JP3815095B2 - Direct spheroidizing annealing method for low alloy wire - Google Patents

Direct spheroidizing annealing method for low alloy wire Download PDF

Info

Publication number
JP3815095B2
JP3815095B2 JP36909298A JP36909298A JP3815095B2 JP 3815095 B2 JP3815095 B2 JP 3815095B2 JP 36909298 A JP36909298 A JP 36909298A JP 36909298 A JP36909298 A JP 36909298A JP 3815095 B2 JP3815095 B2 JP 3815095B2
Authority
JP
Japan
Prior art keywords
temperature
transformation point
cooling
wire
spheroidizing annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36909298A
Other languages
Japanese (ja)
Other versions
JP2000192147A (en
Inventor
卓彌 厚見
義男 山崎
俊幸 星野
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP36909298A priority Critical patent/JP3815095B2/en
Publication of JP2000192147A publication Critical patent/JP2000192147A/en
Application granted granted Critical
Publication of JP3815095B2 publication Critical patent/JP3815095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、合金鋼線材の直接球状化焼なまし方法に関し、とりわけ熱間圧延後、直接球状化焼なましを施す場合に、簡単な方法で焼なまし時間の有利な短縮を図ろうとするものである。
【0002】
【従来の技術】
一般に、合金鋼線材を冷間で鍛造または切削して成形を行う機械部品は、鋼線材のスケール除去を目的とした一次酸洗を行った後、球状化焼なましを行い、次いで、この球状化焼なましにより生じた脱炭層及びスケールの除去を目的とした二次酸洗を行い、更に寸法精度の向上を目的として約10%程度の伸線加工を行った後に潤滑処理を施して成形加工される。
上記したような合金鋼線材の球状化焼なましは、成形加工時の材料の硬さを十分に低下させて良好な加工性を確保する上で不可欠のプロセスであり、通常は、線材をコイルに巻いた状態でポット炉に装入し、所定の熱履歴を付与することにより行われる。
【0003】
しかしながら、上記の球状化焼なまし法には、以下に述べるような問題があった。
(a) コイルに巻いた状態で加熱または冷却する熱履歴を付与するため、昇温・冷却に長時間(通常、20〜30時間程度)を要し、しかもバッチ処理であるから生産性が低く、熱処理コストが嵩む。
(b) コイル内の各部位で熱履歴が大幅に異なるため、焼なまし後の線材品質のばらつきが大きい。
(c) 生産性を向上させるためにコイル重量を大きくしても、大重量のコイルを処理するためには、より大型のポット炉が必要となることから、過剰な設備投資が必要になるだけでなく、その維持のためのコストが大幅に増大する。
【0004】
上記の問題を解消するものとして、特開昭63−230821号公報には、C:0.10〜1.00mass%を含有する鋼片を熱間圧延し、仕上圧延機群の入側における被圧延材の温度を 650〜850 ℃となし、仕上圧延機群の出側における前記被圧延材の最終仕上温度を 750〜900 ℃となして鋼線材を調整し、次いで、前記鋼線材を2℃/秒以上の冷却速度で 650℃以下の温度まで冷却し、次いで、冷却された前記鋼線材を2℃/秒以上の加熱速度でAc1 〜Ac1 +160 ℃の温度域まで加熱し、そして、前記温度域において5分間以内の時間保持し、次いで前記温度域に加熱、保持された前記鋼線材を、
1) 任意の冷却速度でAr1 〜Ar1 −160 ℃の温度まで冷却し、そして、前記温度域において5〜60分間の時間保持するか、または
2) 任意の冷却速度でAr1 の温度まで冷却し、次いで、前記温度に冷却された前記鋼線材を、2℃/秒以下の冷却速度でAr1 −80℃の温度まで冷却する
ことを特徴とする熱間圧延鋼線材の直接球状化処理方法が開示されている。
【0005】
【発明が解決しようとする課題】
上記した特開昭63−230821号公報に開示の方法では、球状化時間の短縮を目的として、微細なオーステナイト組織を得て、パーライト析出サイトを増大させることにより、オーステナイトからフェライトへの変態を促進する方法を採っている。
このため、仕上圧延前後の温度をかなり低くする必要があり、仕上圧延前に水冷ゾーンを設置したり、圧延機の能力を増大させるといった設備の新規な設置や改造が不可欠であるため、設備費が著しく嵩むところに問題を残していた。
【0006】
この発明の主たる目的は、安価な設備の下で、繁雑な圧延制御を行う必要なしに直接球状化組織を得ることができる、合金鋼線材の直接球状化焼なまし方法を提案することにある。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の目的に鑑み、設備費の増加を招かないことおよび繁雑な圧延制御を行う必要がないことを前提として、合金鋼線材の直接球状化焼なまし方法(線材圧延後、引き続きオンラインで球状化焼なましを行う方法)について検討を行った。
【0008】
一般的に、球状化焼なましとは、材料をAc1 変態点以上に加熱して層状のパーライトの一部を固溶させた後、Ar1 変態点を徐冷(徐冷法)又はAr1 変態点以下に等温保持(2段法)して、フェライト中と比較して過飽和に固溶したオーステナイト中のCを残留炭化物の核をもとに析出させる熱処理である。このように、球状化焼なまし法としては、徐冷法と2段法とが知られていて、それぞれ図1(a), (b)に熱履歴が示される。この徐冷法及び2段法による球状化焼なまし処理時間は、図1においてそれぞれYで示す処理時間を要する。
