroidized structure which is the object of the present invention. The temperature was increased to 900 ° C or more because the rolling mill needed to be strengthened. On the other hand, if the finish rolling temperature exceeds 1200 ° C, the amount of decarburization increases, and
1200 ° C. was set as the upper limit because surface defects increased rapidly.

【0018】冷却停止温度:( Ar1変態点−30℃) 以下 直接球状化のためには、圧延後の組織を一旦、微細パー
ライトまたはベイナイトやマルテンサイトを主体とする
組織としなければならない。そのためには、圧延後の冷
却停止温度をAr1 変態点以下とする必要があり、温度制
御の観点から少なくともAr1 変態点−30℃以下とした。
Cooling stop temperature: (Ar 1 transformation point −30 ° C.) or less For direct spheroidization, the structure after rolling must once be a structure mainly composed of fine pearlite or bainite or martensite. For this purpose, the cooling stop temperature after rolling needs to be equal to or lower than the Ar 1 transformation point, and is set to at least the Ar 1 transformation point −30 ° C. or lower from the viewpoint of temperature control.

【0019】最高加熱温度を( Ac1変態点+30℃)〜
( Ac1変態点+70℃)の温度範囲とし、かつ、( Ar1
態点−30℃)の温度から当該最高加熱温度までの冷却速
度を1.0℃/秒以下とすること、この条件は、本発明の
大きなポイントの1つである。球状化焼なまし後の硬さ
は、残留炭化物の数に依存し、数が少なくなるにつれ
て、すなわち、炭化物の径が大きくなるにつれて軟らか
くなる傾向にある。このため、材料の硬さを低下させる
ためには、加熱の段階から炭化物の個数を減らす必要が
ある。このためには、加熱速度を遅くして、徐々に変態
を行わせて炭化物を一部溶解させ、Cを母相に十分固溶
されることが効率的かつ重要である。
The maximum heating temperature is (Ac 1 transformation point + 30 ° C.)
The temperature range is (Ac 1 transformation point + 70 ° C), and the cooling rate from the temperature (Ar 1 transformation point -30 ° C) to the maximum heating temperature is 1.0 ° C / sec or less. This is one of the major points of the invention. The hardness after spheroidizing annealing depends on the number of residual carbides, and tends to become softer as the number decreases, that is, as the diameter of the carbides increases. Therefore, in order to reduce the hardness of the material, it is necessary to reduce the number of carbides from the stage of heating. For this purpose, it is efficient and important that the heating rate is slowed down, the transformation is carried out gradually to partially dissolve the carbide, and C is sufficiently dissolved in the parent phase.

【0020】加熱温度範囲と加熱速度を種々に変化させ
て球状化の程度、硬さ及び処理時間を調べたところ、最
高加熱温度を( Ac1変態点+30℃)〜( Ac1変態点+70
℃)の温度範囲とし、かつ、( Ar1変態点−30℃)の温
度から当該最高加熱温度までの冷却速度を1.0 ℃/秒以
下とすることが必要であることが分かった。最高加熱温
度が高過ぎると、残留炭化物の数が少なくなり過ぎて硬
さは低くなるものの、変態時間が大幅に増加してしまっ
たり、残留炭化物がなくなって球状化自体が達成され
ず、次の冷却過程で層状のパーライトが析出したりする
ため、加熱温度の上限を( Ac1変態点+30℃)〜( Ac1
変態点+70℃)の範囲とした。
The degree of spheroidization, hardness and processing time were examined by changing the heating temperature range and heating rate variously, and the maximum heating temperature was found to be (Ac 1 transformation point + 30 ° C.) to (Ac 1 transformation point +70).
° C), and the cooling rate from the temperature of (Ar 1 transformation point-30 ° C) to the maximum heating temperature must be 1.0 ° C / sec or less. If the maximum heating temperature is too high, the number of residual carbides will be too small and the hardness will be low, but the transformation time will increase significantly, or the residual carbides will disappear and spheroidization itself will not be achieved, Because lamellar pearlite is precipitated during the cooling process, the upper limit of the heating temperature is set to (Ac 1 transformation point + 30 ° C.) to (Ac 1
(Transformation point + 70 ° C).

