JPH10298641A - Production of steel excellent in spheroidize-annealing treatability - Google Patents

Production of steel excellent in spheroidize-annealing treatability

Info

Publication number
JPH10298641A
JPH10298641A JP10721897A JP10721897A JPH10298641A JP H10298641 A JPH10298641 A JP H10298641A JP 10721897 A JP10721897 A JP 10721897A JP 10721897 A JP10721897 A JP 10721897A JP H10298641 A JPH10298641 A JP H10298641A
Authority
JP
Japan
Prior art keywords
magnetic field
steel
spheroidizing annealing
cooling
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10721897A
Other languages
Japanese (ja)
Inventor
Yasuhiro Omori
靖浩 大森
Kazukuni Hase
和邦 長谷
Takuya Atsumi
卓也 厚見
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Michio Shimotomai
道夫 下斗米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10721897A priority Critical patent/JPH10298641A/en
Publication of JPH10298641A publication Critical patent/JPH10298641A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce energy cost and to execute sufficient spheroidize-annealing treatment by an inexpensive heat treatment by applying a steel cong. a specified ratio of C with the magnetic field in a specified temp. range in succession to hot rolling and furthermore executing cooling at a specified cooling rate. SOLUTION: In the steel to be produced, the content of C is regulated to 0.01 to 0.8 mass%. This steel is applied with the magnetic field in the temp. range of 800 to 500 deg.C at the time of cooling in succession to hot rolling, and the cooling rate in the temp. range is regulated to <=10 deg.C/sec. In this way, before austenite is transformed into a ferritic/pearlitic structure, the precipitation of cementite in pearlite is suppressed, and the lamellar intervals in cementite is shortened, by which a fine ferritic/pearlitic structure an be obtd. Preferably, the intensity of the magnetic field to be applied is regulated 2 to 30 T, and the size of the magnetic field gradient is regulated to 0.1 to 10 T/cm by absolute value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鋼材の製造方法
に関し、塑性加工、切削加工を容易にするための球状化
焼きなまし処理を施すような鋼材において、この球状化
焼きなまし処理時間の短縮を図ることのできる技術に係
わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a steel material and, in a steel material subjected to a spheroidizing annealing process for facilitating plastic working and cutting, to shorten the spheroidizing annealing time. Related to technologies that can be used.

【0002】[0002]

【従来の技術】自動車及び産業機械等に用いられる機械
部品には、従来から炭素鋼又は合金鋼が素材として汎用
されている。これらの機械部品は、通常、熱間圧延によ
り製造される棒鋼線材を球状化焼きなましした後に、切
断し、所定の形状に冷間鍛造し、最後に切削等の仕上加
工を行うことによって製造されている。かかる機械部品
の製造工程のうち、冷間鍛造は、製品の加工精度、量産
性及びコストの点で優れているので多用されているが、
加工精度や型寿命などの観点から冷間鍛造性を向上させ
ることが望まれるところであり、そのために、予め鋼中
炭化物を球状化し、鋼材の変形抵抗を低下させる目的で
球状化焼きなましが施される。
2. Description of the Related Art Conventionally, carbon steel or alloy steel has been widely used as a material for mechanical parts used in automobiles and industrial machines. These mechanical parts are usually manufactured by spheroidizing and annealing bar steel wires produced by hot rolling, cutting, cold forging to a predetermined shape, and finally performing finishing such as cutting. I have. In the manufacturing process of such mechanical parts, cold forging is widely used because it is excellent in terms of product processing accuracy, mass productivity and cost,
It is desired to improve the cold forgeability from the viewpoint of processing accuracy and mold life, and for that purpose, spheroidizing annealing is performed in advance for spheroidizing carbides in steel and reducing deformation resistance of steel materials. .

【0003】かかる球状化焼きなましというのは、図1
にヒートパターンの一例を示すようにAc1 変態点直上で
の長時間加熱保持とその後の徐冷による方法が一般的で
あり、この加熱保持の間に鋼中のセメンタイトをオース
テナイト中に固溶させ、残存したセメンタイトを核とし
て球状に再析出、成長させているものである。しかし、
この熱処理は、高温でかつ長時間加熱のために熱処理費
用が嵩むという問題を有していた。
[0003] Such spheroidizing annealing is described in FIG.
As shown in the example of the heat pattern, a method of heating and holding immediately above the transformation point of Ac 1 for a long time followed by slow cooling is generally used.During this heating and holding, cementite in steel is dissolved in austenite to form a solid solution. And reprecipitated and grown spherically with the remaining cementite as nuclei. But,
This heat treatment had a problem that the heat treatment cost was increased due to high temperature and long-time heating.