ここで重要なことは、冷却中は新しい核は生成しないので、徐冷前の残留炭化物の数と最終的に得られる球状化炭化物の数とが等しいことである。
【0009】
さて、完全な球状化組織を得るために必要な時間は、図1においてXで示す加熱後の残留炭化物が多いほど短くなる。このため、焼なまし時間の短縮化には、一般に、図1のXで示す時点での残留炭化物を多くすることが必要であると考えられる。しかし、この残留炭化物が多過ぎると、焼なまし後の線材の硬度が所定の値まで下がらないという問題が出てくる。これは、残留炭化物が多いほどパーライト析出サイトが増えるために変態は促進され、焼なまし処理時間は短くなるものの、最終的に得られる炭化物の個数が多くなる傾向がある。この炭化物による分散強化が行われるために、硬度が十分に下がらないものと考えられる。したがって、処理時間の短縮と十分な軟化を同時に達成する直接球状化焼なまし法が要請される。
【0010】
ここに、発明者らは、球状化焼なましにより硬さを十分に低下させ、かつ、その球状化焼なまし時間を効果的に短縮するには、球状化焼なましの温度パターンを厳密に制御することが重要であることを見いだした。すなわち、仕上圧延前後における温度を格別に低くしなくとも、上述の球状化焼なまし時の加熱温度範囲及び各温度に対応する加熱速度、冷却時における冷却速度と冷却停止温度を所定の範囲に規制することにより、加熱後の残留炭化物の個数が同じであっても、処理時間が短くなることの知見を得た。かくして、処理時間を短くして硬さも満足する球状化焼なまし条件を設定することができた。
この発明は、上記の知見に立脚するものである。
【0011】
すなわち、この発明は、JIS G 4805 に規定される高炭素クロム軸受鋼鋼材、 JIS G 4051 に規定される機械構造用炭素鋼鋼材または JIS G 4104 に規定されるクロム鋼鋼材の成分中、特にCおよび Cr について
C:0.1 〜1.2 mass%、
Cr:0.25〜1.60mass%
の範囲で含有する低合金鋼鋼材に熱間圧延を最終仕上温度:900〜1200℃の条件で行って線材とし、次いで( Ar1変態点−30℃)以下の温度まで冷却した後、この線材を加熱、冷却して球状化焼なましを行うに当たり、
上記線材の加熱の際に、最高加熱温度を( Ac1変態点+30℃)〜( Ac1変態点+70℃)の温度範囲とし、かつ、( Ar1変態点−30℃)の温度から当該最高加熱温度までの加熱速度を1.0 ℃/秒以下とし、
次いで、上記最高加熱温度から(Ar1変態点)以下の温度までを0.2〜5℃/秒の冷却速度で連続的に冷却することを特徴とする低合金線材の直接球状化焼なまし方法。
【0012】
この発明においては、上記冷却速度を、0.2〜5℃/秒の範囲内で、線材過飽和な炭素含有量に応じて定めることが、より好ましい。
【0013】
ここで、鋼線材の圧延後の球状化焼なましは、1本通しあるいは数ループ単位で行うほうが、加熱および冷却が短時間で済むだけでなく、温度の制御も容易である。もっとも、コイル状態あるいは棒鋼でもこの発明を適用すれば球状化時間の短縮が図れることは言うまでもない。
【0014】
【発明の実施の形態】
以下、この発明について具体的に説明する。
まず、この発明で対象とする鋼材について説明すると、この発明は、製造過程において球状化焼なまし処理を不可欠とする機械部品用の鋼材、すなわち高炭素クロム軸受鋼鋼材(JIS G 4805;例えばSUJ2)、機械構造用炭素鋼鋼材(JIS G 4051;例えばS45C)およびクロム鋼鋼材(JIS G 4104;例えばSCr420)に適用することができる
【0015】
次に、上記したような機械部品用鋼材について、その成分中、特にC及びCrを上記の範囲に限定した理由について説明する。
C:0.1 〜1.2 mass%
Cは固溶して基地を強化し、機械部品としての十分な強度、耐摩耗性を向上させる有用な成分である。C含有量が0.1 mass%未満では、冷間加工前に球状化焼なましを行う必要がないことから、Cの下限は 0.1mass%とした。一方、Cが 1.2mass%を超えると初析セメンタイトがネット状に析出し、冷間加工性が劣化することから、Cの上限は 1.2mass%とした。
【0016】
Cr:0.25〜1.60mass%
Crは、鋼材の焼入れ性改善と炭化物の球状化のために有効に寄与する。Cr含有量が0.25mass%未満ではその効果が小さく、いかに球状化焼なまし条件を変化させても層状パーライトが析出するため良好な球状化組織は得られない。一方、Cr量が1.60mass%を超えると切削性の低下及び化学組成からみてコストアップとなるので、Cr量は0.25〜1.60mass%の範囲で添加するものとした。
以上、必須成分について説明したが、この発明では、これら2成分が上記の範囲を満足していれば、その他の成分については特に限定されることはなく、前述した機械部品用鋼材の組成範囲内で、各鋼材において必要とされる特性値に応じて適宜含有させることができる。
【0017】
次に、この発明において、圧延条件及び球状化焼なまし条件を前記の範囲に限定した理由について説明する。
仕上圧延温度:900 〜1200℃
この発明では、仕上圧延温度が 900℃未満でも、この発明の目的である直接球状化組織を得ることは可能であるが、低すぎると熱間圧延時の変形抵抗が増大し圧延機の増強が必要となるため、 900℃以上とした。一方、仕上圧延温度が1200℃を超えると脱炭量が多くなり、また、表面欠陥が急激に増加するため1200℃を上限とした。
【0018】
冷却停止温度:( Ar1変態点−30℃) 以下
直接球状化のためには、圧延後の組織を一旦、微細パーライトまたはベイナイトやマルテンサイトを主体とする組織としなければならない。そのためには、圧延後の冷却停止温度をAr1 変態点以下とする必要があり、温度制御の観点から少なくともAr1 変態点−30℃以下とした。
【0019】
最高加熱温度を( Ac1変態点+30℃)〜( Ac1変態点+70℃)の温度範囲とし、かつ、( Ar1変態点−30℃)の温度から当該最高加熱温度までの加熱速度を1.0℃/秒以下とすること、
この条件は、本発明の大きなポイントの1つである。球状化焼なまし後の硬さは、残留炭化物の数に依存し、数が少なくなるにつれて、すなわち、炭化物の径が大きくなるにつれて軟らかくなる傾向にある。このため、材料の硬さを低下させるためには、加熱の段階から炭化物の個数を減らす必要がある。このためには、加熱速度を遅くして、徐々に変態を行わせて炭化物を一部溶解させ、Cを母相に十分固溶されることが効率的かつ重要である。