【0021】加熱速度は、加熱温度範囲と密接な関係が
あり、( Ar1変態点−30℃)の温度から当該最高加熱温
度までの冷却速度が1.0 ℃/秒を超えると、十分な変態
が起こらず、一部の炭化物の溶解も不十分である。この
ため、冷却速度は1.0 ℃/秒以下とした。冷却速度の下
限については特に規定しないが、処理時間短縮の点から
好ましくは0.1 ℃/秒である。かかる冷却速度の温度範
囲の下限を( Ar1変態点−30℃)としたのは、これより
低い温度では処理時間が増えるばかりであり、しかも、
( Ar1変態点−30℃)というのは、炭化物を母相に固溶
させつつ徐々に変態を行うに十分に低い温度であるため
である。
The heating rate is closely related to the heating temperature range. When the cooling rate from the temperature of (Ar 1 transformation point −30 ° C.) to the maximum heating temperature exceeds 1.0 ° C./sec, sufficient transformation occurs. It does not occur, and the dissolution of some carbides is insufficient. Therefore, the cooling rate was set to 1.0 ° C./sec or less. Although the lower limit of the cooling rate is not particularly specified, it is preferably 0.1 ° C./sec from the viewpoint of shortening the processing time. The lower limit of the temperature range of the cooling rate is set to (Ar 1 transformation point −30 ° C.) because at lower temperatures, the processing time only increases, and
The reason why (Ar 1 transformation point is −30 ° C.) is that the temperature is low enough to gradually perform transformation while dissolving the carbide in the matrix.

【0022】更に上記最高加熱温度から(Ar1 変態点)
以下の温度までを0.2 〜5℃/秒の冷却速度で連続的に
冷却すること球状化を促進させるには、冷却中にパーラ
イトを析出させるのではなく、残留炭化物を核として球
状炭化物を析出、成長させる必要がある。そのために
は、冷却速度、冷却停止時間の選定が重要である。安定
的に球状化した炭化物を得るためには、Ar1 変態点以下
の温度まで5℃/秒以下の速度で冷却することが必要で
ある。冷却速度が速過ぎる場合、また、冷却停止温度が
あまりに高過ぎる場合は、いずれも層状のパーライトが
析出し不良な球状化組織が得られるため、上述の範囲に
設定した。冷却速度の下限については、処理時間短縮の
点から0.2 ℃/秒以上である。
Further, from the above maximum heating temperature (Ar 1 transformation point)
In order to promote spheroidization by continuously cooling to the following temperature at a cooling rate of 0.2 to 5 ° C./sec, instead of precipitating pearlite during cooling, spherical carbides are precipitated by using residual carbides as nuclei, Need to grow. For that purpose, it is important to select a cooling rate and a cooling stop time. In order to obtain a stable spheroidized carbide, it is necessary to cool to a temperature not higher than the Ar 1 transformation point at a rate of 5 ° C./sec or less. When the cooling rate is too high, or when the cooling stop temperature is too high, the lamellar pearlite precipitates and a poor spheroidized structure is obtained, so that the above range is set. The lower limit of the cooling rate is 0.2 ° C./sec or more from the viewpoint of shortening the processing time.

