JPS6386815A - Production of steel having excellent cold workability - Google Patents

Production of steel having excellent cold workability

Info

Publication number
JPS6386815A
JPS6386815A JP23279086A JP23279086A JPS6386815A JP S6386815 A JPS6386815 A JP S6386815A JP 23279086 A JP23279086 A JP 23279086A JP 23279086 A JP23279086 A JP 23279086A JP S6386815 A JPS6386815 A JP S6386815A
Authority
JP
Japan
Prior art keywords
steel
rolling
heat treatment
cooled
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23279086A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
勝亦 正昭
Yutaka Kanatsuki
金築 裕
Motoo Sato
始夫 佐藤
Yuji Sawada
澤田 裕治
Mitsuru Moritaka
森高 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23279086A priority Critical patent/JPS6386815A/en
Publication of JPS6386815A publication Critical patent/JPS6386815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the total heat-treatment time by controlling cooling velocity at the way of hot rolling to adjust the structure and next finish-rolling at the specific working ratio and temp. CONSTITUTION:In the hot rolling for various kinds of steel, the steel is cooled at about 150 deg.C/sec cooling velocity at the way of rolling till martensite transformation is completes. Next, it is rapidly resin to its temp., and rolled at >=10% and <=70% the working ratio in the range of temp. <=Ac3 point and air-cooled to the room temp. In this way, the structure in the finish-rolled steel has finely dispersive carbides and also working strain remains in the rolled steel. Therefore, the cold-workability is improved and the time for subsequent spheroidizing heat-treatment is shortened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造用炭素鋼、低合金鋼などの線材、棒鋼、鋼
板等の鋼材の熱間圧延による製造に係り、特に冷間加工
によって成形されるボルト、ソケット、スクリュー等の
部品の製造用に好適な鋼材の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the production of steel materials such as structural carbon steel, low alloy steel, etc., such as wire rods, steel bars, and steel plates, by hot rolling. The present invention relates to a method of manufacturing steel materials suitable for manufacturing parts such as bolts, sockets, and screws.

(従来の技術及び解決しようとする問題点)機械構造用
炭素鋼、低合金鋼、軸受鋼、工具鋼などの高炭素鋼では
、冷間での加工に先立ち、延性を付与したり、変形抵抗
の低下を図るために硬度を低下させ、加工性を改善する
ことを目的として、一般に球状化焼鈍し処理が行われて
いる。この球状化焼鈍しの方法としては、従来から、(
1)A1点直下の温度に長時間加熱保持した後、冷却す
る長時間加熱法、(2)A0点とA3点との間の2相域
に適当時間加熱後、徐冷する徐冷法、(3)A4点をは
さんで、その直上と直下の温度に繰返し加熱、冷却する
繰返し加熱冷却法、等々の方法がある。
(Conventional technology and problems to be solved) Prior to cold working, high carbon steels such as carbon steels for machine structures, low alloy steels, bearing steels, and tool steels are given ductility and deformation resistance. Spheroidizing annealing is generally performed to reduce hardness and improve workability. Conventionally, this spheroidizing annealing method has been used (
1) A long-time heating method in which the material is heated to a temperature just below the A1 point for a long time and then cooled down; (2) A slow cooling method in which the product is heated to a two-phase region between the A0 point and the A3 point for an appropriate time and then gradually cooled; (3) ) There are methods such as the repeated heating and cooling method, which repeatedly heats and cools to the temperature directly above and below point A4.

この球状化焼鈍し処理は、熱間圧延により製造された線
材、棒鋼、鋼板等の鉄鋼製品に対し、別ラインの熱処理
炉で所定の温度まで再加熱して行われる場合が多い、し
かしながら、この熱処理には1通常、十数時間の極めて
長い処理時間を要するため、生産性が低く、熱処理コス
トが高くなり。
This spheroidizing annealing treatment is often performed on steel products such as wire rods, steel bars, and steel plates manufactured by hot rolling, by reheating them to a predetermined temperature in a heat treatment furnace on a separate line. Heat treatment typically requires an extremely long treatment time of more than ten hours, resulting in low productivity and high heat treatment costs.

また、省エネルギーの観点からも、熱処理時間の短縮化
が望まれている。
Further, from the viewpoint of energy saving, it is desired to shorten the heat treatment time.

そこで、そのための改善策としては次のような方法が試
みられている。すなわち、現在、工業的に生産されてい
る条鋼製品圧延材の組織は、通常。
Therefore, the following methods have been tried as improvement measures for this purpose. In other words, the structure of rolled steel products currently produced industrially is normally the same.

フェライト−パーライト組織であり、このような組織の
鋼材を冷間加工に適した球状炭化物組織に変えるために
は、前記の長時間熱処理が必要となっているが、上記の
ような問題点を解決するため、特公昭56−37288
号に開示されているように、熱間圧延後、550℃〜M
s点の温度範囲を100℃/sec以上の冷却速度で冷
却し、上記温度範囲に1分以上保持する方法や、特公昭
55−31165号に開示されているように、熱間圧延
後、550℃〜Ms点の温度範囲に急冷する方法が提案
されている。しかし、熱処理時間を大幅に短縮し得る効
果は必ずしも満足できる域には至っていない。
It has a ferrite-pearlite structure, and in order to convert steel materials with such a structure into a spherical carbide structure suitable for cold working, the long heat treatment described above is required. In order to
As disclosed in No. 550℃~M after hot rolling,
As disclosed in Japanese Patent Publication No. 55-31165, there is a method in which the temperature range of the s point is cooled at a cooling rate of 100°C/sec or more and maintained in the above temperature range for 1 minute or more, or as disclosed in Japanese Patent Publication No. 55-31165. A method of rapid cooling to a temperature range of °C to Ms point has been proposed. However, the effect of significantly shortening the heat treatment time has not necessarily reached a satisfactory level.

本発明は、このような実情に鑑みてなされたものであっ
て、前記の冷間加工時に良好な加工性(延性、硬度)を
有する球状炭化物組織を得るために行われる熱処理時間
を大幅に短縮する、すなわち、従来のトータル熱処理時
間を40%以上の如く大幅に短縮することが可能な組織
を有する熱間圧延鋼材の製造方法を提供することを目的
とするものである。
The present invention has been made in view of these circumstances, and it significantly shortens the heat treatment time to obtain a spherical carbide structure having good workability (ductility, hardness) during the cold working described above. That is, it is an object of the present invention to provide a method for manufacturing hot rolled steel having a structure that can significantly shorten the conventional total heat treatment time by 40% or more.