【0020】
加熱温度範囲と加熱速度を種々に変化させて球状化の程度、硬さ及び処理時間を調べたところ、最高加熱温度を( Ac1変態点+30℃)〜( Ac1変態点+70℃)の温度範囲とし、かつ、( Ar1変態点−30℃)の温度から当該最高加熱温度までの加熱速度を1.0 ℃/秒以下とすることが必要であることが分かった。最高加熱温度が高過ぎると、残留炭化物の数が少なくなり過ぎて硬さは低くなるものの、変態時間が大幅に増加してしまったり、残留炭化物がなくなって球状化自体が達成されず、次の冷却過程で層状のパーライトが析出したりするため、加熱温度の上限を( Ac1変態点+30℃)〜( Ac1変態点+70℃)の範囲とした。
【0021】
加熱速度は、加熱温度範囲と密接な関係があり、( Ar1変態点−30℃)の温度から当該最高加熱温度までの加熱速度が1.0 ℃/秒を超えると、十分な変態が起こらず、一部の炭化物の溶解も不十分である。このため、加熱速度は1.0 ℃/秒以下とした。加熱速度の下限については特に規定しないが、処理時間短縮の点から好ましくは0.1 ℃/秒である。かかる加熱時の温度範囲の下限を( Ar1変態点−30℃)としたのは、これより低い温度では処理時間が増えるばかりであり、しかも、( Ar1変態点−30℃)というのは、炭化物を母相に固溶させつつ徐々に変態を行うに十分に低い温度であるためである。
【0022】
更に上記最高加熱温度から(Ar1 変態点)以下の温度までを0.2 〜5℃/秒の冷却速度で連続的に冷却すること
球状化を促進させるには、冷却中にパーライトを析出させるのではなく、残留炭化物を核として球状炭化物を析出、成長させる必要がある。そのためには、冷却速度、冷却停止時間の選定が重要である。安定的に球状化した炭化物を得るためには、Ar1 変態点以下の温度まで5℃/秒以下の速度で冷却することが必要である。冷却速度が速過ぎる場合、また、冷却停止温度があまりに高過ぎる場合は、いずれも層状のパーライトが析出し不良な球状化組織が得られるため、上述の範囲に設定した。冷却速度の下限については、処理時間短縮の点から0.2 ℃/秒以上である。
【0023】
この発明では、上述の冷却速度を、0.2〜5℃/秒の範囲内で、線材過飽和な炭素含有量に応じて定めることが、より好適である。
良好な球状化組織を得るためには、析出させるべき過飽和なC量に応じた冷却速度を設定することが有利である。すなわち、前述の過飽和なC量が多い場合には、残留炭化物を核として球状炭化物を析出させ、十分に成長させるには、冷却速度を小さくすることが好ましい。また、過飽和なC量が少ない場合には、冷却速度を大きくすることができ、処理時間の短縮が図られる。安定的に球状化した炭化物を得るためには、少なくとも5℃/秒以下、下限については処理時間短縮の観点から0.2 ℃/秒以上である。
【0024】
【実施例】
表1に示す成分組成を有し、同表に示すAc1 変態点、Ar1 変態点になる鋼を、転炉にて溶製後、連続鋳造により 400mm×560 mmのブルームとした。次いで、図2に示す (a)〜(g) の製造条件で6.50mmφの線材とした。
なお、ブルームの一部は、熱間圧延により6.85mmφの線材とし、コイルに巻き取って室温まで放冷したのち、通常条件(図1(a) 長時間の徐冷法)で球状化焼なましを行い、更に酸洗・潤滑処理後に6.50mmφに伸線した(従来法1)。また、特開昭63−230821号公報に開示の方法に従って、6.50mmφの線材を製造した(従来法2)。
【0025】
【表1】

Figure 0003815095
【0026】
上記した6.50mmφの線材から顕微鏡観察試料を採取し、ピクラールにて腐食後にミクロ組織の観察を行うとともに、球状化率の測定を行った。球状化率は、走査型電子顕微鏡により 8000 倍で観察・撮影し、500 個以上の炭化物について長径と短径とを個々に測定し、長径/短径の比が 2.0以下の炭化物個数が全炭化物個数に占める割合を球状化率として%で示した。
また、6mmφ×8mmのサンプルを切り出し、冷間で圧縮した場合のサンプルの表面割れ発生状況の目視検査により、冷間鍛造性を評価した。
得られた結果を表2に示す
【0027】
【表2】
Figure 0003815095
【0028】
製造条件(a) は比較例であり、圧延仕上温度が1250℃と、この発明範囲より高いことから、脱炭量が大きく、表面きずが発生している。
また、製造条件(b) も比較例であり、最高加熱温度がAc1 変態点+90℃と、この発明の範囲より高いことから、残留炭化物量が極めて少なくなり、層状パーライトが生じ、従来例に比べて球状化率が低下するとともに硬さが高くなっている。
さらに、製造条件(c-1) ,(c-2) および(d) も比較例であり、加熱速度が2.0℃/秒と大きい、加熱開始温度がAr1 変態点と高いあるいは、加熱速度が10℃/秒と大きいため、変態が不十分であり残留炭化物の溶解が比較的進まず、最終的に得られる炭化物個数が多く、硬さが高くなっている。
【0029】
一方、製造条件(e) は、圧延温度及びその後の熱履歴は、この発明の適正範囲を満足しているが、A-1鋼、B-1鋼およびC-1鋼はいずれも、C含有量がこの発明の下限を満たしていない。そのため、良好な球状化組織が得られず、パーライトが析出しており、従来例に比べて球状化率が低下するとともに、硬さが高くなっている。
【0030】
これに対し、製造条件(e) 〜(g) により得られたA-2鋼、B-2鋼及びC-2鋼は、この発明の適合例であり、いずれも冷却中に変態が完了できており、従来例と同様以上の球状化率と、同等以下の硬さを得ることができた。また、(e), (f)を比較すると、No.9, 10, 20, 21, 31, 32の場合、C量が多くなるにつれて冷却速度を低下することにより、硬さが一層低下していることがわかる。
【0032】
【発明の効果】
かくして、この発明によれば、圧延温度を低下させる必要なく、また短時間で球状化組織を安定して得ることができ、その結果、設備の増大等を招くことなしに、生産性を格段に向上させることができる。
【図面の簡単な説明】
【図1】 一般的な球状化焼なましにおける熱履歴を示したもので、(a) は徐冷法、(b) は2段法である。