【0023】この発明では、上述の冷却速度を、0.2 〜
5℃/秒の範囲内で、炭素含有量に応じて定めること
が、より好適である。良好な球状化組織を得るために
は、析出させるべき過飽和なC量に応じた冷却速度を設
定することが有利である。すなわち、前述の過飽和なC
量が多い場合には、残留炭化物を核として球状炭化物を
析出させ、十分に成長させるには、冷却速度を小さくす
ることが好ましい。また、過飽和なC量が少ない場合に
は、冷却速度を大きくすることができ、処理時間の短縮
が図られる。安定的に球状化した炭化物を得るために
は、少なくとも5℃/秒以下、下限については処理時間
短縮の観点から0.2 ℃/秒以上である。
According to the present invention, the cooling rate is set to 0.2 to
It is more preferable to set the temperature within the range of 5 ° C./sec according to the carbon content. In order to obtain a good spheroidized structure, it is advantageous to set a cooling rate according to the amount of supersaturated C to be precipitated. That is, the above-mentioned supersaturated C
When the amount is large, it is preferable to reduce the cooling rate in order to precipitate spherical carbides by using the residual carbides as nuclei and to sufficiently grow the carbides. When the amount of supersaturated carbon is small, the cooling rate can be increased, and the processing time can be shortened. In order to obtain a stable spheroidized carbide, the temperature is at least 5 ° C / sec or less, and the lower limit is 0.2 ° C / sec or more from the viewpoint of shortening the processing time.

【0024】[0024]

【実施例】表1に示す成分組成を有し、同表に示すAc1
変態点、Ar1 変態点になる鋼を、転炉にて溶製後、連続
鋳造により 400mm×560 mmのブルームとした。次いで、
図2に示す (a)〜(g) の製造条件で6.50mmφの線材とし
た。なお、ブルームの一部は、熱間圧延により6.85mmφ
の線材とし、コイルに巻き取って室温まで放冷したの
ち、通常条件(図1(a) 長時間の徐冷法)で球状化焼な
ましを行い、更に酸洗・潤滑処理後に6.50mmφに伸線し
た(従来法1)。また、特開昭63−230821号公
報に開示の方法に従って、6.50mmφの線材を製造した
(従来法2)。
EXAMPLES Ac 1 having the component composition shown in Table 1 and having the composition shown in Table 1 was obtained.
The steel at the transformation point and the Ar 1 transformation point was melted in a converter, and then continuously cast into a bloom of 400 mm × 560 mm. Then
Under the manufacturing conditions (a) to (g) shown in FIG. 2, a wire having a diameter of 6.50 mm was obtained. A part of the bloom was 6.85 mmφ by hot rolling.
After being wound around a coil and allowed to cool to room temperature, it is subjected to spheroidizing annealing under normal conditions (Fig. 1 (a) long-time slow cooling method), and is further drawn to 6.50 mmφ after pickling and lubrication. (Conventional method 1). Further, according to the method disclosed in JP-A-63-230821, a wire having a diameter of 6.50 mm was manufactured (conventional method 2).

【0025】[0025]

【表1】 [Table 1]

【0026】上記した6.50mmφの線材から顕微鏡観察試
料を採取し、ピクラールにて腐食後にミクロ組織の観察
を行うとともに、球状化率の測定を行った。球状化率
は、走査型電子顕微鏡により 8000 倍で観察・撮影し、
500 個以上の炭化物について長径と短径とを個々に測定
し、長径/短径の比が 2.0以下の炭化物個数が全炭化物
個数に占める割合を球状化率として%で示した。また、
6mmφ×8mmのサンプルを切り出し、冷間で圧縮した場
合のサンプルの表面割れ発生状況の目試検査により、冷
間鍛造性を評価した。得られた結果を表2に示す
A microscopic sample was taken from the 6.50 mm diameter wire rod, microstructure was observed after corrosion with picral, and the spheroidization ratio was measured. The spheroidization rate was observed and photographed at 8000 times with a scanning electron microscope.
The major axis and minor axis were individually measured for 500 or more carbides, and the ratio of the number of carbides having a major axis / minor axis ratio of 2.0 or less to the total number of carbides was expressed as a percentage of spheroidization in%. Also,
A sample of 6 mmφ × 8 mm was cut out, and the cold forgeability was evaluated by a visual inspection of the occurrence of surface cracks in the sample when the sample was compressed in the cold. Table 2 shows the obtained results.