【0004】これらの解決策として、例えば特公平6−
2898号公報には、高炭素クロム軸受鋼の短時間球状
化熱処理方法を開示し、具体的には図2に示すヒートパ
ターンで鋼材を780 〜820 ℃に加熱保持後Ar1 変態点以
下まで50〜200 ℃/hで冷却する第1次球状化処理と、Ac
1 変態点〜Ac1 変態点+30℃に加熱後Ar1 変態点以下ま
で50〜200 ℃/hで冷却する3回以上の第2次球状化処理
の組み合わせからなる熱処理を行うすることの提案があ
る。また、特開平4−362123号公報には、軸受用
素材の製造方法として図3に示すように、A3点以上に加
熱保持後急冷し、次いでA3+(5〜30) ℃に再加熱保持し
てからA1−(5〜30) ℃に保持し、次いでA1+(5〜30) ℃
での保持とA1−(5〜30) ℃での保持を1回以上行うヒー
トパターンの熱処理法の採用を提案している。
As a solution to these problems, for example,
The 2898 discloses, discloses a short-time spheroidization heat treatment method of the high carbon chromium bearing steel, until the steel to 780-820 less heated and held after Ar 1 transformation point to ℃ a heat pattern specifically shown in FIG. 2 50 Primary spheroidizing treatment at ~ 200 ° C / h, Ac
A proposal has been made to perform a heat treatment consisting of a combination of three or more secondary spheroidizing treatments, which are heated from 1 transformation point to Ac 1 transformation point + 30 ° C and then cooled to 50 ° C to 200 ° C / h below the Ar 1 transformation point. is there. JP-A-4-362123, as shown in FIG. 3 as a method for producing a material for bearings, quenched after heating hold three or more points A, then reheated to A 3 + (5~30) ℃ was held a 1 - holding (5-30) in ° C., then a 1 + (5-30) ° C.
It has been proposed to adopt a heat pattern heat treatment method in which holding at a temperature of A 1- (5 to 30) ° C. is performed at least once.

【0005】しかしながら、前掲特公平6−2898号
公報に開示のの方法は、従来20時間かかっていたものを
10時間にしたという熱処理時間の短縮効果はあっても依
然として10時間という長時間を要し、かつ数回の繰り返
し熱サイクルを加えるものであることから、エネルギー
コスト及び温度制御の点では問題が残されていたままで
ある。また、上掲特開平4−362123号公報に記載
の方法は、エネルギーコストの点では改善されているも
のの、球状化焼きなましで本来注目すべき炭化物の球状
化の程度という点では不十分であった。
[0005] However, the method disclosed in Japanese Patent Publication No. Hei 6-2898 cited above is a method which took 20 hours conventionally.
Although the heat treatment time was shortened to 10 hours, the heat treatment still required a long time of 10 hours and repeated thermal cycles were repeated several times.Therefore, problems remained in terms of energy cost and temperature control. It has been done. Further, the method described in the above-mentioned Japanese Patent Application Laid-Open No. 4-362123 is improved in terms of energy cost, but is insufficient in terms of the degree of spheroidization of carbides which should be noticed in spheroidizing annealing. .

【0006】[0006]

【発明が解決しようとする課題】この発明は、かかる実
情に鑑み、エネルギーコストを低減し、安価な熱処理費
用で十分に球状化を図ることができる、球状化焼きなま
し処理性に優れた鋼材の製造方法を提案することを目的
とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a method of manufacturing a steel material having excellent spheroidizing annealing property, which can reduce the energy cost and sufficiently spheroidize at low heat treatment cost. The aim is to propose a method.

【0007】[0007]

【課題を解決するための手段】発明者らは、上記目的を
達成するために炭素を0.01〜0.8 mass%含有する亜共析
鋼、炭素を0.8 〜2.0 mass%含有する過共析鋼のそれぞ
れについて球状化焼きなまし処理の短時間化に関して鋭
意調査研究を重ねた結果、いずれの場合も最高到達温度
保持時間及び炭化物の球状化の程度は、球状化焼きなま
し前の組織が大きく影響していることを見いだし、さら
に研究を重ねたところ以下の知見が得られた。
Means for Solving the Problems In order to achieve the above object, the present inventors have proposed a hypoeutectoid steel containing 0.01 to 0.8 mass% of carbon and a hypereutectoid steel containing 0.8 to 2.0 mass% of carbon. As a result of intensive investigation and research on shortening the spheroidizing annealing process, it was found that the maximum temperature holding time and the degree of spheroidization of carbides were greatly affected by the structure before spheroidizing annealing in each case. We have found and further studied and found the following findings.

【0008】炭素を0.01〜0.8 mass%含有する亜共析鋼
の場合は、球状化焼きなましにおける加熱時間を短縮す
るためには、できるだけ微細なフェライト+パーライト
組織にすることが好ましく、過剰に微細化すると、セメ
ンタイトが全て固溶して球状化の核とならないため、適
度な微細化が必要である。かかる適度な微細化は、圧延
に引き続く冷却時に磁場を印加することで容易に達成で
きる。
[0008] In the case of hypoeutectoid steel containing 0.01 to 0.8 mass% of carbon, in order to shorten the heating time in spheroidizing annealing, it is preferable to make the ferrite + pearlite structure as fine as possible. Then, since all of cementite does not form a solid solution and becomes a nucleus of spheroidization, appropriate refinement is required. Such appropriate miniaturization can be easily achieved by applying a magnetic field during cooling subsequent to rolling.

【0009】また、炭素を0.8 〜2.0 mass%含有する過
共析鋼の場合は、球状化焼きなまし前の組織において、
初析セメンタイト量が少ないほど、次工程での球状化焼
きなましを経た鋼材の球状化の程度が向上し、かつ焼き
なましに要する時間も短縮される。この初析セメンタイ
トは、熱間圧延後の冷却中に生成するが、冷却中の磁場
の印加により、その生成が抑制される。
In the case of a hypereutectoid steel containing 0.8 to 2.0 mass% of carbon, the structure before spheroidizing annealing is as follows:
As the amount of proeutectoid cementite is smaller, the degree of spheroidization of the steel material that has undergone spheroidizing annealing in the next step is improved, and the time required for annealing is reduced. The pro-eutectoid cementite is generated during cooling after hot rolling, but the generation is suppressed by applying a magnetic field during cooling.

【0010】上記の知見に立脚するこの発明の要旨構成
は、次のとおりである。次工程で球状化焼きなまし処理
を施す、C:0.01〜0.8 mass%を含有する鋼材を熱間圧
延を経て製造する方法において、熱間圧延に引き続く冷
却の際、800 〜500 ℃の温度範囲で磁場を印加するとと
もに、その温度範囲における冷却速度を10℃/s以下とす
ることを特徴とする球状化焼きなまし処理性に優れた鋼
材の製造方法(第1発明)。次工程で球状化焼きなまし
処理を施す、C:0.8 〜2.0 mass%を含有する鋼材を熱
間圧延を経て製造する方法において、熱間圧延に引き続
く冷却の際、800 〜500 ℃の温度範囲で磁場を印加する
とともに、その温度範囲における冷却速度を10℃/s以下
とすることを特徴とする球状化焼きなまし処理性に優れ
た鋼材の製造方法(第2発明)。第1発明又は第2発明
において、磁場印加中の冷却速度を50℃/h以下とするこ
とを特徴とする球状化焼きなまし処理性に優れた鋼材の
製造方法(第3発明)。第1発明又は第2発明におい
て、磁場の強さを2〜30Tとし、磁場勾配を絶対値で0.
1 〜10T/cm とすることを特徴とする球状化焼きなまし
処理性に優れた鋼材の製造方法(第4発明)。この発明
を鋼材を製造する際に採用することで、鋼材を焼きなま
し処理時に高温に保持する時間を従来に比べて大幅に短
縮できるようになり、球状化に要するコストエネルギー
を低減できるようになる。
The gist of the present invention based on the above findings is as follows. In a method of producing a steel material containing C: 0.01 to 0.8 mass% through hot rolling in which spheroidizing annealing treatment is performed in the next step, a magnetic field is applied in a temperature range of 800 to 500 ° C during cooling after hot rolling. And a cooling rate in the temperature range of 10 ° C./s or less. A method for producing a steel material having excellent spheroidizing annealing property (first invention). In a method of producing a steel material containing 0.8 to 2.0 mass% of C through hot rolling, which is subjected to spheroidizing annealing in the next step, a magnetic field is applied in a temperature range of 800 to 500 ° C during cooling after hot rolling. And a cooling rate in the temperature range of 10 ° C./s or less, the method for producing a steel material excellent in spheroidizing annealing treatment (second invention). The method for producing a steel material excellent in spheroidizing annealing treatment according to the first invention or the second invention, wherein a cooling rate during application of a magnetic field is 50 ° C./h or less (third invention). In the first invention or the second invention, the strength of the magnetic field is set to 2 to 30 T, and the magnetic field gradient is set to an absolute value of 0.1.
A method for producing a steel material having excellent spheroidizing annealing property, characterized in that the pressure is 1 to 10 T / cm (fourth invention). By adopting the present invention when manufacturing a steel material, the time during which the steel material is kept at a high temperature during the annealing process can be significantly reduced as compared with the conventional case, and the cost energy required for spheroidization can be reduced.