【図2】 球状化焼なましにおける熱処理条件を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for direct spheroidizing annealing of an alloy steel wire. In particular, when direct spheroidizing annealing is performed after hot rolling, an attempt is made to advantageously shorten the annealing time by a simple method. Is.
[0002]
[Prior art]
In general, machine parts that are formed by cold forging or cutting alloy steel wire are subjected to spheroidizing annealing after primary pickling for the purpose of removing the scale of the steel wire, and then this spherical shape. Secondary pickling to remove the decarburized layer and scale caused by chemical annealing, and after about 10% wire drawing for the purpose of improving dimensional accuracy, lubrication treatment is performed. Processed.
The spheroidizing annealing of the alloy steel wire as described above is an indispensable process for sufficiently reducing the hardness of the material at the time of forming and ensuring good workability. Usually, the wire is coiled. It is carried out by charging the pot furnace in a state of being wound around and applying a predetermined heat history.
[0003]
However, the spheroidizing annealing method has the following problems.
(a) Since it gives a heat history of heating or cooling in the state of being wound around a coil, it takes a long time (usually about 20 to 30 hours) to raise and cool, and it is a batch process, so the productivity is low. , Heat treatment costs increase.
(b) Since the thermal history is significantly different at each part in the coil, there is a large variation in wire quality after annealing.
(c) Even if the coil weight is increased in order to improve productivity, a larger pot furnace is required to process a heavy coil, so that excessive capital investment is required. Rather, the cost of maintaining it increases significantly.
[0004]
In order to solve the above-mentioned problem, JP-A-63-230221 discloses a method for hot rolling a steel slab containing C: 0.10 to 1.00 mass%, and for the material to be rolled on the entry side of the finish rolling mill group. The temperature is set to 650 to 850 ° C., the final finishing temperature of the rolled material on the exit side of the finishing mill group is set to 750 to 900 ° C., and the steel wire is adjusted, and then the steel wire is set to 2 ° C./second or more. The steel wire is cooled to a temperature range of Ac 1 to Ac 1 + 160 ° C. at a heating rate of 2 ° C./second or more, and the temperature range is In 5 minutes, and then the steel wire heated and held in the temperature range,
1) Cool to Ar 1 -Ar 1 -160 ° C. at any cooling rate and hold for 5-60 minutes in the temperature range, or 2) Ar 1 at any cooling rate cooled, then, the steel wire rod cooled to the temperature, 2 ° C. / sec of cooling rate in the direct spheroidization of hot rolled steel wire rod, characterized in that cooling to a temperature of Ar 1 -80 ° C. A method is disclosed.