【0027】[0027]

【表2】 [Table 2]

【0028】製造条件(a) は比較例であり、圧延仕上温
度が1250℃と、この発明範囲より高いことから、脱炭量
が大きく、表面きずが発生している。また、製造条件
(b) も比較例であり、最高加熱温度がAc1 変態点+90℃
と、この発明の範囲より高いことから、残留炭化物量が
極めて少なくなり、層状パーライトが生じ、従来例に比
べて球状化率が低下するとともに硬さが高くなってい
る。さらに、製造条件(c-1) ,(c-2) および(d) も比較
例であり、加熱速度が2.0℃/秒と大きい、加熱開始温
度がAr1 変態点と高いあるいは、冷却速度が10℃/秒と
大きいため、変態が不十分であり残留炭化物の溶解が比
較的進まず、最終的に得られる炭化物個数が多く、硬さ
が高くなっている。
The production condition (a) is a comparative example. Since the rolling finish temperature is 1250 ° C., which is higher than the range of the present invention, the decarburization amount is large and surface flaws are generated. Also, manufacturing conditions
(b) is also a comparative example, in which the maximum heating temperature is Ac 1 transformation point + 90 ° C.
And higher than the range of the present invention, the amount of residual carbide is extremely reduced, layered pearlite is generated, and the spheroidization ratio is reduced and the hardness is increased as compared with the conventional example. Further, the manufacturing conditions (c-1), (c-2) and (d) are also comparative examples, and the heating rate is as high as 2.0 ° C./sec, the heating start temperature is as high as the Ar 1 transformation point, or the cooling rate is Since the rate is as high as 10 ° C./sec, the transformation is insufficient and the dissolution of the residual carbide does not progress relatively, and the number of carbide finally obtained is large and the hardness is high.

【0029】一方、製造条件(e) は、圧延温度及びその
後の熱履歴は、この発明の適正範囲を満足しているが、
A-1鋼、B-1鋼およびC-1鋼はいずれも、C含有量がこ
の発明の下限を満たしていない。そのため、良好な球状
化組織が得られず、パーライトが析出しており、従来例
に比べて球状化率が低下するとともに、硬さが高くなっ
ている。
On the other hand, the production condition (e) is such that the rolling temperature and the subsequent heat history satisfy the appropriate range of the present invention.
All of the A-1 steel, B-1 steel and C-1 steel have a C content which does not satisfy the lower limit of the present invention. Therefore, a good spheroidized structure cannot be obtained, pearlite is precipitated, and the spheroidization ratio is lower and the hardness is higher than in the conventional example.

【0030】これに対し、製造条件(e) 〜(g) により得
られたA-2鋼、B-2鋼及びC-2鋼は、この発明の適合例
であり、いずれも冷却中に変態が完了できており、従来
例と同様以上の球状化率と、同等以下の硬さを得ること
ができた。また、(e), (f)を比較すると、No.9, 10, 2
0, 21, 31, 32の場合、C量が多くなるにつれて冷却速
度を低下することにより、硬さが一層低下していること
がわかる。
On the other hand, A-2 steel, B-2 steel and C-2 steel obtained under the manufacturing conditions (e) to (g) are applicable examples of the present invention, all of which are transformed during cooling. Was completed, and a spheroidization ratio equal to or higher than that of the conventional example and a hardness equal to or lower than that of the conventional example could be obtained. Comparing (e) and (f), No. 9, 10, 2
In the case of 0, 21, 31, and 32, it can be seen that the hardness is further reduced by decreasing the cooling rate as the C amount increases.