(問題点を解決するための手段) 上記目的を達成するため、本発明では、熱間圧延の仕上
げ圧延材の組織調整によって以後の熱処理工程で球状化
しやすい組織を予め得ようとするものであり、具体的に
は、熱間圧延の途中で冷却速度をコントロールし1組織
調整を行った後、特定の圧延加工度及び加工温度にて仕
上げ圧延(温間加工又は2相域加工)を行うことにより
、可能にしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention attempts to obtain in advance a structure that is likely to become spheroidized in the subsequent heat treatment process by adjusting the structure of the hot-rolled finish rolled material. , Specifically, after controlling the cooling rate during hot rolling and adjusting one structure, finish rolling (warm working or two-phase region working) is performed at a specific rolling degree and working temperature. This was made possible by

すなわち1本発明は、各種鋼につき、熱間圧延の途中で
、マルテンサイト変態を終了する温度まで冷却して該変
態を終了させた後、急速に昇温し。
That is, one aspect of the present invention is to cool various types of steel to a temperature at which martensitic transformation is completed during hot rolling, and then rapidly raise the temperature after the transformation is completed.

Ac3点以下の温度域で10%以上、70%以下の加工
を行うことを特徴とする冷間加工性の優れた鋼材の製造
方法を要旨とするものである。
The gist of this invention is a method for producing steel materials with excellent cold workability, which is characterized by performing processing of 10% or more and 70% or less in a temperature range of Ac 3 or lower.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

従来の熱間圧延法では、仕上げ圧延後の圧延材には1通
常オーステナイト状態からの変態によって、以後の熱処
理工程で球状化しにくい層状パーライト組織が生成して
いる。このような圧延材に対して前述の熱処理法を適用
し、この安定な層状パーライト組織から球状化組織を得
るためには、一方法として前記の二相域加熱を行うが、
この場合には、冷却過程を徐冷する必要があり、いずれ
の熱処理法でも熱処理時間を大幅に長くせざるを得ない
In the conventional hot rolling method, a layered pearlite structure is formed in the rolled material after finish rolling due to transformation from the normal austenite state, which is difficult to form into spheres in the subsequent heat treatment process. In order to apply the above-mentioned heat treatment method to such a rolled material and obtain a spheroidized structure from this stable layered pearlite structure, one method is to perform the above-mentioned two-phase region heating.
In this case, it is necessary to slow the cooling process, and in any heat treatment method, the heat treatment time must be significantly increased.

そこで、本発明では、以後の熱処理工程において球状化
組織の形成が容易となるような前組織を圧延仕上がりで
実現化するものである。すなわち、上記層状パーライト
組織に見られる板状炭化物の生成を阻止する必要があり
、そのためには、通常。
Therefore, in the present invention, a pre-structure that facilitates the formation of a spheroidized structure in the subsequent heat treatment process is realized in the rolled finish. That is, it is necessary to prevent the formation of plate-like carbides found in the above-mentioned layered pearlite structure, and for this purpose, usually.

仕上げ圧延後に生じるオーステナイトからのパーライト
変態を熱間圧延工程中に鋼材を急速冷却することによっ
て阻止して炭化物の生成乃至析出を阻止し、鋼中Cを過
飽和に固溶した組織とし、その後の昇温中及び/又は、
加工中に分断炭化物の祈出を生じさせると共に終了させ
、焼戻しマルテンサイト組織にした後、更に適当な加工
を加えることによって析出炭化物の分断、微細化を図る
ものである。
The pearlite transformation from austenite that occurs after finish rolling is prevented by rapidly cooling the steel material during the hot rolling process, thereby preventing the formation or precipitation of carbides, creating a structure in which C is supersaturated as a solid solution in the steel, and the subsequent elevating process is prevented. Warm and/or
After the formation and termination of fragmented carbides during processing to form a tempered martensitic structure, appropriate processing is further applied to fragment and refine the precipitated carbides.

パーライト変態を阻止するためには、熱間J延の途中で
150℃/sec以上の冷却速度で急冷する。これによ
り、マルテンサイト組織が得られるので1次いで急速に
(例、100〜b 昇温し、昇温後、10〜70%の加工度の加工を、Ac
3点以下の温度域で終了することにより、析出した炭化
物が分断、微細化される。
In order to prevent pearlite transformation, rapid cooling is performed at a cooling rate of 150° C./sec or more during hot J-rolling. As a result, a martensitic structure is obtained, so the temperature is rapidly raised (e.g., 100~B), and after the temperature rise, machining with a working degree of 10~70% is performed.
By finishing the process in a temperature range of 3 points or less, the precipitated carbide is divided and refined.

炭化物の分断、微細化のためには少なくとも10%以上
の加工度を必要とし、しかし70%以下の加工度で足り
る。また、このような加工が、Ac3点以下の如く低温
で行なわれることから、圧延材に加工歪が残留し、この
歪エネルギーの存在が以後の熱処理時に炭化物の球状化
を促進する効果がある。
A working degree of at least 10% or more is required to divide and refine the carbide, but a working degree of 70% or less is sufficient. Further, since such processing is carried out at low temperatures such as Ac3 points or lower, processing strain remains in the rolled material, and the presence of this strain energy has the effect of promoting spheroidization of carbides during subsequent heat treatment.

なお、上記加工を行なう温度は、Ac3点以下であるが
、これには2つの態様が可能である。第1にはA c 
1点以下、好ましくは再結晶温度以下の低温で加工(温
間加工)を行なう場合であり、第2にはAc1点以上、
Ac3点以下の2指温度域で加工を行なう場合である。
Note that the temperature at which the above-mentioned processing is performed is below the Ac3 point, but two modes are possible for this. Firstly, A c
This is a case where processing (warm processing) is performed at a low temperature of 1 point or less, preferably below the recrystallization temperature, and the second is 1 point or more of Ac,
This is a case where processing is performed in a two-finger temperature range of 3 Ac points or less.

特に後者の2指温度域で加工を行なう場合には、Acm
点以上に急速に昇温することにより、変態の終了したマ
ルテンサイト組織に一部逆変態を起こさせ、これにより
少量のγ(オーステナイト)を出現させ、このオーステ
ナイトに加工変形を与えることで、以後の冷却中に生じ
るパーライト変態組織を微細化することができる。
Especially when processing in the latter two-finger temperature range, Acm
By rapidly increasing the temperature above the point, the martensitic structure that has completed its transformation undergoes a partial reverse transformation, thereby causing a small amount of γ (austenite) to appear, and by applying processing deformation to this austenite, it is possible to The pearlite transformation structure that occurs during cooling can be refined.