[0005]
[Problems to be solved by the invention]
In the method disclosed in Japanese Patent Laid-Open No. Sho 63-232081, the transformation from austenite to ferrite is promoted by obtaining a fine austenite structure and increasing the pearlite precipitation sites for the purpose of shortening the spheroidizing time. The method to do is taken.
For this reason, it is necessary to lower the temperature before and after finish rolling, and new installations and modifications of equipment such as installing a water cooling zone before finishing rolling and increasing the capacity of the rolling mill are indispensable. Left a problem where it was extremely bulky.
[0006]
The main object of the present invention is to propose a direct spheroidizing annealing method for alloy steel wires, which can obtain a direct spheroidized structure without the need for complicated rolling control under inexpensive equipment. .
[0007]
[Means for Solving the Problems]
Now, in view of the above-mentioned objectives, the inventors have assumed that there is no increase in equipment cost and that it is not necessary to perform complicated rolling control, and a direct spheroidizing annealing method (wire rolling) of alloy steel wire After that, a method for continuously spheroidizing annealing online was examined.
[0008]
In general, spheroidizing annealing means heating the material to the Ac 1 transformation point or higher to dissolve a part of the layered pearlite and then slowly cooling the Ar 1 transformation point (slow cooling method) or Ar 1 transformation. This is a heat treatment in which C is precipitated in the austenite, which is held in an isothermal state below the point (two-stage method) and is supersaturated as compared with that in ferrite, based on the nuclei of residual carbides. Thus, as the spheroidizing annealing method, the slow cooling method and the two-stage method are known, and the thermal history is shown in FIGS. 1 (a) and 1 (b), respectively. The spheroidizing annealing time by this slow cooling method and the two-stage method requires a processing time indicated by Y in FIG.
What is important here is that no new nuclei are formed during cooling, so that the number of residual carbides before slow cooling is equal to the number of spheroidized carbides finally obtained.
[0009]
Now, the time required to obtain a complete spheroidized structure becomes shorter as the amount of residual carbide after heating indicated by X in FIG. 1 increases. For this reason, in order to shorten the annealing time, it is generally considered that it is necessary to increase the residual carbide at the time indicated by X in FIG. However, if there is too much residual carbide, there arises a problem that the hardness of the wire after annealing does not decrease to a predetermined value. This is because as the amount of residual carbides increases, the number of pearlite precipitation sites increases, so the transformation is promoted and the annealing treatment time is shortened, but the number of finally obtained carbides tends to increase. It is considered that the hardness is not sufficiently lowered due to the dispersion strengthening by the carbide. Therefore, there is a need for a direct spheroidizing annealing method that simultaneously achieves shortening of processing time and sufficient softening.
[0010]
In order to reduce the hardness sufficiently by spheroidizing annealing and to shorten the spheroidizing annealing time effectively, the inventors have strictly set the temperature pattern of spheroidizing annealing. I found it important to control. That is, even if the temperature before and after finish rolling is not particularly reduced, the heating temperature range during spheroidizing annealing described above, the heating rate corresponding to each temperature, the cooling rate during cooling and the cooling stop temperature within a predetermined range. By regulating, even when the number of residual carbides after heating is the same, it has been found that the processing time is shortened. Thus, it was possible to set the spheroidizing annealing conditions that shorten the processing time and satisfy the hardness.
The present invention is based on the above findings.
[0011]
That is, the present invention includes a high carbon chromium bearing steel material specified in JIS G 4805 , a carbon steel material for machine structural use specified in JIS G 4051 , or a chromium steel material specified in JIS G 4104. and the Cr C: 0.1 ~1.2 mass%,
Cr: 0.25 to 1.60 mass%
A low alloy steels containing in the range of, the final finishing hot rolling temperature: 900 to 1200 and subjected to wire under conditions of ° C., followed by (Ar 1 transformation point -30 ° C.) after cooling to a temperature below the When heating and cooling the wire to perform spheroidizing annealing,
Upon heating of the wire, the maximum heating temperature to a temperature range of (Ac 1 transformation point + 30 ℃) ~ (Ac 1 transformation point + 70 ° C.), and the highest from the temperature of (Ar 1 transformation point -30 ° C.) The heating rate up to the heating temperature is 1.0 ° C / second or less,
Next, a direct spheroidizing annealing method for a low alloy wire characterized by continuously cooling from the maximum heating temperature to a temperature not higher than (Ar 1 transformation point) at a cooling rate of 0.2 to 5 ° C./second.
[0012]
In this invention, it is more preferable to determine the cooling rate in the range of 0.2 to 5 ° C./second according to the supersaturated carbon content in the wire.
