JPS6233289B2 - - Google Patents

Info

Publication number
JPS6233289B2
JPS6233289B2 JP3659880A JP3659880A JPS6233289B2 JP S6233289 B2 JPS6233289 B2 JP S6233289B2 JP 3659880 A JP3659880 A JP 3659880A JP 3659880 A JP3659880 A JP 3659880A JP S6233289 B2 JPS6233289 B2 JP S6233289B2
Authority
JP
Japan
Prior art keywords
steel
temperature
cooling
rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3659880A
Other languages
Japanese (ja)
Other versions
JPS56133445A (en
Inventor
Katsuaki Yano
Riichi Nishama
Eiji Takahashi
Shinichi Shimazu
Yasuhiro Oki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3659880A priority Critical patent/JPS56133445A/en
Publication of JPS56133445A publication Critical patent/JPS56133445A/en
Publication of JPS6233289B2 publication Critical patent/JPS6233289B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱延ままで微細なフエライト粒をも
つ母地に炭化物粒子が分散した微細な球状化組織
を有する冷間加工性および靭性にすぐれた線材、
棒鋼等の炭素鋼または合金鋼鋼材の製造法に関す
る。 炭素鋼または合金鋼の線材や棒鋼等は、熱延ま
までは、冷間圧造、切削加工等の冷間加工に不適
当な組織形態を有するので、通常、球状化焼鈍、
軟化焼鈍、あるいは焼ならし等の熱処理を施す必
要がある。球状化焼鈍は、圧延コイルや棒鋼を数
時間もしくはそれ以上加熱して冷却を行なうこと
により、鋼中のセメンタイトの一部もしくは全部
を球状ないしはそれに近い形態にする熱処理であ
り、同処理により冷間圧造性や切削加工性が高め
られる。軟化焼鈍は、球状化焼鈍と同様の処理を
短時間で実施することにより、不完全な球状化組
織を得、あるいは加工歪を除去することを目的と
するものであり、また焼ならし処理は、主として
切削性の改善を目的とし、圧延ままの不均一な組
織形態を焼準化する処理である。 しかし、これらの熱処理により熱延材を所定の
材質特性に改善するためには、温度約600℃から
約900℃までの長時間の加熱とそれにつづく冷却
を必要とし、かつその処理において厳密な温度制
御を施こさねばならず、熱エネルギーの多大の消
費と煩雑な作業を余儀なくされる。 本発明は、上記難点を解決するためになされた
ものであり、炭素鋼または合金鋼の熱延工程にお
ける鋼材加熱温度、熱延時の鋼材温度および熱延
仕上げ後の冷却速度を制御することにより、圧延
ままで微細なフエライト粒をもつ母地に炭化物粒
子が分散した微細な球状化組織となし、熱延後上
記のごとき別段の熱処理を施こすことなく、これ
ら熱処理を行なつたものと同等もしくはそれ以上
の材質特性を具備せしめることを可能とした。 すなわち、本発明は、炭素鋼または合金鋼であ
つて、微細球状化組織を有する冷間加工性および
靭性にすぐれた熱延鋼材、並びに炭素鋼または合
金鋼を、温度650〜850℃に加熱してフエライトと
未分解炭化物との混合組織もしくはオーステナイ
トと未溶解炭化物との混合組織となし、ついで温
度950℃以下にて熱延終了温度を700〜950℃とし
て、上記炭化物の溶解が生じないように熱延した
のち、750〜650℃の温度域を、冷却速度40℃/分
以下で冷却することによりフエライト粒が微細
で、かつ炭化物の微細に分散してなる微細球状化
組織とするようにした熱延鋼材の製造法を提供す
る。 以下、本発明について詳しく説明する。 本発明によれば、まず圧延に先立つて鋼材を加
熱し、その組織を、フエライトと球状ないしは棒
状に分断された未分解炭化物との混合組織、また
はオーステナイトと未溶解炭化物との混合組織と
する。この加熱は、650〜850℃(一般的にA1
態点とA3変態点の間)の温度範囲で行なわれる
が、A3変態点を越える温度での加熱の場合に
は、炭化物の基地中への溶解・消失を防ぐため
に、オーステナイト化があまり進行しないように
比較的短時間で行なうことが必要である。通常、
熱間圧延前の加熱は、組織を十分にオーステナイ
ト化し、炭化物が完全に固溶するようにA3変態
点以上の高温(例えば約1000℃以上)に比較的長
時間保持することにより行なわれるが、本発明で
は、比較的低温域で行ない、炭化物の共存する混
合組織となす点に一特徴を有する。これは、該炭
化物を熱延工程後まで残存させ、熱延後の調整冷
却により、該炭化物を核として微細球状化組織を
形成せしめようとするものである。なお、上記2
種の混合組織は、いづれであつても最終的に得ら
れる熱延鋼材の材質特性に差異はないが、オース
テナイトと未溶解炭化物との混合組織の方が、熱
間圧延が容易で圧延時のモータ負荷が少なくてす
む点で好ましい。 上記加熱により炭化物を含む所定の混合組織と
した鋼材はついで熱延に付される。この熱間圧延
は炭化物の溶解を生じないように温度950℃以下
で行なわれる。一般に、鋼材の熱延においては、
加工歪によつて鋼材温度が上昇し、その度合は圧
延速度が速くなるほど顕著となる。例えば、仕上
圧延速度が約20m/秒を越えるように場合には温
度上昇幅が大きく炭化物の溶解を生ずるおそれが
ある。かかる場合は、適当な冷却を施し、鋼材温
度の過度の上昇を防ぐことが必要である。このた
めの冷却手段としては、例えば熱延中の中間水
冷、あるいは仕上圧延終了後の仕上水冷等が用い
られる。なお、冷却手段の要否は、鋼種によつて
も異なり、例えばSCr4のようにCrを多量に含む
鋼材では、溶解しにくい炭化物が形成されるの
で、仕上圧延速度が約25m/秒を越える場合で
も、特に強制冷却を施す必要はない。 熱延終了温度は700〜950℃である。950℃を超
えると上記のように、未溶解炭化物が基地中に溶
け込み、最終の徐冷後の線材に微細球状化組織が
得られなくなる。また700℃は鋼のA1変態点近傍
であり、700℃未満の温度では圧延時の変形抵抗
が大きく、圧延の実施が困難となり、鋼材を徐冷
しても炭化物が成長せず、良好な球状化組織が得
られない。 所定の熱延を終えた鋼材は、その仕上圧延の終
了につづいて調整冷却に付される。この冷却過程
において冷却速度が比較的速いと、微細パーライ
トが多く発生し、冷間圧造等に支障をきたし、特
に、Mo、Cr、Ni等を含む焼入れ硬化能の大きい
鋼材ではマルテンサイトやベンナイト組織が出現
する。このマルテンサイトやベイナイト組織はど
のような冷間加工にも不適当である。また、粗大
パーライトは、切削加工には好ましい組織である
が、伸線加工や冷間圧造には適していない。この
ように、熱延後の最適の調整冷却条件は、鋼種や
その後の冷間加工の種類によつて異なるが、一般
的には、750〜650℃の温度域を、冷却速度40℃/
分以下に調節して冷却することにより、冷間加工
に不適当な組織の生成を避け、球状化焼鈍処理材
に似た好ましい鋼組織が与えられる。なお、上記
冷却速度の下限については本質的な制限はない
が、変態終了までに要する時間が常に長くなり工
業ペースでの生産に支障をきたすので、約0.5
℃/分を下限とするのが適当である。 第1図は、本発明による圧延方法の具体例を模
式的に示す。加熱炉1において温度650〜850℃に
加熱され、炭化物を含む混合組織となした鋼材
は、圧延ミル2にて所定の熱延をうける。熱延中
の加工歪による温度上昇が著しい場合には、中間
水冷手段3あるいは仕上水冷手段4にて鋼材温度
が950℃を越えないように冷却される。仕上圧延
を終えた鋼材Mは巻線機5にて巻取られる。巻取
後のコイルや棒鋼等は、温度750〜650℃の温度域
での冷却速度が40℃/分を越えないように調整冷
却が施される。この調整冷却は、例えば第2図に
示すように、レーイングヘツド6で鋼線材Mを螺
旋状に成形し、これをコンベア7にて適当な移送
速度で順次徐冷炉8内に送給して所定の冷却速度
で冷却せしめることにより行ない、しかるのちコ
イル集束機9に導入するようにしてもよく、ある
いは第3図に示すように、鋼線材Mを一旦巻線機
5にて巻取り、得られた線束M′を徐冷炉8′に所
定時間装入し、しかるのち炉外に抽出することに
より行なうこともできる。該徐冷炉8,8′は必
要に応じ適当な発熱手段を設けて完全な雰囲気炉
とし、あるいは鋼線材の圧延顕熱を利用してある
程度の炉内雰囲気を保つことにより所定の冷却速
度が与えられるようにしてもよい。なお、鋼種や
目的とする材質特性によつては、特に徐冷炉を設
けなくとも所定の調整冷却効果を得ることも可能
である。 上記のように本発明に従い圧延前および圧延中
の温度制御、並びに圧延後の調整冷却を施すこと
により下記のように、微細フエライト粒のマトリ
ツクスに、微細炭化物が圧延方向に並び、擬球状
炭化物として分散した組織が得られる。かく得ら
れる鋼材は、その後球状化焼鈍、軟化焼鈍等の熱
処理を施さなくとも、これら熱処理材と同等以上
の材質特性を有し、高強度を備え、かつ冷間加工
性および靭性にすぐれる。このように別段の熱処
理を加えず、熱延ままで良好な材質特性が与えら
れるのは、上記のように、圧延前の加熱段階で完
全なオーステナイト化を抑制し、炭化物を残存さ
せたまま圧延し、かつ調整冷却によりマルテンサ
イトや下部ベイナイト等の組織の出現を妨げ、粒
状に近い形態の炭化物とフエライトと微量のパー
ライトから成る混合組織、あるいは炭化物とフエ
ライトの混合組織を形成せしめたこと、また圧延
中の鋼材温度が通常のそれよりかなり低く制御さ
れるため結晶粒度が著しく微細化していることに
よる。 第5図(図面代用写真)〔〕は、鋼種SCM21
(C0.13〜0.18%、Si0.15〜0.35%、Mn0.6〜0.85
%、Cr0.9〜1.2%、Mo0.15〜0.3%)を用いて本
発明方法により、温度715℃に加熱し、中間水
冷、仕上水冷を施して圧延したのち、線材温度
750〜650℃の温度域を冷却速度0.5℃/分にて冷
却して得られた鋼線材(線径8mmφ)の顕微鏡組
織(倍率400)、同写真〔〕は同一鋼種を通常の
圧延(圧延前加熱温度1080℃)に付し、ついで連
続焼鈍炉にて球状化焼鈍処理して得られた鋼線材
(線径8mmφ)の顕微鏡組織(倍率400)である。
両者の比較から明らかなように、本発明方法によ
る鋼線材(写真〔〕)は、通常の球状化焼鈍材
(写真〔〕)よりも微細な炭化物が均一に分散し
た組織を備え、しかも炭化物粒子はより球状に近
い形態であるので、冷間加工性にすぐれ、例えば
冷間圧造によるボルトやパーツ類の加工も容易な
ことが判る。また、上記各供試材の測定結果によ
れば、通常の球状化焼鈍材は、引張強さ49Kg/
mm2、硬度(Hv)140であるのに対し、本発明方法
による鋼材は、引張強さ53Kg/mm2、硬度(Hv)
151であり、強度および硬さともわずかながら高
いレベルを有している。 本発明方法は、各種炭素鋼および合金鋼に適用
される。その成分組成は、用途および所要の材質
特性に応じた任意のものであつてよいが、Cは、
炭化物の形成のため、少なくとも0.03%以上を要
する。なお、C0.03%未満であれば熱延鋼材の機
械的性質および冷間加工性は通常の熱間圧延でも
良好であるが、本発明では上記のように炭化物形
成のためC0.03%以上とするため上記のごとき特
別の熱間圧延を行ない、これにより機械的性質や
冷間加工性の改善を図る。一方、C量が1.2%を
越えると未溶解炭化物の球状化分散した組織が得
られなくなり、熱延鋼材の機械的性質や冷間加工
性を冷間圧造等の冷間加工に耐え得る程度に改善
することができなくなる。このため1.2%を上限
とする。合金鋼は、例えばSi2.5%以下、Mn2.0%
以下、Ni4.5%以下、Cr3.5%以下、Mo0.7%以下
の1種または2種以上、結晶粒調整元素として
Ti0.2%以下、Zr0.05%以下、Nb0.05%以下、
V0.15%以下、Al0.1%以下の1種または2種以上
の元素、その他必要な材質特性改善のための適宜
の元素を含んでよい。不純物は、炭素鋼、合金鋼
として通常許容される範囲で存在してよく、例え
ばPおよびSはそれぞれ0.04%以下含んでもかま
わない。かかる鋼種として、例えばピアノ線材、
硬鋼線材(SWRH各種)、各種SC材、SMn材、
SMnC材、SCr材、SCM材、SNC材、SNCM材等
の構造用鋼鋼材が挙げられる。 次に実施例を挙げて本発明について具体的に説
明する。 実施例 1 SCr4(C0.38〜0.43%、Si0.15〜0.35%、Mn0.6
〜0.85%、P0.03%以下、S0.03%以下、Cr0.9〜
1.2%)を用い、鋼片温度730℃に加熱したのち、
中間水冷または仕上水冷により鋼片温度900℃以
下に温度調節を施して線径8mmφに圧延し、巻線
後750〜650℃の温度域を冷却速度0.8℃/分で冷
却した。得られた線材の顕微鏡組織を第5図
〔〕に示す。球状の炭化物が微細均一に分散し
た良好な状態であることが判る。この組織を上記
第5図〔〕(鋼種SCM21)と比較すると、未溶
解炭化物とフエライトのほかに若干のパーライト
が出現している点が異なる。これはC量がやや高
いことと、圧延後の調整冷却をやや速い冷却速度
で行なつたことによるものであり、このため引張
強さは60Kg/mm2、硬度はHv164(HBr156)と上
記のものにくらべてやや高く、軟化焼鈍材なみの
値を示した。 ところで、鋼材の硬度はその切削加工性と一定
の相関がある。第4図は各種鋼材の硬度(HBr
と被削率(%)の関係を示すグラフ〔SAEハン
ドブツク(1964)による〕であり、HBr約140〜
160で最も良い被削性を示す。本実施例で得られ
た鋼線材硬度は上記のようにHBr156であり、切
削加工性にすぐれることが判る。 実施例 2 SWRCH43K(C0.40〜0.46%、Si0.10〜0.35
%、Mn0.6〜0.9%)、SCM21(C0.13〜0.18%、
Si0.15〜0.35%、Mn0.6〜0.85%、Cr0.9〜1.2%、
Mo0.15〜0.3%)、SCM3(C0.33〜0.38%、Si0.15
〜0.35%、Mn0.6〜0.85%、Cr0.9〜1.2%、
Mo0.15〜0.3%)、SCR4(C0.38〜0.43%、Si0.15
〜0.35%、Mn0.6〜0.85%、Cr0.9〜1.2%)を用
い、それぞれ鋼片を750℃に加熱したのち、中間
水冷または仕上水冷を施して圧延中の温度を830
℃以下に調節して線材となし、巻取後750〜650℃
の温度域を冷却速度1.5℃/分にて冷却した。得
られた各鋼線の線径および引張強さを、球状化焼
鈍材、通常の圧延まま材のそれと比較して第1表
に示す。
The present invention provides a wire rod with excellent cold workability and toughness, which has a fine spheroidized structure in which carbide particles are dispersed in a matrix having fine ferrite grains as hot-rolled;
This article relates to a method for manufacturing carbon steel or alloy steel materials such as steel bars. Carbon steel or alloy steel wire rods, steel bars, etc., when hot-rolled, have a structure unsuitable for cold working such as cold heading and cutting, so they are usually subjected to spheroidizing annealing,
It is necessary to perform heat treatment such as softening annealing or normalizing. Spheroidizing annealing is a heat treatment in which a rolled coil or steel bar is heated for several hours or more and then cooled to make some or all of the cementite in the steel into a spherical or nearly spherical form. Headability and cutting workability are improved. Softening annealing is a process similar to spheroidizing annealing performed in a short time to obtain an incomplete spheroidized structure or to remove processing distortion. , is a process that normalizes the non-uniform structure of the as-rolled product, mainly for the purpose of improving machinability. However, in order to improve hot-rolled material to the desired material properties through these heat treatments, it is necessary to heat the material for a long time from approximately 600℃ to approximately 900℃, followed by cooling, and the treatment requires strict temperature control. Control must be applied, which requires a large amount of thermal energy and complicated work. The present invention has been made to solve the above-mentioned difficulties, and by controlling the steel heating temperature in the hot rolling process of carbon steel or alloy steel, the steel material temperature during hot rolling, and the cooling rate after hot rolling finishing, As rolled, it has a fine spheroidal structure with carbide particles dispersed in a matrix with fine ferrite grains, and after hot rolling, it is equivalent to or equivalent to those subjected to these heat treatments without any special heat treatment as described above. This made it possible to provide material properties that exceed these. That is, the present invention is a carbon steel or alloy steel, and has a fine spheroidized structure and has excellent cold workability and toughness, and a carbon steel or alloy steel that is heated to a temperature of 650 to 850°C A mixed structure of ferrite and undecomposed carbide or a mixed structure of austenite and undissolved carbide is formed, and then the hot rolling end temperature is set at 950°C or less to 700 to 950°C to prevent the above carbide from dissolving. After hot rolling, it was cooled in a temperature range of 750 to 650°C at a cooling rate of 40°C/min or less to create a fine spheroidal structure with fine ferrite grains and finely dispersed carbides. Provides a method for manufacturing hot rolled steel. The present invention will be explained in detail below. According to the present invention, the steel material is first heated prior to rolling, and its structure is made into a mixed structure of ferrite and undissolved carbide divided into spheres or rods, or a mixed structure of austenite and undissolved carbide. This heating is carried out in the temperature range from 650 to 850 °C (generally between the A1 and A3 transformation points), but in the case of heating above the A3 transformation point, the carbide base In order to prevent dissolution and disappearance into the austenite, it is necessary to carry out the process in a relatively short time so that austenitization does not progress too much. usually,
Heating before hot rolling is carried out by holding the steel at a high temperature above the A3 transformation point (e.g. about 1000°C or above) for a relatively long time so that the structure is sufficiently austenitized and the carbides are completely dissolved. The present invention is characterized in that it is carried out at a relatively low temperature and a mixed structure in which carbides coexist is formed. This is intended to cause the carbide to remain until after the hot rolling process, and to form a fine spheroidal structure using the carbide as a nucleus by controlled cooling after the hot rolling process. In addition, above 2
There is no difference in the material properties of the final hot-rolled steel regardless of the mixed structure of the seeds, but a mixed structure of austenite and undissolved carbides is easier to hot-roll and is more difficult to roll during rolling. This is preferable because it requires less motor load. The steel material, which is heated to have a predetermined mixed structure containing carbides, is then subjected to hot rolling. This hot rolling is carried out at a temperature of 950° C. or lower so as not to cause dissolution of carbides. Generally, in hot rolling steel materials,
The temperature of the steel increases due to processing strain, and the degree of this increase becomes more pronounced as the rolling speed increases. For example, if the finish rolling speed exceeds about 20 m/sec, the temperature rise will be large enough to cause dissolution of carbides. In such cases, it is necessary to provide appropriate cooling to prevent excessive rise in steel material temperature. As a cooling means for this purpose, for example, intermediate water cooling during hot rolling or finishing water cooling after finish rolling is used. The necessity of cooling means also differs depending on the steel type. For example, in steel materials containing a large amount of Cr such as SCr4, carbides that are difficult to dissolve are formed, so if the finishing rolling speed exceeds about 25 m/sec. However, there is no need to apply forced cooling. The hot rolling finish temperature is 700-950°C. If the temperature exceeds 950°C, undissolved carbides will dissolve into the base as described above, and a fine spheroidal structure will not be obtained in the wire after final slow cooling. In addition, 700℃ is near the A1 transformation point of steel, and at temperatures below 700℃, the deformation resistance during rolling is large, making rolling difficult. Spheroidized tissue cannot be obtained. Steel products that have been hot-rolled for a predetermined period of time are subjected to controlled cooling following completion of finish rolling. If the cooling rate is relatively fast in this cooling process, a large amount of fine pearlite will be generated, which will hinder cold heading, etc. Especially in steel materials with high quench hardenability that contain Mo, Cr, Ni, etc., martensite and benthite structures will occur. appears. This martensite and bainite structure is unsuitable for any cold working. Moreover, coarse pearlite has a structure suitable for cutting, but is not suitable for wire drawing or cold heading. In this way, the optimal adjusted cooling conditions after hot rolling differ depending on the steel type and the type of subsequent cold working, but generally the temperature range is 750 to 650°C and the cooling rate is 40°C/40°C.
By controlling the cooling to less than 10 minutes, the formation of a structure unsuitable for cold working is avoided, and a preferable steel structure similar to that of the spheroidized annealed material is provided. There is no essential limit to the lower limit of the cooling rate, but the time required to complete the transformation is always long, which hinders production at an industrial pace, so it should be approximately 0.5
It is appropriate to set the lower limit to ℃/min. FIG. 1 schematically shows a specific example of the rolling method according to the present invention. The steel material heated to a temperature of 650 to 850° C. in the heating furnace 1 and formed into a mixed structure containing carbides is subjected to predetermined hot rolling in the rolling mill 2. If the temperature rise is significant due to processing strain during hot rolling, the steel material is cooled by the intermediate water cooling means 3 or the finishing water cooling means 4 so that the steel material temperature does not exceed 950°C. The steel material M that has been finish rolled is wound up by a winding machine 5. After coiling, coils, steel bars, etc. are subjected to controlled cooling so that the cooling rate in the temperature range of 750 to 650°C does not exceed 40°C/min. For example, as shown in FIG. 2, this controlled cooling is carried out by forming a steel wire M into a spiral shape using a laying head 6, and sequentially feeding it into an annealing furnace 8 using a conveyor 7 at an appropriate transfer speed. Alternatively, the steel wire M may be cooled at a cooling rate of This can also be carried out by charging the wire bundle M' into the slow cooling furnace 8' for a predetermined period of time, and then extracting it from the furnace. The lehr-cooling furnaces 8 and 8' can be provided with appropriate heat generating means as necessary to make them complete atmospheric furnaces, or a predetermined cooling rate can be given by maintaining a certain degree of atmosphere in the furnace by utilizing the sensible heat of rolling the steel wire. You can do it like this. Note that depending on the steel type and the desired material properties, it is also possible to obtain a predetermined adjusted cooling effect without particularly providing a lehr. As described above, by controlling the temperature before and during rolling and adjusting the cooling after rolling according to the present invention, fine carbides are arranged in the rolling direction in a matrix of fine ferrite grains as pseudo-spherical carbides, as shown below. A dispersed tissue is obtained. The steel thus obtained has material properties equal to or better than those of these heat-treated materials, has high strength, and has excellent cold workability and toughness, even without subsequent heat treatment such as spheroidizing annealing and softening annealing. The reason why good material properties can be obtained as hot-rolled without any additional heat treatment is because, as mentioned above, complete austenitization is suppressed in the heating stage before rolling, and rolling is done with carbides remaining. Moreover, controlled cooling prevented the appearance of structures such as martensite and lower bainite, resulting in the formation of a mixed structure consisting of carbide, ferrite, and a small amount of pearlite in a form close to granular, or a mixed structure of carbide and ferrite. This is because the temperature of the steel material during rolling is controlled much lower than usual, resulting in a significantly finer grain size. Figure 5 (photograph substituted for drawing) [ ] shows steel type SCM21.
(C0.13~0.18%, Si0.15~0.35%, Mn0.6~0.85
%, Cr0.9-1.2%, Mo0.15-0.3%) by the method of the present invention, heated to a temperature of 715℃, subjected to intermediate water cooling and finishing water cooling, and then rolled.
Microscopic structure (magnification 400) of a steel wire rod (wire diameter 8 mmφ) obtained by cooling in the temperature range of 750 to 650 °C at a cooling rate of 0.5 °C/min. This is a microscopic structure (magnification: 400) of a steel wire (wire diameter: 8 mmφ) obtained by subjecting the wire to a preheating temperature of 1080° C. and then annealing it to form a spheroid in a continuous annealing furnace.
As is clear from the comparison between the two, the steel wire produced by the method of the present invention (photo []) has a structure in which finer carbides are more uniformly dispersed than that of the normal spheroidized annealed material (photo []), and moreover, the steel wire rod produced by the method of the present invention (photo []) has a structure in which finer carbides are more evenly dispersed than that of the ordinary spheroidized annealed material (photo []). Since it has a shape closer to a spherical shape, it has excellent cold workability, and it can be seen that it is easy to process bolts and parts by cold heading, for example. In addition, according to the measurement results of the above-mentioned test materials, the normal spheroidized annealed material has a tensile strength of 49 kg/
mm 2 and hardness (Hv) of 140, whereas the steel material produced by the method of the present invention has a tensile strength of 53 Kg/mm 2 and hardness (Hv).
151, and has slightly higher levels of strength and hardness. The method of the present invention is applicable to various carbon steels and alloy steels. Its component composition may be arbitrary depending on the use and required material properties, but C:
At least 0.03% is required for the formation of carbides. Note that if the C is less than 0.03%, the mechanical properties and cold workability of the hot rolled steel are good even with normal hot rolling, but in the present invention, as mentioned above, C0.03% or more is required to form carbides. In order to achieve this, special hot rolling as described above is carried out to improve mechanical properties and cold workability. On the other hand, if the C content exceeds 1.2%, a structure in which undissolved carbides are spheroidized and dispersed cannot be obtained, and the mechanical properties and cold workability of the hot rolled steel material cannot be improved to the extent that it can withstand cold working such as cold heading. It becomes impossible to improve. For this reason, the upper limit is set at 1.2%. Alloy steel, for example, Si2.5% or less, Mn2.0%
Below, one or more of Ni4.5% or less, Cr3.5% or less, Mo0.7% or less, as grain adjustment elements
Ti0.2% or less, Zr0.05% or less, Nb0.05% or less,
It may contain one or more elements of 0.15% V or less, 0.1% or less Al, and other appropriate elements for improving the necessary material properties. Impurities may be present within the range normally allowed for carbon steel and alloy steel; for example, P and S may each be contained in an amount of 0.04% or less. Examples of such steel types include piano wire,
Hard steel wire rods (SWRH types), various SC materials, SMn materials,
Examples include structural steel materials such as SMnC materials, SCr materials, SCM materials, SNC materials, and SNCM materials. Next, the present invention will be specifically explained with reference to Examples. Example 1 SCr4 (C0.38-0.43%, Si0.15-0.35%, Mn0.6
~0.85%, P0.03% or less, S0.03% or less, Cr0.9~
1.2%) and heated to a billet temperature of 730℃,
The steel billet temperature was adjusted to 900°C or less by intermediate water cooling or finishing water cooling, and the steel piece was rolled to a wire diameter of 8 mmφ. After winding, the steel was cooled in the temperature range of 750 to 650°C at a cooling rate of 0.8°C/min. The microscopic structure of the obtained wire is shown in FIG. It can be seen that the spherical carbides are in a good condition with fine and uniform dispersion. Comparing this structure with that shown in Fig. 5 (steel type SCM21), the difference is that in addition to undissolved carbides and ferrite, some pearlite appears. This is due to the slightly high C content and the fact that the adjustment cooling after rolling was performed at a slightly faster cooling rate, resulting in a tensile strength of 60 Kg/mm 2 and a hardness of Hv164 (H Br 156). It was slightly higher than the above values, and showed a value similar to that of softened annealed materials. By the way, the hardness of steel material has a certain correlation with its machinability. Figure 4 shows the hardness (H Br ) of various steel materials.
This is a graph [according to the SAE Handbook (1964)] showing the relationship between H Br and machining rate (%).
160 shows the best machinability. As mentioned above, the steel wire obtained in this example had a hardness of H Br 156, indicating excellent machinability. Example 2 SWRCH43K (C0.40~0.46%, Si0.10~0.35
%, Mn0.6~0.9%), SCM21 (C0.13~0.18%,
Si0.15~0.35%, Mn0.6~0.85%, Cr0.9~1.2%,
Mo0.15~0.3%), SCM3 (C0.33~0.38%, Si0.15
~0.35%, Mn0.6~0.85%, Cr0.9~1.2%,
Mo0.15~0.3%), SCR4 (C0.38~0.43%, Si0.15
~0.35%, Mn0.6~0.85%, Cr0.9~1.2%), each steel billet was heated to 750℃, and then subjected to intermediate water cooling or finishing water cooling to reduce the temperature during rolling to 830℃.
Adjusted to below ℃ to make wire rod, 750 to 650℃ after winding.
was cooled at a cooling rate of 1.5°C/min. The wire diameter and tensile strength of each of the obtained steel wires are shown in Table 1 in comparison with those of the spheroidized annealed material and the normal as-rolled material.

【表】 上記第1表に示されるように、本発明方法によ
る鋼材は、通常の圧延まま材にくらべ、球状化焼
鈍材に近い機械的性質を備えていることが判る。
なお、どのような鋼種の場合も、圧延後の冷却速
度を更に緩慢にすれば球状化焼鈍材なみの機械的
性質を得ることができる。 実施例 3 SCR4(C0.38〜0.43%、Si0.15〜0.35%、
Mn0.6〜0.85%、Cr0.9〜1.2%)、SCM21(C0.13
〜0.18%、Si0.15〜0.35%、Mn0.6〜0.85%、
Cr0.9〜1.2%、Mo0.15〜0.3%)の鋼片を780℃に
加熱したのち、中間水冷と仕上水冷とを施して圧
延中の温度を900℃以下に調節して線径6mmφに
圧延し、巻取後750〜650℃の温度域を冷却速度約
2℃/分にて冷却した。得られた各鋼線の引張強
さ(Kg/mm2)および絞り(%)を通常に圧延まま
材、球状化焼鈍材とそれと比較して第2表に示
す。
[Table] As shown in Table 1 above, it can be seen that the steel materials produced by the method of the present invention have mechanical properties closer to those of spheroidized annealed materials than ordinary as-rolled materials.
In addition, in the case of any type of steel, if the cooling rate after rolling is made slower, mechanical properties comparable to those of spheroidized annealed material can be obtained. Example 3 SCR4 (C0.38-0.43%, Si0.15-0.35%,
Mn0.6~0.85%, Cr0.9~1.2%), SCM21 (C0.13
~0.18%, Si0.15~0.35%, Mn0.6~0.85%,
After heating a steel billet (Cr0.9~1.2%, Mo0.15~0.3%) to 780℃, it is subjected to intermediate water cooling and finishing water cooling to adjust the temperature during rolling to below 900℃, and the wire diameter is 6mmφ. After rolling and winding, the material was cooled in a temperature range of 750 to 650°C at a cooling rate of about 2°C/min. The tensile strength (Kg/mm 2 ) and reduction of area (%) of each of the obtained steel wires are shown in Table 2 in comparison with those of a conventionally rolled material and a spheroidized annealed material.

【表】 上記第2表に示されるように、本発明方法によ
る熱延鋼材は、通常の圧延まま材に比較して、引
張強さは球状化焼鈍材に近い値を示し、絞りは著
しく高く、しかも球状化焼鈍材以上となることが
判る。また、別途行なつた試験により、冷間圧造
の割れ発生限界率も、球状化焼鈍材と同等もしく
はそれ以上の好結果が得られることが確認されて
いる。 以上のように、本発明によれば、圧延後、球状
化焼鈍等の特別の熱処理を施すことなく、熱延ま
までこれら熱処理材と同等もしくはそれ以上の材
質特性を備えた各種炭素鋼、合金鋼鋼材が得ら
れ、特に冷間加工性や靭性等にすぐれるので、冷
間圧造、切削加工等が容易で、その加工歩留を高
めるとともに工具寿命改善効果が得られる。ま
た、上記熱処理を要しないため、製造プロセスが
簡略化されると同時に、省エネルギ効果により製
造コストも大幅に低減する。 なお、本発明方法による鋼材に球状化焼鈍等の
熱処理を付加することもできる。この場合の処理
時間は通常それらの熱処理に必要とされる処理時
間の約1/2〜1/3程度で、極めて良好な組織が与え
られ、冷間加工性等の材質特性は更に著しく高め
られる。
[Table] As shown in Table 2 above, the hot-rolled steel produced by the method of the present invention has a tensile strength close to that of spheroidized annealed steel and a significantly higher reduction of area than ordinary as-rolled steel. Moreover, it can be seen that the result is higher than that of the spheroidized annealed material. In addition, a separate test has confirmed that the critical cracking rate of cold heading is equivalent to or better than that of spheroidized annealed material. As described above, according to the present invention, various carbon steels and alloys can be produced without special heat treatment such as spheroidizing annealing after rolling, and which have material properties equivalent to or better than these heat-treated materials as hot-rolled. Steel materials can be obtained, which have particularly excellent cold workability and toughness, so cold heading, cutting, etc. can be easily carried out, and the processing yield can be increased and the tool life can be improved. Furthermore, since the heat treatment described above is not required, the manufacturing process is simplified, and at the same time, the manufacturing cost is significantly reduced due to the energy saving effect. Note that it is also possible to add heat treatment such as spheroidizing annealing to the steel material produced by the method of the present invention. The processing time in this case is about 1/2 to 1/3 of the processing time normally required for those heat treatments, and an extremely good structure is provided, and material properties such as cold workability are further significantly improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造法の具体例を示す工程説明
図、第2図および第3図は圧延後の調整冷却手段
の具体例を示す説明図、第4図は硬度と被削率の
関係を示すグラフ、第5図〔〕〜〔〕は鋼材
の顕微鏡組織を示す図面代用写真である。 図面中の主な符号は次のとおりである。 1:加熱炉、2:圧延ミル、3:中間水冷手
段、4:仕上水冷手段、5:巻線機、7:コンベ
ア、8,8′:徐冷炉。
Fig. 1 is a process explanatory diagram showing a specific example of the manufacturing method of the present invention, Figs. 2 and 3 are explanatory diagrams showing a specific example of the adjustment cooling means after rolling, and Fig. 4 is the relationship between hardness and cutting rate. The graphs shown in Figures 5 [] to [] are photographs substituted for drawings showing the microscopic structure of steel materials. The main symbols in the drawings are as follows. 1: heating furnace, 2: rolling mill, 3: intermediate water cooling means, 4: finishing water cooling means, 5: winding machine, 7: conveyor, 8, 8': slow cooling furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 C0.03〜1.20%を含む炭素鋼または合金鋼
を、温度650〜850℃に加熱してオーステナイトと
未溶解炭化物との混合組織もしくはフエライトと
未分解炭化物との混合組織とし、これを950℃以
下の温度域にて熱延終了温度を700〜950℃とし
て、上記炭化物の溶解を生じないように熱間圧延
したのち、750〜650℃の温度域を、冷却速度40
℃/分以下にて冷却することによりフエライト粒
が微細で、かつ炭化物粒子が微細に分散した微細
球状化組織とすることを特徴とする冷間加工性お
よび靭性にすぐれた熱延鋼材の製造法。
1 Carbon steel or alloy steel containing 0.03 to 1.20% C is heated to a temperature of 650 to 850°C to form a mixed structure of austenite and undissolved carbide or a mixed structure of ferrite and undissolved carbide, and this is heated to 950°C. After hot rolling in the following temperature range with a hot rolling finish temperature of 700 to 950°C to prevent dissolution of the carbide, the temperature range of 750 to 650°C is set at a cooling rate of 40°C.
A method for producing a hot-rolled steel material with excellent cold workability and toughness, characterized by forming a fine spheroidal structure with fine ferrite grains and finely dispersed carbide particles by cooling at a temperature below ℃/min. .
JP3659880A 1980-03-21 1980-03-21 Hot rolled steel products having superior cold workability and toughness and their manufacture Granted JPS56133445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3659880A JPS56133445A (en) 1980-03-21 1980-03-21 Hot rolled steel products having superior cold workability and toughness and their manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3659880A JPS56133445A (en) 1980-03-21 1980-03-21 Hot rolled steel products having superior cold workability and toughness and their manufacture

Publications (2)

Publication Number Publication Date
JPS56133445A JPS56133445A (en) 1981-10-19
JPS6233289B2 true JPS6233289B2 (en) 1987-07-20

Family

ID=12474218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3659880A Granted JPS56133445A (en) 1980-03-21 1980-03-21 Hot rolled steel products having superior cold workability and toughness and their manufacture

Country Status (1)

Country Link
JP (1) JPS56133445A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126720A (en) * 1983-01-11 1984-07-21 Kawasaki Steel Corp Direct spheroidizing treatment of steel material
JPS63199819A (en) * 1987-02-13 1988-08-18 Kobe Steel Ltd Manufacture of fine-grained steel
JP2771180B2 (en) * 1988-08-08 1998-07-02 川崎製鉄株式会社 Direct softening heat treatment method for high carbon steel
JP2565002Y2 (en) * 1991-10-01 1998-03-11 株式会社アルプスツール Anti-vibration device for bar feeder
US8388774B1 (en) 2003-06-24 2013-03-05 Daniel Martin Watson Multiwave thermal processes to improve metallurgical characteristics
US7459039B1 (en) * 2004-06-23 2008-12-02 Daniel Watson Method for forming carbide banding in steel materials using deformation
US7459040B1 (en) * 2004-06-23 2008-12-02 Daniel Watson Method for making a steel article with carbides already in the steel and no deformation used in the process
US7459038B1 (en) * 2004-06-23 2008-12-02 Daniel Watson Method for making steel with carbides already in the steel using material removal and deformation
JP5150978B2 (en) * 2009-05-18 2013-02-27 独立行政法人物質・材料研究機構 High-strength steel with excellent cold forgeability, and excellent strength parts such as screws and bolts or molded parts such as shafts

Also Published As

Publication number Publication date
JPS56133445A (en) 1981-10-19

Similar Documents

Publication Publication Date Title
JPS6233289B2 (en)
JPS6115930B2 (en)
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
KR100328039B1 (en) A Method Manufacturing Wire Rods for cold Heading
JPH0570685B2 (en)
JPH1025521A (en) Method to spheroidizing wire rod
JP2564535B2 (en) Direct spheroidizing method for hot rolled steel wire rod
JPH02213416A (en) Production of steel bar with high ductility
JPS6137333B2 (en)
JPS63293111A (en) Manufacture of seamless pipe of martensitic stainless steel
JPH02274810A (en) Production of high tensile untempered bolt
JPS5913024A (en) Manufacture of directly spheroidized steel material
JPH0576525B2 (en)
JPH0576522B2 (en)
JP2756533B2 (en) Manufacturing method of high strength, high toughness steel bars
JP2835057B2 (en) Spring steel and manufacturing method thereof
KR102065266B1 (en) Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
KR940007365B1 (en) Method of manufacturing steel rod
JP2792896B2 (en) Method for producing carbon steel or alloy steel sheet having fine spheroidized carbide
JPS6386815A (en) Production of steel having excellent cold workability
JPH026809B2 (en)
JPH0530884B2 (en)
JPH01255623A (en) Heat treatment for directly softening high carbon steel
JPS644568B2 (en)
JP2002060841A (en) Method for producing bar or wire rod