上記のような熱間加工工程によれば9球状化のための熱
処理後の球状化組織がJISG3539による嵐3以上
で、硬さがHv≦180の鋼材を得るための処理時間は
、従来の熱間圧延材の場合の1/3以上に短縮すること
が可能となる6球状化焼鈍しの方法としては、従来と同
様の方法を適用することができるが、特に徐冷による場
合に処理時間短縮化の効果が大きい。
According to the above-mentioned hot working process, the processing time to obtain a steel material with a spheroidized structure after heat treatment for spheroidization of Arashi 3 or higher according to JIS G3539 and a hardness of Hv≦180 is longer than that of the conventional heat working process. The same method as before can be applied to the 6-spheroidizing annealing method, which can reduce the time to more than 1/3 of that for inter-rolled materials, but the processing time is particularly shortened when slow cooling is used. The effect of change is large.

なお、本発明法の対象鋼としては、特に制限されず、炭
素鋼、クロム鋼に限られるものではなく、ボロン鋼やモ
リブデンを含有する錆についても同様な効果が得られる
ものであり1例えば、510C−355C(C:0.1
0〜0.58%)、5CR420−3CR440,SC
M420−5CM440等が挙げらする。
It should be noted that the steel to which the method of the present invention is applied is not particularly limited and is not limited to carbon steel and chromium steel, and similar effects can be obtained on boron steel and molybdenum-containing rust.1 For example, 510C-355C (C: 0.1
0-0.58%), 5CR420-3CR440,SC
Examples include M420-5CM440.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

実施例1 第1表に示した化学成分(wt%)の機械構造用炭素鋼
845Cを950℃に加熱後、連続熱間圧延によって4
.5〜13matに圧延した後、冷却速度〉150℃/
sscで200℃まで冷却した。その後、引続き650
℃まで加熱速度200 ’C/winで昇温し、昇温後
、直ちに4oH1tに圧延を行い。
Example 1 Carbon steel 845C for mechanical structures having the chemical composition (wt%) shown in Table 1 was heated to 950°C, and then continuously hot rolled to give 4
.. After rolling to 5-13mat, cooling rate>150℃/
It was cooled to 200°C using ssc. After that, continue to 650
The temperature was raised to ℃ at a heating rate of 200'C/win, and immediately after the temperature was raised, rolling was performed to 4oH1t.

常温まで空冷した。Air cooled to room temperature.

第1図に示すように、最も球状化しにくい層状パーライ
ト組織に見られる板状炭化物は生成していないにれは、
仕上げ圧延前の急冷によってオーステナイトはマルテン
サイト組織となり、その後の昇温によって焼戻しマルテ
ンサイトとなり。
As shown in Fig. 1, plate-shaped carbides, which are found in the layered pearlite structure that is most difficult to form into spheroids, are not formed.
Austenite becomes martensite by rapid cooling before finish rolling, and then becomes tempered martensite by increasing temperature.

加工されたためである。したがって、圧延材の組織とし
ては、加工を受は変形したフェライトと粒状炭化物の微
細析出が観察され、球状化組織の形成が促進され得る組
織となっている。なお、第1図はマルテンサイト変態後
650℃で50%の加工を行なった圧延材の場合である
This is because it has been processed. Therefore, as for the structure of the rolled material, fine precipitation of deformed ferrite and granular carbide is observed during processing, resulting in a structure that can promote the formation of a spheroidized structure. Incidentally, FIG. 1 shows the case of a rolled material which was processed by 50% at 650° C. after martensitic transformation.

この鋼材を熱処理炉を用いて、740℃に再加熱後、3
0+in均熱保持し、680℃まで25℃/hrの冷却
速度で徐冷し、以後空冷した(第2図(a)参照)、熱
処理後の組織を第3図、第4図に示す、なお、第3図は
マルテンサイト変態後650℃で10%の加工を行なっ
た場合、第4図は同様に50%の加工を行なった場合で
ある。また、得られた球状化繊11aNQと硬さの値を
第2表に示す。
After reheating this steel material to 740℃ using a heat treatment furnace,
The structure after heat treatment is shown in Fig. 3 and Fig. 4.The structure after heat treatment is shown in Fig. 3 and Fig. 4. , FIG. 3 shows the case where 10% processing was performed at 650° C. after martensitic transformation, and FIG. 4 shows the case where 50% processing was similarly performed. Further, the obtained spherical synthetic fibers 11aNQ and hardness values are shown in Table 2.

更に、得られた球状化組織Nα及び硬さと圧延加工度と
の各々の関係を第5図、第6図に示す。
Furthermore, the relationships between the obtained spheroidized structure Nα, hardness, and degree of rolling are shown in FIGS. 5 and 6.

比較のため、同一材を950℃に加熱後、連続熱間圧延
により800℃で4 mmtに仕上げた後、常温まで空
冷した。この鋼材を熱処理炉を用いて740℃に再加熱
後、3hr均熱保持し、680℃まで冷却法、512.
5”C/hrで徐冷し、以後空冷した(第2図(b)参
照)、熱処理後の組織を第7図に示す。
For comparison, the same material was heated to 950°C, then finished to a thickness of 4 mm at 800°C by continuous hot rolling, and then air cooled to room temperature. After reheating this steel material to 740°C using a heat treatment furnace, soaking it for 3 hours and cooling it to 680°C.
Figure 7 shows the structure after heat treatment, which was slowly cooled at 5''C/hr and then air cooled (see Figure 2(b)).

第3図〜第6図と第7図との比較並びに第2表で明らか
なように1本発明法により低温で加工した材料は1通常
の圧延材に比べ、著しく球状化処理に要する時間が短縮
されているにもかかわらず。
As is clear from the comparison between Figures 3 to 6 and Figure 7 as well as from Table 2, the material processed at low temperatures by the method of the present invention takes significantly longer time to spheroidize than conventionally rolled material. Despite being shortened.

長時間処理材と同等の球状化組織程度、硬さレベルを有
している。
It has the same degree of spheroidization and hardness as long-term processed materials.

実施例2 第1表に示した化学成分を有する肌焼きtlIISCR
420を950℃に加熱後、連続熱間圧延によって4.
5〜13m+utに圧延した後、冷却速度〉150℃/
seeで200℃まで冷却した。その後、引続き650
℃まで加熱速度200℃/+++inで昇温し、昇温後
直ちに4 mmtに圧延を行い、常温まで空冷した。
Example 2 Case-hardened tlIISCR having the chemical components shown in Table 1
420 by continuous hot rolling after heating to 950°C.
After rolling to 5~13m+ut, cooling rate>150℃/
The mixture was cooled to 200° C. with a see. After that, continue to 650
℃ at a heating rate of 200° C./+++ in. Immediately after raising the temperature, rolling was performed to 4 mmt, and air cooling to room temperature.

第8図に示すように、最も球状化しにくい層状パーライ
ト組織に見られる板状炭化物は生成していない、これは
、仕上げ圧延前の急冷によってオーステナイトはマルテ
ンサイト組織となり、その後の昇温によって焼戻しマル
テンサイトとなり、加工されたためである。したがって
、圧延材の組織としては、加工を受は変形したフェライ
トと粒状炭化物の微細析出が観察され、球状化組織の形
成が促進され得る組織となっている。なお、第8図はマ
ルテンサイト変態後650℃で50%の加工を行なった
圧延材の場合である。
As shown in Figure 8, the plate-like carbides found in the layered pearlite structure, which is the most difficult to form into spheroids, are not formed. This is because it became a website and was processed. Therefore, as for the structure of the rolled material, fine precipitation of deformed ferrite and granular carbide is observed during processing, resulting in a structure that can promote the formation of a spheroidized structure. Incidentally, FIG. 8 shows the case of a rolled material which was subjected to 50% processing at 650° C. after martensitic transformation.

この鋼材を熱処理炉を用いて、770℃に再加熱後、3
0m1n均熱保持し、680℃まで25℃/hrの冷却
速度で徐冷し、以後空冷した(第9図(a)参照)、熱
処理後の組織を第10図、第11図に示す、なお、第1
0図はマルテンサイト変態後650”Cで10%の加工
を行なった場合、第11図は同様に50%の加工を行な
った場合である。
After reheating this steel material to 770℃ using a heat treatment furnace,
The specimen was kept soaked for 0 ml, slowly cooled to 680°C at a cooling rate of 25°C/hr, and then cooled in air (see Figure 9(a)). The structure after heat treatment is shown in Figures 10 and 11. , 1st
Figure 0 shows the case where 10% processing was performed at 650''C after martensitic transformation, and Figure 11 shows the case where 50% processing was similarly performed.

また、得られた球状化繊!aNcと硬さの値を第3表に
示す、更に、得られた球状化組織Nα及び硬さと圧延加
工度との関係を第12図、第13図に示す。
Also, the obtained spherical synthetic fiber! The values of aNc and hardness are shown in Table 3, and the relationship between the obtained spheroidized structure Nα, hardness, and rolling degree is shown in FIGS. 12 and 13.

比較のため、同一材を950℃に加熱後、連続熱間圧延
により920℃で4 matに仕上げた後。
For comparison, the same material was heated to 950°C and then finished to 4 mat at 920°C by continuous hot rolling.

常温まで空冷した。この鋼材を熱処理炉を用いて770
℃に再加熱後、3hr均クヘ保持し、680”Cまで冷
却速度12.5℃/hrで徐冷し、以後空冷した(第9
図(b)参照)。
Air cooled to room temperature. This steel material is heated to 770% using a heat treatment furnace.
After reheating to ℃, it was kept in a homogenizer for 3 hours, slowly cooled to 680"C at a cooling rate of 12.5℃/hr, and then air-cooled (9th
(See figure (b)).

第10図〜第13図及び第3表から明らかなように、本
発明法により低温で加工した材料は1通常の圧延材に比
べ、著しく球状化処理に要する時間が短縮されているに
もかかわらず、長時間処理材と同等の球状化組織程度、
硬さレベルを有している。
As is clear from Figures 10 to 13 and Table 3, although the material processed at low temperatures by the method of the present invention has a significantly shorter time required for spheroidization than ordinary rolled material, The degree of spheroidization is equivalent to that of long-time treated materials.
It has a hardness level.

去】011 第1表に示した化学成分を有する機械構造用炭素鋼34
8Cを950℃に加熱後、連続熱間圧延によって4.5
〜13++vtに圧延した後、冷却速度〉150℃/s
ecで200”Cまで冷却した。その後、引続き735
℃まで加熱速度200 ”C/lll1nで昇温し、昇
温後直ちに4 mmtに圧延を行い、常温まで空冷した
011 Carbon steel for mechanical structures 34 having the chemical composition shown in Table 1
After heating 8C to 950℃, it is continuously hot rolled to 4.5
After rolling to ~13++vt, cooling rate>150℃/s
It was cooled down to 200"C by EC. Then, it was continued to 735
℃ at a heating rate of 200"C/ll1n, and immediately after the temperature was raised, it was rolled to a thickness of 4 mm and air cooled to room temperature.

第14図に示すように、最も球状化しにくい層状パーラ
イト組織に見られる板状炭化物は生成していない。これ
は、仕上げ圧延前の急冷によってオーステナイトはマル
テンサイト組織となり、その後の昇温によって焼戻しマ
ルテンサイトとなり。
As shown in FIG. 14, plate-like carbides, which are found in the layered pearlite structure that is most difficult to form into spherules, were not generated. This is because austenite becomes martensite due to rapid cooling before finish rolling, and then becomes tempered martensite when heated.

加工されるためである。したがって、圧延材の組織とし
ては、加工を受は変形したフェライトと粒状炭化物の微
細析出がa察され、球状化組織の形成が促進され得る組
織となっている。なお、第14図はマルテンサイト変態
後735℃で50%の加工を行なった圧延材の場合であ
る。
This is because it is processed. Therefore, in the structure of the rolled material, fine precipitation of deformed ferrite and granular carbide is observed during processing, resulting in a structure that can promote the formation of a spheroidized structure. Incidentally, FIG. 14 shows the case of a rolled material that was 50% processed at 735° C. after martensitic transformation.

この鋼材を熱処理炉を用いて740”Cに再加熱後、3
0m1n均熱保持し、680”Cまで 25℃/hrの
冷却速度で徐冷し、以後空冷した(第2図(a)参照)
。熱処理後の組織を第15図、第16図に示す、なお、
第15図はマルテンサイト変態後735℃で10%の加
工を行なった場合、第16図は同様に50%の加工を行
なった場合である。
After reheating this steel material to 740"C using a heat treatment furnace,
The material was soaked for 0 ml, then slowly cooled to 680"C at a cooling rate of 25°C/hr, and then air cooled (see Figure 2 (a)).
. The structure after heat treatment is shown in FIGS. 15 and 16.
FIG. 15 shows the case where 10% processing was performed at 735° C. after martensitic transformation, and FIG. 16 shows the case where 50% processing was similarly performed.

また、得られた球状化組織Nαと硬さの値を第4表に示
す。更に、得られた球状化組織Na及び硬さと圧延加工
度との関係を第17図、第18図に示す。
Table 4 shows the obtained spheroidized structure Nα and hardness values. Furthermore, the relationship between the obtained spheroidized structure Na, hardness, and rolling degree is shown in FIGS. 17 and 18.

比較のため、同一材を950’Cに加熱後、連続熱間圧
延により800℃で4 mmtに仕上げた後、常温まで
空冷した。この鋼材を熱処理炉を用いて740℃に再加
熱後、3hr均熱保持し、680’Cまで冷却速度12
.5℃/hrで徐冷し、以後空冷した(第2図(b)参
照)。熱処理後の組織を第19図に示す。
For comparison, the same material was heated to 950'C, finished to 4 mmt by continuous hot rolling at 800C, and then air cooled to room temperature. After reheating this steel material to 740°C using a heat treatment furnace, it was kept soaked for 3 hours, and the cooling rate was 12°C until it reached 680'C.
.. It was slowly cooled at a rate of 5° C./hr and then air-cooled (see FIG. 2(b)). The structure after heat treatment is shown in FIG.

第15図〜第18図と第19図との比較並びに第4表で
明らかなように、本発明法により低温で加工した材料は
、通常の圧延材に比べ、著しく球状化処理に要する時間
が短縮されているにもがかわらず、長時間処理材と同等
の球状化組織程度、硬さレベルを有している。
As is clear from the comparison between Figures 15 to 18 and Figure 19 as well as from Table 4, the material processed at low temperatures by the method of the present invention takes significantly longer time to spheroidize than the conventionally rolled material. Despite being shortened, it has the same degree of spheroidization and hardness as the long-term treated material.

叉五於土 第1表に示した化学成分を有する機械構造用炭素tll
s48Gを950℃に加熱後、連続熱間圧延によって・
1.5〜13mmtに圧延した後、冷却速度〉150℃
/secで200℃まで冷却した。その後、引続き76
0℃まで加熱速度200 ”C/winで昇温し、昇温
後直ちに411IIItに圧延を行い、常温まで空冷し
た。
Carbon for mechanical structures having the chemical components shown in Table 1
After heating s48G to 950℃, continuous hot rolling
After rolling to 1.5-13mmt, cooling rate>150℃
/sec to 200°C. After that, 76
The temperature was raised to 0°C at a heating rate of 200''C/win, and immediately after the temperature was raised, it was rolled to 411IIIt, and then air cooled to room temperature.

第20図に示すように、最も球状化しにくい層状パーラ
イト組織に見られる板状炭化物は生成していない。これ
は、仕上げ圧延前の急冷によってオーステナイトはマル
テンサイト組織となり、その後の昇温によって焼戻しマ
ルテンサイトとなり。
As shown in FIG. 20, plate-like carbides, which are found in the layered pearlite structure that is most difficult to form into spherules, were not generated. This is because austenite becomes martensite due to rapid cooling before finish rolling, and then becomes tempered martensite when heated.

加工されるためである。したがって、圧延材の組織とし
ては、加工を受は変形したフェライトと粒状炭化物の微
細析出が観察され、球状化組織の形成が促進され得る組
織となっている。なお、第20図はマルテンサイト変態
後760’Cで50%の加工を行なった圧延材の場合で
ある。
This is because it is processed. Therefore, as for the structure of the rolled material, fine precipitation of deformed ferrite and granular carbide is observed during processing, resulting in a structure that can promote the formation of a spheroidized structure. Note that FIG. 20 shows the case of a rolled material that was 50% processed at 760'C after martensitic transformation.

この鋼材を熱処理炉を用いて740℃に再加熱後、30
m1n均熱保持し、680℃まで25℃/hrの冷却速
度で徐冷し、以後空冷した(第2図(a)参照)、熱処
理後の組織を第21図、第22図に示す、なお、第21
図はマルテンサイト変態後760℃で10%の加工を行
なった圧延材の場合、第22図は同様に50%の加工を
行なった圧延材の場合である。更に、得られた球状化組
織+tαと硬さの値を第5表に示す。
After reheating this steel material to 740℃ using a heat treatment furnace,
The structure after heat treatment is shown in Figs. 21 and 22.The microstructure after heat treatment is shown in Fig. 21 and Fig. 22. , 21st
The figure shows the case of a rolled material that has been processed by 10% at 760° C. after martensitic transformation, and FIG. 22 shows the case of a rolled material that has been similarly processed by 50%. Furthermore, Table 5 shows the obtained spheroidized structure +tα and hardness values.

比較のため、同一材を950℃に加熱後、連続熱間圧延
により800℃で4 mmtに仕上げた後、常温まで空
冷した。この鋼材を熱処理炉を用いて740℃に再加熱
後、3hr均熱保持し、680’Cまで冷却速度12.
5℃/hrで徐冷し、以後空冷した(第2図(b)参照
)。熱処理後の組織を第19図に示す。
For comparison, the same material was heated to 950°C, finished to a thickness of 4 mm at 800°C by continuous hot rolling, and then air cooled to room temperature. After reheating this steel material to 740°C using a heat treatment furnace, it was soaked for 3 hours and cooled at a cooling rate of 12.0°C to 680'C.
It was slowly cooled at a rate of 5° C./hr and then air-cooled (see FIG. 2(b)). The structure after heat treatment is shown in FIG.

第21図及び第22図と第19図との比較並びに第5表
で明らかなように、本発明法により低温で加工した材料
は、通常の圧延材に比べ、著しく球状化処理に要する時
間が短縮されているにもかかわらず、長時間処理材と同
等の球状化組織程度。
As is clear from the comparison between Figures 21 and 22 and Figure 19, and from Table 5, the material processed at low temperatures by the method of the present invention takes significantly longer time to spheroidize than the normally rolled material. Despite being shortened, it has a spheroidized structure equivalent to that of long-term treated materials.

硬さレベルを有している。It has a hardness level.

笑五勇旦 第1表に示した化学成分を有する肌焼き鋼5CR420
を950℃に加熱後、連続熱間圧延によって4.5〜1
3mmtに圧延した後、冷却速度〉150℃/secで
220℃まで冷却した。その後。
Shogo Yudan Case hardened steel 5CR420 with the chemical composition shown in Table 1
After heating to 950℃, continuous hot rolling gives 4.5 to 1
After rolling to 3 mmt, it was cooled to 220°C at a cooling rate>150°C/sec. after that.

引続き740℃まで加熱速度100℃/+ninで昇温
し、昇温後直ちに4 mmtに圧延を行い、常温まで空
冷した。
Subsequently, the temperature was raised to 740°C at a heating rate of 100°C/+nin, and immediately after the temperature was raised, it was rolled to a thickness of 4 mm and air cooled to room temperature.

第23図に示すように、最も球状化しにくい層状パーラ
イト組織の板状炭化物は分断されると共に加工による変
形を受けており、球状化組織の形成が促進され得る組織
となっている。なお、第23図はマルテンサイト変態後
740℃で33%の加工を行なった圧延材の場合である
As shown in FIG. 23, the plate-like carbide of the layered pearlite structure, which is the most difficult to form into spheroids, is fragmented and deformed by processing, resulting in a structure that can promote the formation of a spheroidized structure. Note that FIG. 23 shows the case of a rolled material that was processed by 33% at 740° C. after martensitic transformation.

この鋼材を熱処理炉を用いて770℃に再加熱後、30
m1n均熱保持し、680℃まで25℃/hrの冷却速
度で徐冷し、以後空冷した(第9図(a)参照)、熱処
理後の組織を第24図、第25図に示す、なお、第24
図はマルテンサイト変態後740℃で10%の加工を行
なった圧延材の場合、第25図は同様に50%の加工を
行なった場合である。また、得られた球状信組lQi 
Ncと硬さの値を第6表に示す、更に、得られた球状化
組織No及び硬さと圧延加工度との各々の関係を第26
図、第27図に示す。
After reheating this steel material to 770℃ using a heat treatment furnace,
The structure after heat treatment is shown in FIGS. 24 and 25. , 24th
The figure shows the case of a rolled material which was processed by 10% at 740° C. after martensitic transformation, and FIG. 25 shows the case where the material was similarly processed by 50%. Also, the obtained spherical credit union lQi
The values of Nc and hardness are shown in Table 6, and the relationships between the obtained spheroidized structure No., hardness, and rolling degree are shown in Table 26.
27.

比較のため、同一材を950℃に加熱後、連続熱間圧延
により920℃で4 matに仕上げた後、常温まで空
冷した。この鋼材を熱処理炉を用いて770℃に再加熱
し、3hr均熱保持後、680℃まで冷却速度12.5
°C/hrで徐冷し、以後空冷した(第9図(b)参照
)。
For comparison, the same material was heated to 950°C, then finished to 4 mat at 920°C by continuous hot rolling, and then air cooled to room temperature. This steel material was reheated to 770℃ using a heat treatment furnace, and after soaking for 3 hours, the cooling rate was 12.5℃ to 680℃.
It was slowly cooled at °C/hr and then air-cooled (see FIG. 9(b)).

第24図〜第27図及び第6表から明らかなように1本
発明法により低温で加工した材料は、通常の圧延材に比
べ、著しく球状化処理に要する時間が短縮されているに
もかかわらず、長時間処理材と同等の球状化組織程度、
硬さレベルを有している。
As is clear from Figures 24 to 27 and Table 6, although the material processed at low temperatures by the method of the present invention has a significantly shorter time required for spheroidization than ordinary rolled material, The degree of spheroidization is equivalent to that of long-time treated materials.
It has a hardness level.

実施例6 第1表に示した化学成分を有する肌焼き口5CR420
を950’Cに加熱後、連続熱間圧延によって4.5〜
13mn+tに圧延した後、冷却速度〉150℃/se
cで200℃まで冷却した。その後、引続き820℃ま
で加熱速度100℃/winで昇温し、昇温後直ちに4
 matに圧延を行い、常温まで空冷した。
Example 6 Case hardened 5CR420 having the chemical components shown in Table 1
After heating to 950'C, it is continuously hot rolled to 4.5 ~
After rolling to 13mm+t, cooling rate>150℃/se
The mixture was cooled to 200°C at c. After that, the temperature was continued to be raised to 820°C at a heating rate of 100°C/win, and immediately after the temperature was raised, the temperature was increased to 820°C.
Rolling was performed on a mat and air-cooled to room temperature.

第28図に示すように、最も球状化しにくい層状パーラ
イト組織の板状炭化物は分断されると共に加工による変
形を受けており、球状化組織の形成が促進され得る組織
となっている。
As shown in FIG. 28, the plate-like carbide of the layered pearlite structure, which is the most difficult to form into spheroids, is divided and deformed by processing, resulting in a structure that can promote the formation of a spheroidized structure.

この鋼材を熱処理炉を用いて770℃に再加熱後、30
m1n均熱保持し、680℃まで 25℃/hrの冷却
速度で徐冷し、以後空冷した(第9図(a)参照)、熱
処理後の組織を第29図、第30図に示す、なお、第2
9図はマルテンサイト変態後820℃で10%の加工を
行なった圧延材の場合、第30図は同様シこ50%の加
工を行なった圧延材の場合である。また、得られた球状
化組織Nαと硬さの値を第7表に示す。更に、得られた
球状信組gi Ha及び硬さと圧延加工度との各々の関
係を第26図、第27図に併記する。
After reheating this steel material to 770℃ using a heat treatment furnace,
The microstructure after heat treatment is shown in FIGS. 29 and 30. , second
Figure 9 shows the case of a rolled material that has been subjected to 10% processing at 820° C. after martensitic transformation, and Fig. 30 shows the case of a rolled material that has been similarly processed to 50%. Table 7 shows the obtained spheroidized structure Nα and hardness values. Furthermore, the relationships between the obtained spherical strands gi Ha, hardness, and rolling degree are also shown in FIGS. 26 and 27.

第26図〜第30図及び第7表から明らかなように、本
発明法により低温で加工した材料は1通常の圧延材に比
べ、著しく球状化処理に要する時間が短縮されているに
もかかわらず、長時間処理材と同等の球状化組織程度、
硬さレベルを有している。
As is clear from Figures 26 to 30 and Table 7, although the material processed at low temperatures by the method of the present invention has a significantly shorter time required for spheroidizing treatment than conventionally rolled material. The degree of spheroidization is equivalent to that of long-time treated materials.
It has a hardness level.

(以下余白) (発明の効果) 以上詳述したように、本発明によれば、熱間圧延の途中
でオーステナイト状態から急冷し、マルテンサイト変態
を終了させた後、温間圧延又は2相域圧延を行なうもの
であるので、仕上げ圧延材の組織は粒状炭化物が微細に
分散した組織となると共に圧延材に加工歪が残留してお
り、従来の圧延材が層状炭化物組織を呈しているのに比
べ、以後の球状化熱処理時間の著しい短縮化が可能とな
る。
(Blank below) (Effects of the Invention) As detailed above, according to the present invention, after rapidly cooling from the austenitic state during hot rolling and completing martensitic transformation, warm rolling or two-phase region Because rolling is performed, the structure of the finish-rolled material is a structure in which granular carbide is finely dispersed, and there is residual processing strain in the rolled material, whereas conventionally rolled material exhibits a layered carbide structure. In comparison, the subsequent spheroidizing heat treatment time can be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1においてマルテンサイト変態後650
℃で50%の加工を行なった圧延材の組織を示す走査型
電子顕微鏡写真であり。 第2図は545C材及び548C材の球状化熱処理条件
を示す図で、(a)は本発明材の場合、(b)は従来材
の場合であり、 第3図及び第4図は実施例1においてマルテンサイト変
態後650℃で加工を行なった圧延材について球状化熱
処理を施したときの組織を示す顕vIl鏡写真で、第3
図は10%加工の場合、第4図は50%加工の場合であ
り、 第5図及び第6図は実施例1における球状化熱処理材の
球状化Nα及び硬さと圧延率の関係を示す図であり、 第7図は通常の圧延材からの球状化熱処理材の組織を示
す顕微鏡写真であり。 第8図は実施例2においてマルテンサイト変態後650
℃で50%の加工を行なった圧延材の組織を示す走査型
電子顕微鏡写真であり、第9図は5CR420材の球状
化熱処理条件を示す図で、(a)は本発明材の場合、(
b)は従来材の場合であり、 第10図及び第11図は実施例2においてマルテンサイ
ト変態後650℃で加工を行なった圧延材について球状
化熱処理を施したときの組織を示す顕微鏡写真で、第1
0図は10%加工の場合。 第11図は50%加工の場合であり。 第12図及び第13図は実施例2における球状化熱処理
材の球状化鬼及び硬さと圧延率の関係を示す図であり、 第14図は実施例3においてマルテンサイト変態後73
5℃で50%の加工を行なった圧延材の組織を示す走査
型電子顕微鏡写真であり、第15図及び第16図は実施
例3においてマルテンサイト変態後735℃で加工を行
なった圧延材について球状化熱処理を施したときの組織
を示す顕微鏡写真で、第15図は10%加工の場合、第
16図は50%加工の場合であり、 第17図及び第18図は実施例3における球状化熱処理
材の球状化No及び硬さと圧延率の関係を示す図であり
、 第19図は通常の圧延材からの球状化熱処理材の組織を
示す顕微鏡写真であり、 第20図は実施例4においてマルテンサイト変態後76
0℃で50%の加工を行なった圧延材の組織を示す走査
型電子顕微鏡写真であり、第21図及び第22図は実施
例4においてマルテンサイト変態後760℃で加工を行
なった圧延材について球状化熱処理を施したときの組織
を示す顕微鏡写真で、第21図は10%加工の場合、第
22図は50%加工の場合であり、 第23図は実施例5においてマルテンサイト変態後74
0℃で33%の加工を行なった圧延材の組織を示す走査
型電子顕微鏡写真であり、第24図及び第25図は実施
例5においてマルテンサイト変態後740℃で加工を行
なった圧延材について球状化熱処理を施したときの組織
を示す顕微鏡写真で、第24図は10%加工の場合。 第25図は50%加工の場合であり、 第26図及び第27図は実施例5及び実施例6における
球状化熱処理材の球状化Nα及び硬さと圧延率の関係を
示す図であり、 第28図は実施例6においてマルテンサイト変態後82
0℃で50%の加工を行なった圧延材の組織を示す走査
型電子顕微鏡写真であり。 第29図及び第30図は実施例6においてマルテンサイ
ト変態後820℃で加工を行なった圧延材について球状
化熱処理を施したときの組織の顕微鏡写真で、第29図
は10%加工の場合、第30図は50%加工の場合であ
る。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第3図    第4図 第5図 ”          ILt’!シ(%ン打゛ 第6図 第7図 第10図    第11図 第12図 左  1千(つり 第13図 n 第14図 第15図     ’116図 第17図 第18図 第19図 第26図 キλ 第27図
Figure 1 shows the 650°C after martensitic transformation in Example 1.
This is a scanning electron micrograph showing the structure of a rolled material processed by 50% at ℃. Figure 2 is a diagram showing the spheroidizing heat treatment conditions for 545C and 548C materials, where (a) is for the inventive material, (b) is for the conventional material, and Figures 3 and 4 are for the example. 3 is a microscopic photo showing the structure of the rolled material processed at 650°C after martensitic transformation in 1 and subjected to spheroidization heat treatment.
Figure 4 shows the case of 10% processing, Figure 4 shows the case of 50% processing, and Figures 5 and 6 are diagrams showing the relationship between spheroidization Nα, hardness, and rolling rate of the spheroidization heat-treated material in Example 1. FIG. 7 is a micrograph showing the structure of a spheroidized heat-treated material made from a conventionally rolled material. Figure 8 shows the 650°C after martensitic transformation in Example 2.
FIG. 9 is a scanning electron micrograph showing the structure of a rolled material processed by 50% at ℃, and FIG. 9 is a diagram showing the spheroidization heat treatment conditions of 5CR420 material.
b) is the case of the conventional material, and Figures 10 and 11 are micrographs showing the structure when the rolled material was processed at 650°C after martensitic transformation in Example 2 and subjected to spheroidization heat treatment. , 1st
Figure 0 is for 10% processing. Figure 11 shows the case of 50% machining. 12 and 13 are diagrams showing the relationship between spheroidization, hardness, and rolling rate of the spheroidized heat-treated material in Example 2, and FIG.
15 and 16 are scanning electron micrographs showing the structure of a rolled material processed at 50% at 5°C, and FIGS. 15 and 16 are of the rolled material processed at 735°C after martensitic transformation in Example 3. These are micrographs showing the structure when subjected to spheroidization heat treatment. Figure 15 is for 10% processing, Figure 16 is for 50% processing, and Figures 17 and 18 are for the spherical structure in Example 3. FIG. 19 is a diagram showing the relationship between the spheroidization number and hardness of the heat-treated material and the rolling rate; FIG. 19 is a micrograph showing the structure of the spheroidization heat-treated material obtained from a normally rolled material; FIG. After martensitic transformation at 76
21 and 22 are scanning electron micrographs showing the structure of a rolled material processed at 50% at 0°C, and FIGS. 21 and 22 are of the rolled material processed at 760°C after martensitic transformation in Example 4. These are micrographs showing the structure when subjected to spheroidization heat treatment. Fig. 21 shows the case of 10% processing, Fig. 22 shows the case of 50% processing, and Fig. 23 shows the structure of the microstructure after martensitic transformation in Example 5.
24 and 25 are scanning electron micrographs showing the structure of a rolled material processed at 33% at 0°C, and FIGS. 24 and 25 are of the rolled material processed at 740°C after martensitic transformation in Example 5. FIG. 24 is a micrograph showing the structure when subjected to spheroidization heat treatment, and Fig. 24 shows the case of 10% processing. FIG. 25 shows the case of 50% processing, and FIGS. 26 and 27 are diagrams showing the relationship between the spheroidization Nα and hardness of the spheroidization heat-treated materials in Example 5 and Example 6, and the rolling ratio. Figure 28 shows 82 after martensitic transformation in Example 6.
This is a scanning electron micrograph showing the structure of a rolled material processed by 50% at 0°C. FIGS. 29 and 30 are micrographs of the structure of the rolled material processed at 820°C after martensitic transformation in Example 6, and subjected to spheroidization heat treatment. FIG. 30 shows the case of 50% processing. Patent applicant Hisashi Nakamura, Patent attorney representing Kobe Steel, Ltd. Figure 3 Figure 4 Figure 5 1,000 (Changing Figure 13 n Figure 14 Figure 15 Figure 116 Figure 17 Figure 18 Figure 19 Figure 26 Figure λ Figure 27

Claims (3)

【特許請求の範囲】[Claims] (1)各種鋼につき、熱間圧延の途中で、マルテンサイ
ト変態を終了する温度まで冷却して該変態を終了させた
後、急速に昇温し、Ac_3点以下の温度域で10%以
上、70%以下の加工を行うことを特徴とする冷間加工
性の優れた鋼材の製造方法。
(1) For various steels, in the middle of hot rolling, after cooling to the temperature at which martensitic transformation is completed and the transformation is completed, the temperature is rapidly raised to 10% or more in the temperature range of Ac_3 points or less. A method for manufacturing a steel material with excellent cold workability, characterized by performing processing of 70% or less.
(2)前記温度域がAc_1点以下である特許請求の範
囲第1項記載の方法。
(2) The method according to claim 1, wherein the temperature range is below Ac_1 point.
(3)前記温度域はAc_1点以上、Ac_3点以下の
二相温度域である特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the temperature range is a two-phase temperature range of not less than Ac_1 point and not more than Ac_3 point.
JP23279086A 1986-09-30 1986-09-30 Production of steel having excellent cold workability Pending JPS6386815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23279086A JPS6386815A (en) 1986-09-30 1986-09-30 Production of steel having excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23279086A JPS6386815A (en) 1986-09-30 1986-09-30 Production of steel having excellent cold workability

Publications (1)

Publication Number Publication Date
JPS6386815A true JPS6386815A (en) 1988-04-18

Family

ID=16944791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23279086A Pending JPS6386815A (en) 1986-09-30 1986-09-30 Production of steel having excellent cold workability

Country Status (1)

Country Link
JP (1) JPS6386815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530065B1 (en) * 2001-12-13 2005-11-22 주식회사 포스코 A method for manufacturing steel wire rod for cold forging featuring short-time spheroidized annealing
KR100946129B1 (en) * 2002-12-11 2010-03-10 주식회사 포스코 A spheroidizing annealing method to soften medium carbon steel rapidly
KR101105923B1 (en) * 2003-11-19 2012-01-17 암콜 인터내셔널 코포레이션 Contaminant-Reactive Geocomposite Mat and Method of Manufacture and Use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530065B1 (en) * 2001-12-13 2005-11-22 주식회사 포스코 A method for manufacturing steel wire rod for cold forging featuring short-time spheroidized annealing
KR100946129B1 (en) * 2002-12-11 2010-03-10 주식회사 포스코 A spheroidizing annealing method to soften medium carbon steel rapidly
KR101105923B1 (en) * 2003-11-19 2012-01-17 암콜 인터내셔널 코포레이션 Contaminant-Reactive Geocomposite Mat and Method of Manufacture and Use

Similar Documents

Publication Publication Date Title
JPH0112816B2 (en)
JPS6128742B2 (en)
US3459599A (en) Method of thermomechanically annealing steel
JPS6233289B2 (en)
JPS6386815A (en) Production of steel having excellent cold workability
JPH0576524B2 (en)
KR100328039B1 (en) A Method Manufacturing Wire Rods for cold Heading
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
JPH0213004B2 (en)
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
JPH02213416A (en) Production of steel bar with high ductility
JPS6386814A (en) Production of steel having excellent cold workability
JP3747982B2 (en) Manufacturing method of medium and high carbon steel sheet
JP2792896B2 (en) Method for producing carbon steel or alloy steel sheet having fine spheroidized carbide
JPH0576525B2 (en)
JPS5913024A (en) Manufacture of directly spheroidized steel material
KR102326245B1 (en) Steel wire rod for cold forging and methods for manufacturing thereof
JPS6389617A (en) Production of steel having excellent cold workability
KR100973922B1 (en) Non-Annealing Steel Having Ferrite Formed by Strain Induced Dynamic Transformation and Method for Manufacturing the Steel
JPH02213415A (en) Production of bar steel having high strength and high toughness
KR100973921B1 (en) Short-time Annealing Steel Having Ferrite Formed by Strain Induced Dynamic Transformation and Method for Manufacturing the Steel
JPH10298641A (en) Production of steel excellent in spheroidize-annealing treatability
JPS5942055B2 (en) Manufacturing method for high-tensile steel wires and steel bars
JPH01255623A (en) Heat treatment for directly softening high carbon steel
KR19980049282A (en) Spheroidal Heat Treatment Method of Medium Carbon Steel Wire with Excellent Cold Rolling Formability