[0013]
Here, when the spheroidizing annealing after rolling the steel wire is performed in a single loop or in units of several loops, not only heating and cooling are required for a short time, but also temperature control is easier. However, it goes without saying that the spheroidizing time can be shortened by applying the present invention even in a coiled state or a steel bar.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, a steel material that is the subject of the present invention will be described. This invention is a steel material for machine parts that requires spheroidizing annealing in the manufacturing process , that is, a high carbon chromium bearing steel material (JIS G 4805; for example, SUJ2 ), carbon steel for machine structural use steel (JIS G 4051; can be applied to, for example, SCr420); e.g. S45C) and chromium steels (JIS G 4104.
[0015]
Next, the reason why C and Cr in the components of the steel material for machine parts as described above are limited to the above range will be described.
C: 0.1-1.2 mass%
C is a useful component that solidifies and strengthens the base, and improves the strength and wear resistance sufficient as a machine part. If the C content is less than 0.1 mass%, it is not necessary to perform spheroidizing annealing before cold working, so the lower limit of C is set to 0.1 mass%. On the other hand, if C exceeds 1.2 mass%, pro-eutectoid cementite precipitates in a net shape and the cold workability deteriorates, so the upper limit of C was set to 1.2 mass%.
[0016]
Cr: 0.25 to 1.60 mass%
Cr contributes effectively for improving the hardenability of steel and spheroidizing carbides. If the Cr content is less than 0.25 mass%, the effect is small, and no matter how the spheroidizing and annealing conditions are changed, layered pearlite is deposited, and a good spheroidized structure cannot be obtained. On the other hand, if the Cr content exceeds 1.60 mass%, the cutting performance is lowered and the cost increases in view of the chemical composition. Therefore, the Cr content is added in the range of 0.25 to 1.60 mass%.
The essential components have been described above. In the present invention, as long as these two components satisfy the above range, the other components are not particularly limited, and are within the above-described composition range of the steel for machine parts. Thus, it can be appropriately contained depending on the characteristic value required in each steel material.
[0017]
Next, the reason why the rolling conditions and the spheroidizing annealing conditions are limited to the above ranges in the present invention will be described.
Finish rolling temperature: 900 ~ 1200 ℃
In this invention, even if the finish rolling temperature is less than 900 ° C., it is possible to obtain the direct spheroidized structure which is the object of the present invention. However, if it is too low, the deformation resistance during hot rolling increases and the rolling mill is strengthened. Because it is necessary, the temperature was set to 900 ° C or higher. On the other hand, when the finish rolling temperature exceeds 1200 ° C, the amount of decarburization increases, and surface defects increase rapidly, so 1200 ° C was made the upper limit.
[0018]
Cooling stop temperature: (Ar 1 transformation point −30 ° C.) For direct spheroidization, the structure after rolling must once be a structure mainly composed of fine pearlite, bainite, or martensite. For this purpose, it is necessary to set the cooling stop temperature after rolling to the Ar 1 transformation point or lower, and at least Ar 1 transformation point to −30 ° C. or lower from the viewpoint of temperature control.
[0019]
The maximum heating temperature is in the temperature range of (Ac 1 transformation point + 30 ° C.) to (Ac 1 transformation point + 70 ° C.), and the heating rate from the temperature (Ar 1 transformation point −30 ° C.) to the maximum heating temperature is 1.0. Not more than ° C / second,
This condition is one of the major points of the present invention. The hardness after spheroidizing annealing depends on the number of residual carbides, and tends to become soft as the number decreases, that is, as the diameter of the carbide increases. For this reason, in order to reduce the hardness of the material, it is necessary to reduce the number of carbides from the heating stage. For this purpose, it is efficient and important that the heating rate is slowed down, the transformation is gradually performed to partially dissolve the carbide, and C is sufficiently dissolved in the matrix.
[0020]
When the degree of spheroidization, hardness, and processing time were examined by changing the heating temperature range and heating rate in various ways, the maximum heating temperature was (Ac 1 transformation point + 30 ° C) to (Ac 1 transformation point + 70 ° C). It was found that the heating rate from the temperature of (Ar 1 transformation point −30 ° C.) to the maximum heating temperature should be 1.0 ° C./second or less. If the maximum heating temperature is too high, the number of residual carbides will be too small and the hardness will be low, but the transformation time will be greatly increased, or the residual carbides will disappear and spheroidization itself will not be achieved. Since layered pearlite precipitates during the cooling process, the upper limit of the heating temperature was set in the range of (Ac 1 transformation point + 30 ° C.) to (Ac 1 transformation point + 70 ° C.).
[0021]
Heating rate is closely related to the heating temperature range, the heating rate from the temperature of (Ar 1 transformation point -30 ° C.) until the maximum heating temperature exceeds 1.0 ° C. / sec, it does not occur sufficiently transformation, Some carbides are also poorly dissolved. For this reason, the heating rate was set to 1.0 ° C./second or less. The lower limit of the heating rate is not particularly specified, but is preferably 0.1 ° C./second from the viewpoint of shortening the processing time. The lower limit of the temperature range at the time of heating is set to (Ar 1 transformation point −30 ° C.), the processing time only increases at a temperature lower than this, and (Ar 1 transformation point −30 ° C.) This is because the temperature is low enough to gradually transform the carbide while dissolving it in the matrix.