【0011】[0011]

【発明の実施の形態】第1発明において、微細なフェラ
イトパーライト組織を得るため、熱間圧延に引き続く冷
却の際、800 〜500 ℃の温度範囲で磁場を印加するとと
もに、その温度範囲における冷却速度を10℃/s以下とす
る理由は以下のとおりである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the first invention, in order to obtain a fine ferrite pearlite structure, a magnetic field is applied in a temperature range of 800 to 500 ° C. during cooling after hot rolling, and a cooling rate in the temperature range is applied. Is set to 10 ° C./s or less for the following reason.

【0012】圧延に引き続く冷却の過程でに、オーステ
ナイトがフェライト−パーライト組織に変態する前に磁
場を印加することにより、パーライト中のセメンタイト
の析出が抑制され、セメンタイトのラメラ間隔が短くな
り、微細なフェライト−パーライト組織を呈するように
なる。フェライト−パーライト組織を得るためには冷却
速度を10℃/s以下とすることが必要であり、磁場の印加
もフェライト−パーライト変態が起きる800 〜500 ℃の
冷却過程で印加する必要がある。500 ℃以下での冷却速
度は、急冷、徐冷いずれの条件でも可能である。より好
ましい冷却速度は50℃/h以下である。
By applying a magnetic field before the transformation of austenite into a ferrite-pearlite structure during the cooling process following the rolling, the precipitation of cementite in pearlite is suppressed, the lamella spacing of cementite is shortened, and fine It comes to have a ferrite-pearlite structure. In order to obtain a ferrite-pearlite structure, the cooling rate must be 10 ° C./s or less, and a magnetic field must be applied during the cooling process at 800 to 500 ° C. where the ferrite-pearlite transformation occurs. The cooling rate at 500 ° C. or lower can be either rapid cooling or slow cooling. A more preferred cooling rate is 50 ° C./h or less.

【0013】印加する磁場の強さは、2〜30Tが良好
で、2〜15Tが好ましい。2T未満であるとパーライト
の微細化効果は得られず、30Tを超えると微細になりす
ぎて高温保持段階で容易にセメンタイトが固溶し、球状
化の核となる残存セメンタイト量が不足し良好な球状炭
化物が得られない。次に、磁場勾配の大きさを、絶対値
で0.1 T/cm 以上10T/cm 以下とした理由は以下のとお
りである。まず、磁場勾配の効果はその絶対値で決まる
ので、プラス、マイナスいずれでも構わない。0.1 T/c
m 未満では磁場印加の効果が認められず、一方10T/cm
を超えてもその効果が飽和に達するので磁場勾配の大き
さは0.1 〜10T/cm に限定した。
The strength of the applied magnetic field is preferably 2 to 30 T, and more preferably 2 to 15 T. If it is less than 2T, the effect of refining pearlite cannot be obtained. Spherical carbide cannot be obtained. Next, the reason for setting the magnitude of the magnetic field gradient to 0.1 T / cm or more and 10 T / cm or less in absolute value is as follows. First, since the effect of the magnetic field gradient is determined by its absolute value, it can be either positive or negative. 0.1 T / c
If less than 10 m / m, the effect of applying a magnetic field is not recognized, while 10 T / cm
Therefore, the magnitude of the magnetic field gradient is limited to 0.1 to 10 T / cm, since the effect reaches saturation even if it exceeds.

【0014】次に、第2発明において、熱間圧延に引き
続く冷却の際、800 〜500 ℃の温度範囲で磁場を印加す
るとともに、その温度範囲における冷却速度を10℃/s以
下とする理由は、次のとおりである。
Next, in the second invention, during cooling subsequent to hot rolling, a magnetic field is applied in a temperature range of 800 to 500 ° C., and the cooling rate in that temperature range is set to 10 ° C./s or less. ,It is as follows.

【0015】熱間圧延後の冷却にあたり、800 〜500 ℃
の冷却中に磁場を印加するのは、主に800 〜500 ℃の冷
却中にオーステナイトからのセメンタイトの生成が起こ
るため、この温度域で磁場を印加することにより、初析
セメンタイトの生成を抑制することができるためであ
る。また、磁場印加によりパーライト組織のラメラも分
断された形態に変化し、後の球状化処理で、より球状化
が起こりやすくなるためである。この温度範囲における
冷却速度は、10℃/s以下とする必要があり、10℃/sを超
える冷却速度の場合には、磁場印加による初析セメンタ
イト生成抑制が難しくなる。ことから好ましい冷却速度
は50℃/h以下である。
800-500 ° C. for cooling after hot rolling
The application of a magnetic field during the cooling of cement mainly causes the formation of cementite from austenite during cooling at 800 to 500 ° C. By applying a magnetic field in this temperature range, the formation of proeutectoid cementite is suppressed. This is because you can do it. Further, the lamella of the pearlite structure is also changed to a divided form by the application of the magnetic field, and spheroidization is more likely to occur in the subsequent spheroidizing treatment. The cooling rate in this temperature range needs to be 10 ° C./s or less, and when the cooling rate exceeds 10 ° C./s, it is difficult to suppress the formation of proeutectoid cementite by applying a magnetic field. Therefore, a preferable cooling rate is 50 ° C./h or less.

【0016】印加する磁場の強さは、2〜30Tが好まし
い。2T未満では磁場による初析セメンタイト生成の抑
制効果が明確でなくなり、一方、30Tを超える磁場を印
加するのは、装置が大がかりとなり、コストが上昇する
ため2〜30Tが好ましい。次に、磁場勾配の大きさを、
絶対値で0.1 T/cm 以上10T/cm 以下とした理由は以下
のとおりである。まず、磁場勾配の効果はその絶対値で
決まるので、プラス、マイナスいずれでも構わない。0.
1 T/cm 未満では磁場印加の効果が認められず、一方10
T/cm を超えてもその効果が飽和に達するので磁場勾配
の大きさは0.1 〜10T/cm に限定した。
The strength of the applied magnetic field is preferably from 2 to 30T. Below 2T, the effect of suppressing the generation of proeutectoid cementite by the magnetic field is not clear. On the other hand, the application of a magnetic field exceeding 30T requires 2-30T because the apparatus becomes large and the cost increases. Next, the magnitude of the magnetic field gradient is
The reason for setting the absolute value to 0.1 T / cm or more and 10 T / cm or less is as follows. First, since the effect of the magnetic field gradient is determined by its absolute value, it can be either positive or negative. 0.
At less than 1 T / cm, the effect of applying a magnetic field was not observed.
Since the effect reaches saturation even when the temperature exceeds T / cm 2, the magnitude of the magnetic field gradient is limited to 0.1 to 10 T / cm 2.

【0017】この発明で対象とする鋼材は、炭素量が上
記した0.01〜0.8 mass%の鋼材、0.8 〜2.0 の鋼材のも
のであればいずれでもよい。したがって、この発明は、
低炭素鋼から中炭素鋼、高炭素鋼、さらには低合金鋼
(例えば高炭素クロム軸受鋼、工具鋼)、高合金鋼(ス
テンレス鋼)まで、広い範囲にわたって適用することが
できる。
The steel material to be used in the present invention may be any steel material having a carbon content of 0.01 to 0.8 mass% and a steel material having a carbon content of 0.8 to 2.0. Therefore, the present invention
It can be applied to a wide range from low carbon steel to medium carbon steel, high carbon steel, low alloy steel (for example, high carbon chromium bearing steel, tool steel), and high alloy steel (stainless steel).

【0018】かかる素材は、加熱後に熱間加工、代表的
には熱間圧延に供するが、加熱条件、熱間圧延条件は各
素材に通常施される条件に従って行えばよい。熱間圧延
に引き続く冷却の際は、この発明に従う条件で行うこと
が肝要である。かくして、この発明の鋼材を球状化焼き
なましに供する際には、従来よりも短時間で済む。
Such a material is subjected to hot working, typically hot rolling, after heating, and the heating condition and the hot rolling condition may be performed according to the conditions usually applied to each material. It is important that the cooling following the hot rolling be performed under the conditions according to the present invention. Thus, when the steel material of the present invention is subjected to spheroidizing annealing, it takes less time than before.

【0019】[0019]

【実施例】【Example】

(実施例1)表1に示す種々の化学組成の鋼を転炉で溶
製し、連続鋳造法で鋼片としたのち、55mmφの棒鋼に圧
延した。この棒鋼の圧延後の冷却過程で表2に示す種々
の条件で磁場を印加した。なお、磁場印加温度範囲は80
0 〜500 ℃である。そして、これらの棒鋼に図4に示す
ヒートパターンで球状化焼きなましを施した。球状化焼
きなましを施した後の鋼材について5000倍で10視野ずつ
炭化物形状を調べ炭化物の球状化程度を観察した。球状
化の程度はは、長径/短径の比が2以下の炭化物量の割
合(%)で算出した。この結果を表2に示す。
(Example 1) Steels having various chemical compositions shown in Table 1 were melted in a converter, turned into billets by a continuous casting method, and then rolled into 55 mmφ steel bars. A magnetic field was applied under various conditions shown in Table 2 during the cooling process after the rolling of the bar. The magnetic field application temperature range is 80
0-500 ° C. Then, these steel bars were subjected to spheroidizing annealing according to the heat pattern shown in FIG. The steel shape after spheroidizing annealing was examined for carbide shapes at 5000 times in 10 fields of view, and the degree of spheroidization of the carbide was observed. The degree of spheroidization was calculated from the ratio (%) of the amount of carbide having a ratio of major axis / minor axis of 2 or less. Table 2 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】No. 1〜8はこの発明の実施例であり、い
ずれも短時間の球状化処理により球状化率90%を超える
良好な球状炭化物が得られた。No. 9は従来鋼について
の結果であり、長時間球状化処理しているにも係わら
ず、炭化物の球状化は十分には行われていない。No. 1
0,No. 11,No. 13,No. 16は磁場あるいは磁場勾配が
不十分な場合であり、短時間で十分な球状化が行われな
かった。No. 14,No. 17は磁場が過剰な場合であり、十
分な球状化は行われなった。No. 12,No. 15,No. 18
は、冷却速度が早すぎる場合であり、組織がベイナイト
となったため不適であった。
Nos. 1 to 8 are examples of the present invention, and in all cases, a good spheroidized material having a spheroidization ratio of more than 90% was obtained by spheroidization treatment for a short time. No. 9 is a result of the conventional steel, in which the spheroidization of carbide is not sufficiently performed despite the spheroidization treatment for a long time. No. 1
0, No. 11, No. 13, and No. 16 are cases where the magnetic field or the magnetic field gradient is insufficient, and sufficient spheroidization was not performed in a short time. Nos. 14 and 17 are cases where the magnetic field was excessive, and sufficient spheroidization was not performed. No. 12, No. 15, No. 18
Was unsuitable because the cooling rate was too fast and the structure became bainite.

【0023】表2から明らかなように、この発明に係わ
る製造方法によって、従来方法と比較して非常に短時間
で炭化物の球状化程度が100 %に近い良好な球状化処理
性が得られた。したがって、この発明により製造した鋼
材について、球状化焼きなましを行うと、最高到達温度
での保持時間が短くても球状化が十分に達成できること
がわかった。つまり、エネルギーコストは従来に比べて
低減でき、安価な球状化処理が可能となった。
As is clear from Table 2, the production method according to the present invention provided a good spheroidizing property in which the degree of spheroidization of the carbide was close to 100% in a very short time as compared with the conventional method. . Therefore, it was found that, when the spheroidizing annealing was performed on the steel material manufactured according to the present invention, the spheroidizing could be sufficiently achieved even if the holding time at the highest temperature was short. That is, the energy cost can be reduced as compared with the related art, and the inexpensive spheroidizing treatment can be performed.

【0024】(実施例2)表3に示す種々の成分組成に
なる鋼を、転炉で溶製し、連続鋳造法で鋼片としたの
ち、55mmφの棒鋼に圧延し、引き続く冷却の際に800 〜
500 ℃の範囲を表4に示す所定の磁場を印加しつつ所定
の冷却速度で冷却した。かくした得られた試料から、ミ
クロサンプルを切り出し400 倍で10視野ずつ組織観察を
行い、初析セメンタイト分率を調べた。次いで、この試
料を図5に示すように755 ℃で、表4に示す所定時間の
加熱保持後、15℃/hの冷却速度で650 ℃まで冷却し、そ
の後は室温まで放冷の条件で球状化焼きなましを施し
た。この球状化焼きなまし後の素材からミクロサンプル
を切り出し5000倍で10視野ずつ炭化物形状を調べ、炭化
物の球状化の程度を調べた。その結果を表4に併記す
る。
(Example 2) Steels having various component compositions shown in Table 3 were melted in a converter, made into a billet by a continuous casting method, and then rolled into a 55 mmφ steel bar. 800 to
The sample was cooled at a predetermined cooling rate in a range of 500 ° C. while applying a predetermined magnetic field shown in Table 4. From the thus obtained sample, a micro sample was cut out, and the structure was observed at 10 times visual field at 400 times to examine the fraction of proeutectoid cementite. Next, as shown in FIG. 5, the sample was heated and maintained at 755 ° C. for a predetermined time shown in Table 4, then cooled at a cooling rate of 15 ° C./h to 650 ° C., and then cooled to room temperature under spherical conditions. Annealed by annealing. A micro sample was cut out from the material after the spheroidizing annealing, and the carbide shape was examined at 5,000 times in ten visual fields, and the degree of spheroidization of the carbide was examined. The results are shown in Table 4.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】表4から明らかなように、この発明に従う
方法で製造した鋼材の場合は、球状化焼きなまし加熱保
持時間が1hと短時間の場合において、長径/短径の比
が2以下の炭化物量が100 %に近く、良加工性を示す球
状化組織が得られている。これに対して、比較例No.
6,7は、球状化焼きなまし加熱保持時間を4hと長く
しても、いずれも長径/短径の比が2以下の炭化物の割
合が少なく、不十分な球状化組織となっている。
As is clear from Table 4, in the case of the steel material manufactured by the method according to the present invention, the amount of carbide having a ratio of major axis / minor axis of 2 or less when the spheroidizing annealing heat holding time is as short as 1 hour. Is close to 100%, and a spheroidized structure showing good workability is obtained. In contrast, Comparative Example No.
In Nos. 6 and 7, even when the spheroidizing annealing heat holding time was increased to 4 hours, the ratio of carbide having a ratio of major axis / minor axis of 2 or less was small, resulting in an insufficient spheroidized structure.

【0028】[0028]

【発明の効果】以上述べたように、この発明の鋼材の製
造方法によれば、熱間圧延に引き続く冷却の際、800 〜
500 ℃の温度範囲で磁場を印加するとともに、その温度
範囲における冷却速度を10℃/s以下とすることにより、
球状化焼きなまし前に球状炭化物を有する良好な組織が
得られ、安価な熱処理費用で十分に球状化を図ることが
できる、球状化焼きなまし処理性に優れる鋼材の製造が
可能となり、産業上極めて有用な効果がもたらされる。
As described above, according to the method for manufacturing a steel material of the present invention, 800 to 800 mm
By applying a magnetic field in the temperature range of 500 ° C and setting the cooling rate in that temperature range to 10 ° C / s or less,
A good structure having a spherical carbide before spheroidizing annealing is obtained, and it is possible to produce a steel material excellent in spheroidizing annealing processability that can sufficiently achieve spheroidization at a low heat treatment cost, which is extremely useful in industry. The effect is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な球状化焼きなましのヒートパターンを
示す図である。
FIG. 1 is a diagram showing a heat pattern of general spheroidizing annealing.

【図2】従来の球状化焼きなましのヒートパターンの一
例を示す図である。
FIG. 2 is a diagram showing an example of a heat pattern of a conventional spheroidizing annealing.

【図3】従来の球状化焼きなましのヒートパターンの一
例を示す図である。
FIG. 3 is a diagram showing an example of a heat pattern of a conventional spheroidizing annealing.

【図4】実施例1における球状化焼きなましのヒートパ
ターンを示す図である。
FIG. 4 is a view showing a heat pattern of spheroidizing annealing in Example 1.

【図5】実施例2における球状化焼きなましのヒートパ
ターンを示す図である。
FIG. 5 is a view showing a heat pattern of spheroidizing annealing in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 厚見 卓也 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所 (72)発明者 星野 俊幸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所 (72)発明者 下斗米 道夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takuya Atsumi 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Mizushima Works, Kawasaki Steel Corporation (72) Inventor Kenichi Amano 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (without address) Mizushima Works, Kawasaki Steel Corporation (72) 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 次工程で球状化焼きなまし処理を施す、
C:0.01〜0.8 mass%を含有する鋼材を熱間圧延を経て
製造する方法において、熱間圧延に引き続く冷却の際、
800 〜500 ℃の温度範囲で磁場を印加するとともに、そ
の温度範囲における冷却速度を10℃/s以下とすることを
特徴とする球状化焼きなまし処理性に優れた鋼材の製造
方法。
1. A spheroidizing annealing treatment is performed in the next step.
C: In a method for producing a steel material containing 0.01 to 0.8 mass% through hot rolling, in the cooling following the hot rolling,
A method for producing a steel material having excellent spheroidizing annealing property, wherein a magnetic field is applied in a temperature range of 800 to 500 ° C and a cooling rate in the temperature range is 10 ° C / s or less.
【請求項2】 次工程で球状化焼きなまし処理を施す、
C:0.8 〜2.0 mass%を含有する鋼材を熱間圧延を経て
製造する方法において、熱間圧延に引き続く冷却の際、
800 〜500 ℃の温度範囲で磁場を印加するとともに、そ
の温度範囲における冷却速度を10℃/s以下とすることを
特徴とする球状化焼きなまし処理性に優れた鋼材の製造
方法。
2. A spheroidizing annealing treatment is performed in the next step.
C: In a method for producing a steel material containing 0.8 to 2.0 mass% through hot rolling, in the case of cooling subsequent to hot rolling,
A method for producing a steel material having excellent spheroidizing annealing property, wherein a magnetic field is applied in a temperature range of 800 to 500 ° C and a cooling rate in the temperature range is 10 ° C / s or less.
【請求項3】 磁場印加中の冷却速度を50℃/h以下とす
ることを特徴とする請求項1又は2記載の球状化焼きな
まし処理性に優れた鋼材の製造方法。
3. The method for producing a steel material excellent in spheroidizing annealing treatment according to claim 1, wherein the cooling rate during application of the magnetic field is 50 ° C./h or less.
【請求項4】 磁場の強さを2〜30Tとし、磁場勾配を
絶対値で0.1 〜10T/cm とすることを特徴とする請求項
1又は2記載の球状化焼きなまし処理性に優れた鋼材の
製造方法。
4. The steel material excellent in spheroidizing annealing treatment according to claim 1 or 2, wherein the magnetic field strength is 2 to 30 T and the magnetic field gradient is 0.1 to 10 T / cm in absolute value. Production method.
JP10721897A 1997-04-24 1997-04-24 Production of steel excellent in spheroidize-annealing treatability Pending JPH10298641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10721897A JPH10298641A (en) 1997-04-24 1997-04-24 Production of steel excellent in spheroidize-annealing treatability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10721897A JPH10298641A (en) 1997-04-24 1997-04-24 Production of steel excellent in spheroidize-annealing treatability

Publications (1)

Publication Number Publication Date
JPH10298641A true JPH10298641A (en) 1998-11-10

Family

ID=14453493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10721897A Pending JPH10298641A (en) 1997-04-24 1997-04-24 Production of steel excellent in spheroidize-annealing treatability

Country Status (1)

Country Link
JP (1) JPH10298641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325712B1 (en) * 1997-12-29 2002-07-31 포항종합제철 주식회사 A method of manufacturing bearing steel
KR20180067892A (en) * 2016-12-13 2018-06-21 주식회사 포스코 High strength fine spheroidal graphite steel sheet having low yield ratio and manufacturing method thereof
CN113957209A (en) * 2021-09-07 2022-01-21 材谷金带(佛山)金属复合材料有限公司 High-carbon chromium bearing steel high-intensity magnetic field rapid spheroidizing annealing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325712B1 (en) * 1997-12-29 2002-07-31 포항종합제철 주식회사 A method of manufacturing bearing steel
KR20180067892A (en) * 2016-12-13 2018-06-21 주식회사 포스코 High strength fine spheroidal graphite steel sheet having low yield ratio and manufacturing method thereof
CN113957209A (en) * 2021-09-07 2022-01-21 材谷金带(佛山)金属复合材料有限公司 High-carbon chromium bearing steel high-intensity magnetic field rapid spheroidizing annealing process

Similar Documents

Publication Publication Date Title
JPH03240919A (en) Production of steel wire for wiredrawing
JP3031484B2 (en) Method for producing steel wire rod or steel bar having spheroidized structure
JPS59136421A (en) Preparation of rod steel and wire material having spheroidal structure
JPS58141333A (en) Heat treatment of forging
JPH10298641A (en) Production of steel excellent in spheroidize-annealing treatability
US3892602A (en) As-worked, heat treated cold-workable hypoeutectoid steel
JPH11140544A (en) Production of medium-high carbon steel sheet excellent in stretch-flanging property
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
JP3864492B2 (en) Spheroidizing annealing method for steel
JPH0987736A (en) Method for spheroidizing annealing low alloy steel
JP2564535B2 (en) Direct spheroidizing method for hot rolled steel wire rod
JPH1025521A (en) Method to spheroidizing wire rod
JPS5913024A (en) Manufacture of directly spheroidized steel material
JPS59136423A (en) Preparation of rod steel and wire material having spheroidal structure
JP2904505B2 (en) Method of manufacturing steel wire for cold / warm forging and steel wire for cold / warm forging
USRE29240E (en) As-worked, heat treated cold-workable hypoeutectoid steel
JP2000192147A (en) Directly spheroidized annealing method of low alloy wire rod
JPS5931573B2 (en) Direct heat treatment method for hot rolled wire rod
JPH0372023A (en) Method and equipment for manufacturing thermomechanically treated rolled steel
JP2866107B2 (en) Method for producing high-carbon hot-rolled steel sheet in which carbides are uniformly dispersed
JPS644568B2 (en)
JP2792896B2 (en) Method for producing carbon steel or alloy steel sheet having fine spheroidized carbide
JPS6386815A (en) Production of steel having excellent cold workability
KR19980049282A (en) Spheroidal Heat Treatment Method of Medium Carbon Steel Wire with Excellent Cold Rolling Formability
JPH04236715A (en) Annealing method for directly spheroidizing steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

RD04 Notification of resignation of power of attorney

Effective date: 20060712

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A02 Decision of refusal

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A02