【0031】また、製造条件(h) は、仕上圧延後に塩浴
を用いて急冷しベイナイト主体の組成としたものである
が、同一球状化焼なまし条件である製造条件(e) に比べ
て球状化率が平均5〜10%向上しており、硬さが平均Hv
5〜10>l;j低くなっていた。さらに、冷間鍛造性も、こ
の発明で得られたものは従来の球状化焼なましに冷間伸
線を施した材料と同等以上であり、短時間処理による省
エネルギー効果は極めて大きい。
The production condition (h) is a composition mainly composed of bainite which is quenched by using a salt bath after finish rolling, but compared with the production condition (e) which is the same spheroidizing annealing condition. The spheroidization rate is improved by 5-10% on average, and the hardness is average Hv
5-10>l; j was lower. Further, the cold forgeability obtained by the present invention is equal to or higher than that of a material obtained by performing cold drawing on conventional spheroidizing annealing, and the energy saving effect by short-time treatment is extremely large.

【0032】[0032]

【発明の効果】かくして、この発明によれば、圧延温度
を低下させる必要なく、また短時間で球状化組織を安定
して得ることができ、その結果、設備の増大等を招くこ
となしに、生産性を格段に向上させることができる。
Thus, according to the present invention, there is no need to lower the rolling temperature, and a spheroidized structure can be stably obtained in a short time, and as a result, without increasing the equipment, etc. Productivity can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一般的な球状化焼なましにおける熱履歴を示
したもので、(a) は徐冷法、(b) は2段法である。
FIG. 1 shows a thermal history in a general spheroidizing annealing, in which (a) is a slow cooling method and (b) is a two-step method.

【図2】 球状化焼なましにおける熱処理条件を示した
図である。
FIG. 2 is a view showing heat treatment conditions in spheroidizing annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 俊幸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K032 AA05 AA06 AA11 AA12 AA16 AA27 AA29 AA31 BA02 CC04 CF02 CF03 4K043 AA02 AB04 AB05 AB06 AB10 AB11 AB15 AB25 AB26 AB27 BA03 BA06 DA05 FA11  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshiyuki Hoshino 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Inside the Mizushima Works of Kawasaki Steel Corporation (72) Inventor Ken-ichi Amano, Kawasaki-dori Mizushima, Kurashiki-shi, Okayama 1-chome (without address) F-term in Kawasaki Steel Corporation Mizushima Works (reference) 4K032 AA05 AA06 AA11 AA12 AA16 AA27 AA29 AA31 BA02 CC04 CF02 CF03 4K043 AA02 AB04 AB05 AB06 AB10 AB11 AB15 AB25 AB26 AB27 BA11 BA06 DA05 FA

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.1 〜1.2 mass%、 Cr:0.25〜1.60mass% を含有する低合金鋼鋼材に熱間圧延を最終仕上温度:90
0 〜1200℃の条件で行って線材とし、次いで( Ar1変態
点−30℃) 以下の温度まで冷却した後、この線材を加
熱、冷却して球状化焼なましを行うに当たり、 上記線材の加熱の際に、最高加熱温度を( Ac1変態点+
30℃)〜( Ac1変態点+70℃)の温度範囲とし、かつ、
( Ar1変態点−30℃)の温度から当該最高加熱温度まで
の冷却速度を1.0 ℃/秒以下とし、 上記最高加熱温度から(Ar1 変態点)以下の温度までを
0.2 〜5℃/秒の冷却速度で連続的に冷却することを特
徴とする低合金線材の直接球状化焼なまし方法。
1. A low alloy steel containing C: 0.1 to 1.2 mass% and Cr: 0.25 to 1.60 mass% is hot rolled to a final finishing temperature of 90%.
The temperature is reduced to a temperature of (Ar 1 transformation point −30 ° C.) or lower, and then the wire is heated and cooled to perform spheroidizing annealing. When heating, set the maximum heating temperature to (Ac 1 transformation point +
30 ° C) to (Ac 1 transformation point + 70 ° C), and
The cooling rate from the temperature of (Ar 1 transformation point −30 ° C.) to the maximum heating temperature is 1.0 ° C./sec or less, and the cooling rate from the maximum heating temperature to the temperature of (Ar 1 transformation point) or less
A method for direct spheroidizing annealing of a low alloy wire, characterized by continuously cooling at a cooling rate of 0.2 to 5 ° C / sec.
【請求項2】上記冷却速度を、0.2 〜5℃/秒の範囲内
で、線材の炭素含有量に応じて定めることを特徴とする
低合金鋼線材の直接球状化焼なまし方法。
2. A method for direct spheroidizing annealing of a low alloy steel wire, wherein the cooling rate is determined within the range of 0.2 to 5 ° C./sec according to the carbon content of the wire.
JP36909298A 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire Expired - Fee Related JP3815095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36909298A JP3815095B2 (en) 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36909298A JP3815095B2 (en) 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire

Publications (2)

Publication Number Publication Date
JP2000192147A true JP2000192147A (en) 2000-07-11
JP3815095B2 JP3815095B2 (en) 2006-08-30

Family

ID=18493546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36909298A Expired - Fee Related JP3815095B2 (en) 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire

Country Status (1)

Country Link
JP (1) JP3815095B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024218A (en) * 2007-07-19 2009-02-05 Sumitomo Metal Ind Ltd Method for manufacturing rough-formed product of bearing
JP2009108354A (en) * 2007-10-29 2009-05-21 Sumitomo Metal Ind Ltd Method for manufacturing rough-formed bearing
CN113481354A (en) * 2021-07-05 2021-10-08 大连环新精密特钢股份有限公司 Ultrahigh-speed continuous isothermal spheroidizing annealing method and device for carbon steel
CN115341076A (en) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024218A (en) * 2007-07-19 2009-02-05 Sumitomo Metal Ind Ltd Method for manufacturing rough-formed product of bearing
JP2009108354A (en) * 2007-10-29 2009-05-21 Sumitomo Metal Ind Ltd Method for manufacturing rough-formed bearing
CN113481354A (en) * 2021-07-05 2021-10-08 大连环新精密特钢股份有限公司 Ultrahigh-speed continuous isothermal spheroidizing annealing method and device for carbon steel
CN115341076A (en) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof
CN115341076B (en) * 2022-07-15 2023-08-18 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof

Also Published As

Publication number Publication date
JP3815095B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP4646866B2 (en) BEARING STEEL WIRE EXCELLENT IN DRAWING AND METHOD FOR PRODUCING THE SAME
JP6160783B2 (en) Steel sheet and manufacturing method thereof
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP4008320B2 (en) Rolled and drawn wire rods for bearings
WO2016158343A1 (en) Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
JP2000256741A (en) Manufacture of hot rolled bar or wire
US4604145A (en) Process for production of steel bar or steel wire having an improved spheroidal structure of cementite
JP2000256740A (en) Manufacture of hot rolled wire
JPH03240919A (en) Production of steel wire for wiredrawing
JP5380001B2 (en) Manufacturing method of bearing steel
JP2000192147A (en) Directly spheroidized annealing method of low alloy wire rod
JP2001342544A (en) Wire or rod steel suppressed arising of deformation resistance at room temperature and in area of working heat generation
JP5124847B2 (en) Rolling method of high carbon chromium bearing steel
JPS59136421A (en) Preparation of rod steel and wire material having spheroidal structure
JP3772581B2 (en) Direct spheroidizing annealing method of alloy steel wire
JP3779584B2 (en) Linear or bar steel with excellent deformability and machine parts
JPH11256233A (en) Direct spheroidizing annealing method for steel wire rod
JP2564535B2 (en) Direct spheroidizing method for hot rolled steel wire rod
JPH04346618A (en) Drawn steel wire rod
JPH02213416A (en) Production of steel bar with high ductility
JP7334868B2 (en) steel parts
JP2000273542A (en) Direct spheroidizing annealing method of steel wire
JP7389909B2 (en) Bearing wire rod and its manufacturing method
KR100940658B1 (en) A Manufacturing Method of Hot Rolled Wire Rod Having Excellent Ability of Descaling
JP2002060841A (en) Method for producing bar or wire rod

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees