JPS59126720A - Direct spheroidizing treatment of steel material - Google Patents

Direct spheroidizing treatment of steel material

Info

Publication number
JPS59126720A
JPS59126720A JP173083A JP173083A JPS59126720A JP S59126720 A JPS59126720 A JP S59126720A JP 173083 A JP173083 A JP 173083A JP 173083 A JP173083 A JP 173083A JP S59126720 A JPS59126720 A JP S59126720A
Authority
JP
Japan
Prior art keywords
steel material
temperature
temp
spheroidization
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP173083A
Other languages
Japanese (ja)
Inventor
Nobuhisa Tabata
田畑 綽久
Kimio Mine
峰 公雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP173083A priority Critical patent/JPS59126720A/en
Publication of JPS59126720A publication Critical patent/JPS59126720A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising

Abstract

PURPOSE:To obtain a hot-rolled wire rod and steel bar having the characteristic equivalent to those by ordinary spheroidizing annealing by combining a specific hot rolling condition and cooling condition. CONSTITUTION:A steel material is subjected to finish rolling continuously under the condition of >=80% total draft in a temp. region from the Ar1 transformation point temp. to the temp. which is not as low as 50 deg.C or below in the hot rolling stage of the steel material. Spheroidization is thus advanced fairly in the finish rolling stage. The steel material is treated at the finishing temp. in the range of the Ac1 transformation point temp. or above and the Ac3 transformation point temp. or below by the working heat thereof and thereafter the steel material is slowly cooled. A cementite nucleus glows quickly and the spheroidization advances quickly in the process when the steel material is slowly cooled.

Description

【発明の詳細な説明】 (技術分野) この発明は、鋼材なかでも線材、棒鋼の直接球状化処理
方法に関し、とくに熱間圧延ままで各種冷間加工を可能
として、従来線拐、棒鋼において不可欠とされた2次加
工工程における球状化腕力まし処理を省略し、工程の簡
易化および省エネルギー化を実現した鋼材の新しい製造
方法を提供するものでおる。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a method for direct spheroidization of wire rods and steel bars among steel materials, and in particular, enables various cold working processes while still being hot rolled, which is indispensable for conventional wire rods and steel bars. The present invention provides a new method for manufacturing steel products that simplifies the process and saves energy by omitting the spheroidizing process in the secondary processing step.

(従来技術) 通常熱間圧延された中、高炭素鋼あるいは合金鋼の線材
、棒鋼は、2次及び8次加工工程において伸線や冷間鍛
造工程力どを経て各種ボルト、ナツトt’hかの種々の
機械用部品類に加工される。
(Prior art) Usually, hot-rolled wire rods and bars of medium-high carbon steel or alloy steel are subjected to wire drawing and cold forging processes in the secondary and eighth processing processes to form various types of bolts and nuts. It is processed into various mechanical parts.

この際熱間圧延にてベイナイト、網状セメンタイト、層
状パーライト組織を呈するので、そのままでは冷間加工
性が悪く、強度の加工を施こすことができず、また焼入
工程において変形や割れが発生しやすく、材質的にもも
ろく彦る。
During hot rolling, bainite, reticular cementite, and layered pearlite structures are formed, so cold workability is poor and strong processing cannot be performed as is, and deformation and cracking occur during the quenching process. It is easy to use and the material is also brittle.

そこで通常は、これらの欠点を改良する目的でセメンタ
イトを安定な球状化セメンタイトにする、いわゆる球状
化腕なましが行われる。球状化焼彦ましには種々の方法
が開発実用化されているが、いずれの方式も長時間の高
温加熱と精@な温度制御を必要とする。
Therefore, in order to improve these defects, so-called spheroidizing arm annealing is usually performed to convert cementite into stable spheroidized cementite. Various methods have been developed and put into practical use for spheroidizing and sintering, but all methods require long-term high-temperature heating and precise temperature control.

したがってこの工程は一般に高価な熱処理設備を要する
上、長時間にわたる温度管理のため生産性を高めること
が困難力ばかりか、甚しく熱エネルギーを消費して、コ
スト低減の太き々ネックと・なっている。
Therefore, this process generally requires expensive heat treatment equipment, and not only is it difficult to increase productivity due to long-term temperature control, but it also consumes a tremendous amount of thermal energy, which becomes a major bottleneck in reducing costs. ing.

まだ熱処理中に脱炭やスケールの生成も多く、表面肌荒
れないし、後工程における酸洗時間の増加力ど、材質上
、コスト上の問題が多い。
There are still many problems in terms of material quality and cost, such as decarburization and scale formation during heat treatment, no surface roughening, and increased pickling time in the post-process.

(発明の動機) かかる点から発明者らは、熱間圧延条件と冷却条件の詳
細が研究を行ったところ、特定の熱間圧延条件と冷却条
件の組合せにより、通常の球状化焼なましと同等の特性
を有する線材、棒鋼を熱間圧延のままで有利に得ること
ができる方法を見出したのである。
(Motivation for the Invention) From this point of view, the inventors conducted a detailed study of hot rolling conditions and cooling conditions, and found that by combining specific hot rolling conditions and cooling conditions, it is possible to They have discovered a method that can advantageously produce wire rods and steel bars with similar properties as they are hot-rolled.

(発明の構成) すなわち線材、棒鋼の熱間圧延についてあまた実験と検
討を重ねた試行錯誤の果て、仕上げ圧延を、lr□変態
点温度からそれよシ50℃を下まわらぬ温度までの間の
温度領域にて、連続的に全圧下率80%以上の条件で行
い、その加工熱によυAC変態点温度以上、AC8変態
点温度以下の範囲の仕上げ温度とした後、徐冷すること
により上記特性が有利に実現され得ることを究明した。
(Structure of the Invention) In other words, as a result of numerous experiments and studies regarding hot rolling of wire rods and steel bars, it was discovered that finish rolling can be carried out between the lr□ transformation point temperature and a temperature not lower than 50°C. In the temperature range, the process is carried out continuously under the conditions of a total reduction rate of 80% or more, and the processing heat is used to bring the finishing temperature to a range of υAC transformation point temperature or higher and AC8 transformation point temperature or lower, and then the above is achieved by slow cooling. It has been determined that the characteristics can be advantageously realized.

この発明においては仕上げ圧延をAr、変態点温lから
それより50℃を下甘わら些温度1ですなわちAr□点
以下、(Ar□−50℃)以上の温度域から開始し、連
続的に全圧下率80%以上で圧延を行い、加工熱により
仕上げ温度がAO工点点以上Ac8点以下に力る様にす
ることがまず必要であり、この理由は以下のとおりであ
る。
In this invention, finish rolling is started in Ar, from the transformation point 1 to 50℃ below it, at a temperature 1, that is, below the Ar□ point and above (Ar□-50℃), and continuously. First of all, it is necessary to perform rolling at a total reduction rate of 80% or more so that the finishing temperature is increased from the AO work point to the Ac8 point using processing heat, and the reason for this is as follows.

常法により、熱間圧延された線材、棒鋼はlr工変態点
温度以下の温度にすることによシバ−ライト組織となる
。この状態において圧延が付与されると、パーライトを
構成しているセメンタイト板は、加工歪により分断され
る。また過共析鋼ではパーライト組織及び粒界に折用し
た網状セメンタイトも同様に分断される。同時にフェラ
イト相、パーライト相自体も加工を受け、転位密度の上
昇及び界面エネルギーの上昇を起こす。
By a conventional method, hot-rolled wire rods and steel bars are brought to a temperature below the LR transformation point temperature, thereby forming a sybarite structure. When rolling is applied in this state, the cementite plates constituting the pearlite are divided due to processing strain. In addition, in hypereutectoid steel, the pearlite structure and reticulated cementite at grain boundaries are similarly divided. At the same time, the ferrite phase and pearlite phase themselves are also processed, causing an increase in dislocation density and an increase in interfacial energy.

すなわち微細に分断されたセメンタイトは高い界面エネ
ルギーを持つとともに、分断されているため自己凝集が
容易である。
In other words, finely divided cementite has high interfacial energy and is easily self-agglomerated because it is divided.

さらに連続的に圧延を行うことにより加工熱の・放散が
少なく、材料の温度は上昇するとともにセメンタイ)[
の分断及び加工歪の蓄積が著しく進行する。このために
炭素原子の拡散速度が圧延を付与し々い場合と比較して
格段に速くなる。
Furthermore, by continuously rolling, there is less processing heat dissipation, and the temperature of the material increases and cementation) [
Parting and accumulation of machining strain progresses significantly. For this reason, the diffusion rate of carbon atoms becomes much faster than in the case where rolling is applied too much.

通常パーライト組織をAC□点以上、 Ac8点以下の
範囲に再加熱することによって、板状セメンタイトの一
部が溶解し分断されるが、とくに加工熱によりACC点
点以上 108点以下の範囲に材料温度を上昇させる操
作は加工歪の相乗効果により、セメンタイト板の溶解、
分断の頻度を飛躍的に増大させるとともに炭素原子の拡
散速度の上昇によって、セメンタイトの自己凝集力が著
しく高まることが見出された。
Normally, by reheating the pearlite structure to a range of AC□ point or higher and Ac8 point or lower, a part of the plate-like cementite is melted and divided, but especially when the material temperature is reduced to a range of ACC point or higher and 108 point or lower due to processing heat. Due to the synergistic effect of processing strain, the operation to increase the
It was found that by dramatically increasing the frequency of fragmentation and increasing the diffusion rate of carbon atoms, the self-cohesive force of cementite increases significantly.

ここにセメンタイト核の形態が著しく微細かつ均一であ
るために、従来の球状化焼なまし法では達成し得ないよ
う力均一性を生じることも見出された。
It has also been found that the morphology of the cementite nuclei is extremely fine and uniform, resulting in force uniformity that cannot be achieved by conventional spheroidizing annealing methods.

Ar、点以下であれば圧延開始温度は、それが過度に低
すぎて変形抵抗が著大となシ、圧延機の負荷、ひいては
生産性の面で不利に彦らぬ限り、上記セメンタイト板の
分断及び歪エネルギーの蓄積は、低温はど多くなること
を考慮して、圧延温度の下限を(Ar□−50℃)とし
た。
If the rolling start temperature is below Ar, the rolling start temperature is too low and the deformation resistance is significant, and unless this is disadvantageous in terms of the load on the rolling mill and the productivity, the above-mentioned cementite plate Considering that the accumulation of breaking and strain energy increases at low temperatures, the lower limit of the rolling temperature was set to (Ar□-50°C).

次にAr、点以下、(Ar□−50℃)以上の温度領域
において連続的に全圧下率80%以上で圧延を付与する
理由については次のとおりである。
Next, the reason why rolling is applied continuously at a total reduction rate of 80% or more in a temperature range of Ar, below the point, and above (Ar□-50°C) is as follows.

第1図は、Q O,85%、Si0.22%、Mn0.
75% 、 p 0.010%、 So、008%、 
Or 1.02%、 MOo、20%を含有する組成の
鋼を常法にて熱間圧延し、仕上げ圧延段階でAr□点以
下、(Ar□−50℃)以上の範囲の温度である670
℃より圧下率を変え、加工熱により線材温度がAC点以
上、AC8点以下になる様、連続的に圧延した後、徐冷
した時のセメンタイトの球状化率と690〜750℃間
での圧下率との関係を示したものである。
FIG. 1 shows QO, 85%, Si 0.22%, Mn 0.
75%, p 0.010%, So, 008%,
A steel having a composition containing 1.02% of Or and 20% of MOo is hot-rolled in a conventional manner, and at the finish rolling stage, the temperature is 670°C, which is in the range of below Ar□ point and above (Ar□-50°C).
Cementite spheroidization rate and rolling reduction between 690 and 750℃ after continuous rolling and slow cooling by changing the rolling reduction rate from ℃ to keep the wire temperature above AC point and below AC8 point due to processing heat This shows the relationship with the rate.

なお球状化の程度は、JIS −G 8589で示され
る球状化組織試験に準拠して評価した。
The degree of spheroidization was evaluated based on the spheroidization test specified in JIS-G 8589.

同図より明らかなように全圧下率が80%を越えると球
状化が著しく促進されることがわかる。
As is clear from the figure, when the total rolling reduction exceeds 80%, spheroidization is significantly promoted.

す彦わち、セメンタイト板を微細に分断し、フエ・ライ
ト相及びパーライト相に加工歪を十分に蓄積するために
は、連続的に全圧下率80%以上が必要である。
In other words, in order to finely divide the cementite plate and sufficiently accumulate processing strain in the ferrite phase and pearlite phase, a continuous total reduction rate of 80% or more is required.

また加工による発熱計は全圧下率に多くを依存する。し
たがってこの発明の構成璧件である仕上温度をAC,点
板上、108点以下の範囲にするには、圧延途上におけ
る熱放散を極力抑えるとともに、発熱社を増加する必要
があるが、この要件を通常の線相又は棒鋼圧延で達成す
るに必要な圧下率の下限が80%である。
Furthermore, the calorific value due to processing depends largely on the total reduction rate. Therefore, in order to keep the finishing temperature within the range of 108 points or less on the AC point plate, which is a constituent requirement of this invention, it is necessary to suppress heat dissipation during rolling as much as possible and to increase the number of heat generators. The lower limit of the rolling reduction required to achieve this by normal linear phase or bar steel rolling is 80%.

次に仕上温度をAC,点板上、108点以下の範囲に限
定する理由は、AO工点点以下はセメンタイト板の分断
は十分に進行するが溶解が不十分となることと、炭素原
子の拡散速度が高まらないため、AC□C星点にする必
要がある。
Next, the reason for limiting the finishing temperature to the range below 108 points on the AC point plate is that below the AO work point, the fragmentation of the cementite plate progresses sufficiently, but the melting is insufficient, and the diffusion of carbon atoms. Since the speed does not increase, it is necessary to set it to AC□C star point.

しかしAc8点以上になると、完全にオーステナイト化
し、球状化の核となるセメンタイトが消失してしまい、
逆に球状化が困難と力ることから108点以下にする必
要がある。
However, when the Ac point reaches 8 or higher, it becomes completely austenitic and the cementite, which is the core of spheroidization, disappears.
On the other hand, it is difficult to make it spherical, so it is necessary to set it to 108 points or less.

以上のようにして、微細に、かつ均一に分散し・たセメ
ンタイト核は通常の暁々まし方法と比較して高い界面エ
ネルギーと加工による炭素原子の拡散速度の著しい上昇
のために自己凝集力が格段に高まり、仕上圧延段階です
でにかカシ球状化が進行する。
As described above, the finely and uniformly dispersed cementite nuclei have a higher self-cohesive force due to the higher interfacial energy and the remarkable increase in the diffusion rate of carbon atoms due to processing compared to the conventional method. This increases significantly, and spheroidization is already progressing at the finish rolling stage.

この状態を経て徐冷されていく過程でセメンタイト核は
急速に成長し、球状化は急速に進行するわけである。
In the process of gradual cooling through this state, the cementite core grows rapidly, and spheroidization progresses rapidly.

この発明では、球状化の推進に加工歪エネルギーが中心
的役割をはだすことから、圧延条件を上記のように設定
することにより、セメンタイトの形態を制御し得るので
ある。
In this invention, since processing strain energy plays a central role in promoting spheroidization, the morphology of cementite can be controlled by setting the rolling conditions as described above.

もちろんこの発明では鋼の化学組成を特に限定するもの
ではないが、所期の目的に最も好ましい鋼は、機械構造
用炭素鋼、機械構造用合金鋼、肌焼鋼、軸受鋼などであ
る。
Of course, the present invention does not particularly limit the chemical composition of the steel, but the most preferred steels for the intended purpose include carbon steel for machine structures, alloy steel for machine structures, case hardening steel, and bearing steel.

(実施例) 以下この発明の実施例について説明する。表1に示す化
学成分の鋼(A) 、 (B) t−常法により溶製し
、最終線径がl Ornmφに々る壕で、表2に示す条
件にてとくに仕上げ温度750’Cと力る様に連続圧延
を行った後、徐冷を行った。表2にこれら熱間圧延材の
球状化状態を示す。力お表2には参考例として従来法に
よる球状化焼なまし処理を行った場合の例を掲げた。
(Example) Examples of the present invention will be described below. Steels (A) and (B) having the chemical composition shown in Table 1 were melted by a conventional method, with a final wire diameter of l Ornmφ, under the conditions shown in Table 2, and at a finishing temperature of 750'C. After continuous rolling with force, slow cooling was performed. Table 2 shows the spheroidization state of these hot rolled materials. As a reference example, Table 2 shows an example in which a conventional method of spheroidizing annealing was performed.

表  1 (℃) 表  2 *1 : 710℃X 8 hr −+ 20℃/hr
 −+ 650 ℃X 4hr、−+空冷*2 : 7
40℃X8hr−+20℃/ hr−+ 650 ℃X
 6t1r、−)空冷球状化の程度の測定及び表示法は
JIS −08589の球状化組織試験に準拠した。
Table 1 (℃) Table 2 *1: 710℃X 8 hr -+ 20℃/hr
-+ 650℃X 4hr, -+Air cooling*2: 7
40℃×8hr-+20℃/hr-+650℃×
6t1r, -) The measurement and display method of the degree of air-cooling spheroidization was based on the spheroidization structure test of JIS-08589.

表2において供試材A1および/I62は、圧下率が8
0%に満た力いときの比較例であシ、いずれの場合も球
状化はわずかじか進行していない。
In Table 2, sample materials A1 and /I62 have a rolling reduction ratio of 8
This is a comparative example when the filling capacity is 0%, and in both cases, spheroidization has progressed only slightly.

また供試材45.A6,49及びAIOは従来法による
球状化部なまし処理された参考例であり、その条件によ
って球状化の程度は異なるものの、いずれの場合も熱処
理に極めて長時間を必要とする。
Also, sample material 45. A6, 49, and AIO are reference examples in which the spheroidized portion was annealed by the conventional method, and although the degree of spheroidization differs depending on the conditions, the heat treatment requires an extremely long time in all cases.

これに対して、この発明に従う供試材屋8゜Ji 4 
、 A 7及び扁8はいずれも球状化が著しく進行し、
゛圧下率が80%及び60%の各場合とも従来法の球状
化部がまし材と全く同等の球状化を示す。
On the other hand, the sample material shop 8゜Ji 4 according to the present invention
, A 7 and A 8 have significantly progressed into spheroidization,
``In both cases where the rolling reduction ratio is 80% and 60%, the spheroidized portion of the conventional method shows exactly the same spheroidization as the tempered material.

この発明を上側で線材、棒鋼に適用した場合を説明した
が、これ以外にもたとえば熱延材、厚鋼板などで球状化
処理の必要な鋼種に広く適用できるものである。
Although this invention has been described above as being applied to wire rods and steel bars, it can also be widely applied to other types of steel that require spheroidization, such as hot-rolled materials and thick steel plates.

したがってこの発明によれば従来法のような長゛時間の
熱処理を必要とせずして熱間圧延の際に球状化を行うこ
とが可能となシ、省エネルギー効果、生産性及び経済性
の向上に大きな寄与をするばかりでなく、材質上の向上
にも大きな効果がある。
Therefore, according to the present invention, it is possible to perform spheroidization during hot rolling without the need for long-time heat treatment as in the conventional method, resulting in improvements in energy saving, productivity, and economic efficiency. Not only does it make a big contribution, but it also has a great effect on improving the quality of the material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は690〜750℃間での圧下率とセメンタイト
の球状化率との関係を示すグラフである。 特許出願人   川崎製鉄株式会社
FIG. 1 is a graph showing the relationship between the rolling reduction rate and the spheroidization rate of cementite between 690 and 750°C. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] L 鋼材の熱間圧延に際し、Ar□変態点温度からそれ
より50℃を下まわる程、低く力い温度までの間の温間
領域にて連続的に全圧下率80%以上の条件で、仕上げ
圧延を行いその加工熱によ、QAC変態点温度以上、A
c8変態点温度以下の範囲の仕上げ温度とした後、徐冷
′することを特徴とする鋼材の直接球状化処理方法。
L When hot rolling steel materials, finishing is carried out under conditions of a total reduction rate of 80% or more continuously in the warm region from the Ar□ transformation point temperature to a temperature as low as 50°C below that temperature. Rolling is performed and due to the processing heat, the temperature is higher than the QAC transformation point temperature, A
A direct spheroidizing method for steel material, which comprises bringing the finishing temperature to a range below the c8 transformation point temperature and then slow cooling.
JP173083A 1983-01-11 1983-01-11 Direct spheroidizing treatment of steel material Pending JPS59126720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP173083A JPS59126720A (en) 1983-01-11 1983-01-11 Direct spheroidizing treatment of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP173083A JPS59126720A (en) 1983-01-11 1983-01-11 Direct spheroidizing treatment of steel material

Publications (1)

Publication Number Publication Date
JPS59126720A true JPS59126720A (en) 1984-07-21

Family

ID=11509673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP173083A Pending JPS59126720A (en) 1983-01-11 1983-01-11 Direct spheroidizing treatment of steel material

Country Status (1)

Country Link
JP (1) JPS59126720A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136423A (en) * 1983-01-21 1984-08-06 Sumitomo Metal Ind Ltd Preparation of rod steel and wire material having spheroidal structure
JPS59136421A (en) * 1983-01-21 1984-08-06 Sumitomo Metal Ind Ltd Preparation of rod steel and wire material having spheroidal structure
JPS59136422A (en) * 1983-01-21 1984-08-06 Sumitomo Metal Ind Ltd Preparation of rod steel and wire material having spheroidal structure
JPS61153230A (en) * 1984-12-26 1986-07-11 Kawasaki Steel Corp Production of low-alloy steel wire rod which permits quick spheroidization
US4702778A (en) * 1985-01-28 1987-10-27 Nippon Steel Corporation Method for softening rolled medium carbon machine structural steels
DE19950264B4 (en) * 1999-10-11 2008-07-17 Sanyo Special Steel Co., Ltd., Himeji Method for producing a double joint with improved cold workability and strength

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133445A (en) * 1980-03-21 1981-10-19 Kobe Steel Ltd Hot rolled steel products having superior cold workability and toughness and their manufacture
JPS5827926A (en) * 1981-08-12 1983-02-18 Nippon Steel Corp Manufacture of wire rod having spheroidal structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133445A (en) * 1980-03-21 1981-10-19 Kobe Steel Ltd Hot rolled steel products having superior cold workability and toughness and their manufacture
JPS5827926A (en) * 1981-08-12 1983-02-18 Nippon Steel Corp Manufacture of wire rod having spheroidal structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136423A (en) * 1983-01-21 1984-08-06 Sumitomo Metal Ind Ltd Preparation of rod steel and wire material having spheroidal structure
JPS59136421A (en) * 1983-01-21 1984-08-06 Sumitomo Metal Ind Ltd Preparation of rod steel and wire material having spheroidal structure
JPS59136422A (en) * 1983-01-21 1984-08-06 Sumitomo Metal Ind Ltd Preparation of rod steel and wire material having spheroidal structure
JPH0576525B2 (en) * 1983-01-21 1993-10-22 Sumitomo Metal Ind
JPH0576524B2 (en) * 1983-01-21 1993-10-22 Sumitomo Metal Ind
JPS61153230A (en) * 1984-12-26 1986-07-11 Kawasaki Steel Corp Production of low-alloy steel wire rod which permits quick spheroidization
JPH0559965B2 (en) * 1984-12-26 1993-09-01 Kawasaki Steel Co
US4702778A (en) * 1985-01-28 1987-10-27 Nippon Steel Corporation Method for softening rolled medium carbon machine structural steels
DE19950264B4 (en) * 1999-10-11 2008-07-17 Sanyo Special Steel Co., Ltd., Himeji Method for producing a double joint with improved cold workability and strength

Similar Documents

Publication Publication Date Title
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
JP2000256741A (en) Manufacture of hot rolled bar or wire
JPS59126720A (en) Direct spheroidizing treatment of steel material
JP3031484B2 (en) Method for producing steel wire rod or steel bar having spheroidized structure
JPH0576524B2 (en)
JPS6233289B2 (en)
WO1979000100A1 (en) A process for the production of sheet and strip from ferritic,stabilised,stainless chromium-molybdenum-nickel steels
JP2001049349A (en) Production of steel sheet for drawing by subjecting thin strip to direct casting and steel sheet obtained by the method
JPH0112815B2 (en)
JPS59126721A (en) Manufacture of steel material for rapid spheroidizing
JPH0576525B2 (en)
JPH0559965B2 (en)
JP2564535B2 (en) Direct spheroidizing method for hot rolled steel wire rod
JPH02274810A (en) Production of high tensile untempered bolt
JPS5913024A (en) Manufacture of directly spheroidized steel material
JPH0369967B2 (en)
JP4276504B2 (en) High carbon hot-rolled steel sheet with excellent stretch flangeability
JPH0530884B2 (en)
JP2866107B2 (en) Method for producing high-carbon hot-rolled steel sheet in which carbides are uniformly dispersed
JPS59205417A (en) Manufacture of medium or high carbon steel sheet with globular structure
RU1775195C (en) Method for producing starting strip from hypereutectoid steels in heavy bundles
JP2002060841A (en) Method for producing bar or wire rod
JPS62278227A (en) Manufacture of silicon steel plate
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPS6386815A (en) Production of steel having excellent cold workability