[0022]
Furthermore, in order to promote spheroidization by continuously cooling from the above maximum heating temperature to a temperature below (Ar 1 transformation point) at a cooling rate of 0.2 to 5 ° C./second, pearlite is precipitated during cooling. However, it is necessary to deposit and grow the spherical carbide with the residual carbide as a nucleus. For this purpose, selection of the cooling rate and cooling stop time is important. In order to obtain a stable spheroidized carbide, it is necessary to cool at a rate of 5 ° C./second or less to a temperature below the Ar 1 transformation point. When the cooling rate is too high, and when the cooling stop temperature is too high, layered pearlite is precipitated and a defective spheroidized structure is obtained. The lower limit of the cooling rate is 0.2 ° C./second or more from the viewpoint of shortening the processing time.
[0023]
In the present invention, it is more preferable to set the above cooling rate within the range of 0.2 to 5 ° C./second according to the supersaturated carbon content in the wire.
In order to obtain a good spheroidized structure, it is advantageous to set a cooling rate according to the amount of supersaturated C to be precipitated. That is, when the amount of supersaturated C is large, it is preferable to reduce the cooling rate in order to cause spherical carbide to precipitate with the residual carbide as a nucleus and grow sufficiently. Further, when the amount of supersaturated C is small, the cooling rate can be increased and the processing time can be shortened. In order to obtain a stable spheroidized carbide, it is at least 5 ° C./second or less, and the lower limit is 0.2 ° C./second or more from the viewpoint of shortening the treatment time.
[0024]
【Example】
Steels having the composition shown in Table 1 and having the Ac 1 transformation point and Ar 1 transformation point shown in the same table were melted in a converter and then made into a 400 mm × 560 mm bloom by continuous casting. Next, a 6.50 mmφ wire was produced under the production conditions (a) to (g) shown in FIG.
Part of the bloom is made into a 6.85mmφ wire rod by hot rolling, wound around a coil, allowed to cool to room temperature, and then subjected to spheroidizing annealing under normal conditions (Fig. 1 (a) slow cooling method for a long time). After further pickling and lubrication, the wire was drawn to 6.50 mmφ (conventional method 1). In addition, a 6.50 mmφ wire was produced according to the method disclosed in Japanese Patent Laid-Open No. 63-230821 (Conventional Method 2).
[0025]
[Table 1]
Figure 0003815095
[0026]
A sample for microscopic observation was taken from the above 6.50 mmφ wire rod, and the microstructure was observed after corrosion with Picral, and the spheroidization rate was measured. The spheroidization rate was observed and photographed at 8000 times with a scanning electron microscope, and the major axis and minor axis were individually measured for 500 or more carbides. The number of carbides having a major axis / minor axis ratio of 2.0 or less was the total number of carbides. The ratio to the number was expressed as% as the spheroidization rate.
Moreover, the cold forgeability was evaluated by visual inspection of the surface crack occurrence state of the sample when a 6 mmφ × 8 mm sample was cut out and compressed cold.
The results obtained are shown in Table 2. [0027]
[Table 2]
Figure 0003815095
[0028]
Production conditions (a) are comparative examples, and the rolling finishing temperature is 1250 ° C., which is higher than the range of the present invention. Therefore, the amount of decarburization is large and surface flaws are generated.
Also, the production condition (b) is a comparative example, and the maximum heating temperature is Ac 1 transformation point + 90 ° C., which is higher than the range of the present invention. In comparison, the spheroidization rate decreases and the hardness increases.
Furthermore, the production conditions (c-1), (c-2) and (d) are also comparative examples, where the heating rate is as high as 2.0 ° C./second, the heating start temperature is high as the Ar 1 transformation point, or the heating rate is high. Since it is as large as 10 ° C./second, the transformation is insufficient, the dissolution of residual carbides does not proceed relatively, the number of finally obtained carbides is large, and the hardness is high.
[0029]
On the other hand, the production condition (e) is that the rolling temperature and the subsequent thermal history satisfy the appropriate range of the present invention, but all of the A-1 steel, B-1 steel and C-1 steel contain C. The amount does not meet the lower limit of this invention. Therefore, a good spheroidized structure cannot be obtained, pearlite is precipitated, and the spheroidization rate is reduced and the hardness is increased as compared with the conventional example.
[0030]
On the other hand, A-2 steel, B-2 steel and C-2 steel obtained under the manufacturing conditions (e) to (g) are examples of conformity of the present invention, and all of them can be transformed during cooling. It was possible to obtain a spheroidizing rate equal to or higher than that of the conventional example and a hardness equal to or lower than that of the conventional example. In addition, when (e) and (f) are compared, in the case of No. 9, 10, 20, 21, 31, 32, the hardness is further reduced by decreasing the cooling rate as the amount of C increases. I understand that.
[0032]
【The invention's effect】
Thus, according to the present invention, it is possible to stably obtain a spheroidized structure in a short time without lowering the rolling temperature, and as a result, the productivity is remarkably increased without causing an increase in equipment. Can be improved.
[Brief description of the drawings]
FIG. 1 shows a thermal history in general spheroidizing annealing, where (a) is a slow cooling method and (b) is a two-stage method.
FIG. 2 is a diagram showing heat treatment conditions in spheroidizing annealing.

Claims (2)

JIS G 4805 に規定される高炭素クロム軸受鋼鋼材、 JIS G 4051 に規定される機械構造用炭素鋼鋼材または JIS G 4104 に規定されるクロム鋼鋼材の成分中、特にCおよび Cr について
C:0.1 〜1.2 mass%、
Cr:0.25〜1.60mass%
の範囲で含有する低合金鋼鋼材に熱間圧延を最終仕上温度:900〜1200℃の条件で行って線材とし、次いで( Ar1変態点−30℃)以下の温度まで冷却した後、この線材を加熱、冷却して球状化焼なましを行うに当たり、
上記線材の加熱の際に、最高加熱温度を( Ac1変態点+30℃)〜( Ac1変態点+70℃)の温度範囲とし、かつ、( Ar1変態点−30℃)の温度から当該最高加熱温度までの加熱速度を1.0 ℃/秒以下とし、
次いで、上記最高加熱温度から(Ar1変態点)以下の温度までを0.2〜5℃/秒の冷却速度で連続的に冷却することを特徴とする低合金線材の直接球状化焼なまし方法。
Among the components of high carbon chromium bearing steels specified in JIS G 4805 , carbon steels for machine structural use specified in JIS G 4051 or chromium steels specified in JIS G 4104 , especially C and Cr , C: 0.1 ~ 1.2 mass%,
Cr: 0.25 to 1.60 mass%
A low alloy steels containing in the range of, the final finishing hot rolling temperature: 900 to 1200 and subjected to wire under conditions of ° C., followed by (Ar 1 transformation point -30 ° C.) after cooling to a temperature below the When heating and cooling the wire to perform spheroidizing annealing,
Upon heating of the wire, the maximum heating temperature to a temperature range of (Ac 1 transformation point + 30 ℃) ~ (Ac 1 transformation point + 70 ° C.), and the highest from the temperature of (Ar 1 transformation point -30 ° C.) The heating rate up to the heating temperature is 1.0 ° C / second or less,
Next, a direct spheroidizing annealing method for a low alloy wire characterized by continuously cooling from the maximum heating temperature to a temperature not higher than (Ar 1 transformation point) at a cooling rate of 0.2 to 5 ° C./second.
上記冷却速度を、0.2〜5℃/秒の範囲内で、線材過飽和な炭素含有量に応じて定めることを特徴とする請求項1記載の低合金鋼線材の直接球状化焼なまし方法。2. The method of direct spheroidizing annealing of a low alloy steel wire according to claim 1 , wherein the cooling rate is determined in accordance with the supersaturated carbon content in the wire within a range of 0.2 to 5 [deg.] C./second. .
JP36909298A 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire Expired - Fee Related JP3815095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36909298A JP3815095B2 (en) 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36909298A JP3815095B2 (en) 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire

Publications (2)

Publication Number Publication Date
JP2000192147A JP2000192147A (en) 2000-07-11
JP3815095B2 true JP3815095B2 (en) 2006-08-30

Family

ID=18493546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36909298A Expired - Fee Related JP3815095B2 (en) 1998-12-25 1998-12-25 Direct spheroidizing annealing method for low alloy wire

Country Status (1)

Country Link
JP (1) JP3815095B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018305B2 (en) * 2007-07-19 2012-09-05 住友金属工業株式会社 Manufacturing method of rough bearing product
JP5067120B2 (en) * 2007-10-29 2012-11-07 住友金属工業株式会社 Manufacturing method of rough bearing product
CN113481354A (en) * 2021-07-05 2021-10-08 大连环新精密特钢股份有限公司 Ultrahigh-speed continuous isothermal spheroidizing annealing method and device for carbon steel
CN115341076B (en) * 2022-07-15 2023-08-18 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof

Also Published As

Publication number Publication date
JP2000192147A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP6160783B2 (en) Steel sheet and manufacturing method thereof
JP4646866B2 (en) BEARING STEEL WIRE EXCELLENT IN DRAWING AND METHOD FOR PRODUCING THE SAME
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP2009197256A (en) Method for producing high carbon steel sheet
JP4008320B2 (en) Rolled and drawn wire rods for bearings
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JP2000256741A (en) Manufacture of hot rolled bar or wire
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP3815095B2 (en) Direct spheroidizing annealing method for low alloy wire
JP5380001B2 (en) Manufacturing method of bearing steel
JP2003183733A (en) Method for manufacturing wire rod
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JP3031484B2 (en) Method for producing steel wire rod or steel bar having spheroidized structure
JP5124847B2 (en) Rolling method of high carbon chromium bearing steel
JP3772581B2 (en) Direct spheroidizing annealing method of alloy steel wire
JPH02213416A (en) Production of steel bar with high ductility
KR100946068B1 (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same
JP2564535B2 (en) Direct spheroidizing method for hot rolled steel wire rod
JP7334868B2 (en) steel parts
JP7389909B2 (en) Bearing wire rod and its manufacturing method
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
JPH11256233A (en) Direct spheroidizing annealing method for steel wire rod
JPH1060540A (en) Production of high carbon cold rolled steel strip
JP2000273542A (en) Direct spheroidizing annealing method of steel wire
JP2024521184A (en) Wire rod with excellent drawability and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees