JP4276504B2 - High carbon hot-rolled steel sheet with excellent stretch flangeability - Google Patents

High carbon hot-rolled steel sheet with excellent stretch flangeability Download PDF

Info

Publication number
JP4276504B2
JP4276504B2 JP2003333611A JP2003333611A JP4276504B2 JP 4276504 B2 JP4276504 B2 JP 4276504B2 JP 2003333611 A JP2003333611 A JP 2003333611A JP 2003333611 A JP2003333611 A JP 2003333611A JP 4276504 B2 JP4276504 B2 JP 4276504B2
Authority
JP
Japan
Prior art keywords
less
ferrite
grain size
steel sheet
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003333611A
Other languages
Japanese (ja)
Other versions
JP2005097681A (en
Inventor
良久 高田
志郎 佐柳
一行 竹島
義孝 近藤
貴裕 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003333611A priority Critical patent/JP4276504B2/en
Publication of JP2005097681A publication Critical patent/JP2005097681A/en
Application granted granted Critical
Publication of JP4276504B2 publication Critical patent/JP4276504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、自動車の駆動系等の機械構造部品に用いられる伸びフランジ性の優れた高炭素熱延鋼板に関する。   The present invention relates to a high carbon hot-rolled steel sheet having excellent stretch flangeability used for machine structural parts such as an automobile drive system.

高炭素鋼板は通常、切削や、打ち抜き、曲げ、絞り等の加工により、所定の寸法形状に成形後、焼き入れ、焼き戻し等の熱処理を行い、必要とする強度に調質してから目的の用途に適用することが多い。また、複数の部品を溶接等で接合して製作していた部品を、転造加工、FCF加工等による一体で成形する方法も広まりつつある。   High-carbon steel sheets are usually formed by cutting, punching, bending, drawing, etc. to a predetermined size and shape, and then subjected to heat treatment such as quenching and tempering, and after tempering to the required strength, Often used for applications. In addition, a method of integrally forming a part that has been manufactured by joining a plurality of parts by welding or the like by rolling or FCF processing is becoming widespread.

これらの部品の中には伸びフランジ性が要求されるものがある。高炭素鋼板は焼き入れ焼き戻し等の熱処理により硬さ等の必要特性を調質するため、必然的にC添加量が高くなる。高炭素鋼は、炭化物の球状化により加工性を向上させる方法が一般的に用いられ、炭化物の大きさ、炭化物平均距離等を制御している。しかし、球状化焼鈍しても鋼中に硬い炭化物が多数存在することに変わりないので、伸びフランジ加工には向いていない。   Some of these parts require stretch flangeability. High carbon steel sheets temper necessary properties such as hardness by heat treatment such as quenching and tempering, so that the amount of C added is inevitably high. For high carbon steel, a method of improving workability by spheroidizing carbide is generally used, and the size of carbide, average distance of carbide, and the like are controlled. However, since spheroidizing annealing does not change the presence of many hard carbides in steel, it is not suitable for stretch flange processing.

高炭素熱延鋼板の伸びフランジ加工性を良好にする技術を開示したものとして、下記特許文献1〜8がある。
特開平11−80885号公報 特開平11−140544号公報 特開平11−256272号公報 特開平11−256268号公報 特開2000−178678号公報 特開2001−73033号公報 特開2001−214234号公報 特開2001−220643号公報
Patent Documents 1 to 8 listed below disclose techniques for improving stretch flange workability of a high carbon hot rolled steel sheet.
Japanese Patent Laid-Open No. 11-80885 Japanese Patent Laid-Open No. 11-140544 Japanese Patent Laid-Open No. 11-256272 JP 11-256268 A JP 2000-178678 A JP 2001-73033 A JP 2001-214234 A JP 2001-220463 A

特許文献1に開示された鋼板は、炭化物の球状化率が90%以上で、平均炭化物間距離が0.8μm以上で、必要に応じフェライト結晶粒径を20μm以上に調整した鋼板であるが、いずれの要件も従来技術の範疇内であり、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の加工を行うような製品には適用できない。   The steel sheet disclosed in Patent Document 1 is a steel sheet having a spheroidization rate of carbide of 90% or more, an average carbide distance of 0.8 μm or more, and a ferrite crystal grain size adjusted to 20 μm or more as necessary. Both requirements are within the range of the prior art, and cannot be applied to products that are subjected to severe stretch flange processing or further processing such as increasing the thickness of stretch flanged portions.

特許文献2に開示された技術は、特殊な焼鈍サイクルを採用することで伸びフランジ性を改善するものである。この技術は若干の伸びフランジを改善する効果があるが、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の加工を行うような製品には適用できない。
特許文献3に開示された技術は、鋼の組成を規定した特許文献1の開示技術と同一技術である。
The technique disclosed in Patent Document 2 improves stretch flangeability by adopting a special annealing cycle. Although this technique has an effect of slightly improving the stretch flange, it cannot be applied to a product that is subjected to severe stretch flange processing or further processing such as increasing the thickness of the stretch flange processed portion.
The technique disclosed in Patent Document 3 is the same technique as the technique disclosed in Patent Document 1 that defines the composition of steel.

特許文献4に開示された技術は、炭化物球状化率が90%以上、平均炭化物粒径が0.4〜1.0μmであるように炭化物をフェライト中に分散させるものであり、必要に応じてフェライト結晶粒径を20μm以上に調整するものである。この技術は、特許文献1の開示技術の炭化物平均粒径の範囲を変えたもので、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の加工を行うような製品には適用できない。
特許文献5に開示された技術は、C:0.7〜1.5%とC量が多い鋼板に関する技術であるが、技術思想は特許文献3に開示された技術と同じである。
The technology disclosed in Patent Document 4 is to disperse carbides in ferrite so that the spheroidization rate of carbide is 90% or more and the average carbide particle size is 0.4 to 1.0 μm. The ferrite crystal grain size is adjusted to 20 μm or more. This technique is a technique in which the range of the carbide average particle size disclosed in Patent Document 1 is changed, and cannot be applied to products that are subjected to severe stretch flange processing or further processing such as increasing the thickness of stretch flange processed portions. .
The technique disclosed in Patent Document 5 is a technique related to a steel sheet having a large C content of 0.7 to 1.5%, but the technical idea is the same as the technique disclosed in Patent Document 3.

特許文献8に開示された技術は、炭化物の分散度と炭化物平均粒径を特定したもので、その技術思想は、炭化物粒径を大きくし、均一に分散させ、加工時の炭化物に起因するマクロクラックを少なくしようとするもので、従来技術の範疇にあり、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の加工を行うような製品には適用できない。   The technology disclosed in Patent Document 8 specifies the degree of dispersion of carbide and the average particle size of carbide, and its technical idea is to increase the particle size of the carbide, disperse it uniformly, and to create a macro resulting from the carbide during processing. It is intended to reduce cracks, and is in the range of the prior art, and cannot be applied to products that are subjected to severe stretch flange processing or further processing such as increasing the thickness of stretch flange processed portions.

特許文献7に開示された技術は、炭化物の平均粒径と炭化物を含まないフェライト粒の体積率を規定する技術である。この技術は特許文献8の開示技術と同一技術思想で、炭化物の分散を炭化物を含まないフェラィト粒の体積率に置き変えたものであり、技術的には同一である。
特許文献6に開示された技術は、特許文献2に開示された特殊焼鈍技術を冶金的な規定に変えたもので、技術思想は同一である。
The technique disclosed in Patent Document 7 is a technique that defines the average particle size of carbides and the volume fraction of ferrite grains that do not contain carbides. This technique is the same technical idea as the technique disclosed in Patent Document 8, in which the dispersion of carbide is replaced by the volume fraction of ferrite grains not containing carbide, and is technically the same.
The technique disclosed in Patent Document 6 is obtained by changing the special annealing technique disclosed in Patent Document 2 into a metallurgical rule, and the technical idea is the same.

このように従来の開示技術は、炭化物のサイズ分布を制御し、伸びフランジ性を改良させようとする技術であるものの、抜本的に高炭素鋼板の伸びフランジ性を向上させる技術でないため、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の加工を行うような製品には適用できず、新しい技術の開発が望まれている。   Thus, although the conventional disclosed technique is a technique for controlling the size distribution of carbide and improving the stretch flangeability, it is not a technique for drastically improving the stretch flangeability of a high carbon steel sheet, so that It cannot be applied to products that undergo further processing such as flange processing or stretch flange processing, and development of new technologies is desired.

本発明が解決しようとする課題は、焼き入れ前には伸びフランジ性が優れ、焼き入れ後には所定の硬さと靭性が得られる高炭素熱延鋼板を提供することにある。   The problem to be solved by the present invention is to provide a high carbon hot-rolled steel sheet that is excellent in stretch flangeability before quenching and that has a predetermined hardness and toughness after quenching.

本発明者らは、高炭素鋼板の伸びフランジ性と焼き入れ後の靭性について鋭意検討した結果、鋼の組成およびフェライト粒径、介在物の形状を制御することにより、伸びフランジ性が優れ、かつ焼入れ後の靭性が優れた高炭素熱延鋼板が得られることを知見した。   As a result of intensive studies on the stretch flangeability and the toughness after quenching of the high carbon steel sheet, the inventors of the present invention have excellent stretch flangeability by controlling the steel composition, ferrite grain size, and shape of inclusions, and It was found that a high carbon hot rolled steel sheet having excellent toughness after quenching can be obtained.

本発明はこの知見に基づき完成したもので、その要旨は次の通りである。
(1) 質量%で、
C :0.20〜0.60%、 Si:0.5%以下、
Mn:2.0%以下、 P :0.03%以下、
Al:0.08%以下、 N :0.01%以下、
Cr:0.08〜0.75% S :0.005%以下
残部Feおよび不可避的不純物の組成で、フェライト平均粒径が1〜10μmフェライト粒径の標準偏差が3.0μm以下、介在物の形状比が2.0以下であることを特徴とする伸びフランジ性の優れた高炭素熱延鋼板。
(2) 質量%で、
C :0.20〜0.60%、 Si:0.5%以下、
Mn:2.0%以下、 P :0.03%以下、
Al:0.08%以下、 N :0.01%以下、
Cr:0.75%以下、 S :0.005%以下、
Ti:0.010〜0.050%、B :0.0003〜0.0050%
残部Feおよび不可避的不純物の組成で、フェライト平均粒径が1〜10μmフェライト粒径の標準偏差が3.0μm以下、介在物の形状比が2.0以下であることを特徴とする伸びフランジ性の優れた高炭素熱延鋼板。
The present invention has been completed based on this finding, and the gist thereof is as follows.
(1) In mass%,
C: 0.20-0.60%, Si: 0.5% or less,
Mn: 2.0% or less, P: 0.03% or less,
Al: 0.08% or less, N: 0.01% or less,
Cr: 0.08 to 0.75% , S: 0.005% or less ,
Stretch flange characterized by the composition of the balance Fe and unavoidable impurities , ferrite average particle diameter of 1 to 10 μm , standard deviation of ferrite particle diameter of 3.0 μm or less, and inclusion shape ratio of 2.0 or less High carbon hot rolled steel sheet with excellent properties.
(2) By mass%
C: 0.20-0.60%, Si: 0.5% or less,
Mn: 2.0% or less, P: 0.03% or less,
Al: 0.08% or less, N: 0.01% or less,
Cr: 0.75% or less, S: 0.005% or less,
Ti: 0.010-0.050%, B: 0.0003-0.0050% ,
Stretch flange characterized by the composition of the balance Fe and unavoidable impurities , ferrite average particle diameter of 1 to 10 μm , standard deviation of ferrite particle diameter of 3.0 μm or less, and inclusion shape ratio of 2.0 or less High carbon hot rolled steel sheet with excellent properties.

本発明によれば、伸びフランジ性の優れた高炭素熱延鋼板を得るにあたって、フェライト粒の平均粒径とその標準偏差を制御し、併せて介在物の形状比を特定することで、穴広げ加工でのクラックの発生を抑制できる。穴広げ加工後の据え込み加工を行なっても割れが生じず、優れた伸びフランジ性を有すると共に、焼入れ後の衝撃性、高周波焼入れ性も優れた高炭素熱延鋼板が提供可能になる。このような高炭素熱延鋼板を用いることにより、変速機部品等の加工において加工度を高くとることができ、その結果、製造工程を省略して低コストで部品等を製造することが可能となる。   According to the present invention, in obtaining a high carbon hot-rolled steel sheet with excellent stretch flangeability, the average grain size of ferrite grains and the standard deviation thereof are controlled, and the shape ratio of inclusions is specified together to expand the hole. Generation of cracks during processing can be suppressed. It is possible to provide a high-carbon hot-rolled steel sheet that does not crack even when the upsetting process is performed after the hole expanding process, has excellent stretch flangeability, and is excellent in impact resistance after quenching and induction hardenability. By using such a high carbon hot-rolled steel sheet, it is possible to increase the degree of processing in processing of transmission parts and the like, and as a result, it is possible to manufacture parts and the like at low cost by omitting the manufacturing process. Become.

まず、本発明の重要な構成要因であるフェライト平均結晶粒径を10μm以下にすると良好な伸びフランジ性が得られることを知見した事実について説明する。
真空溶解炉でC:0.35%、Si:0.05%、Mn:0.40%、Cr:0.15%、S:0.003%の組成の鋼を溶製し、90mm厚の鋼塊を造り、1250℃に加熱後、熱延圧下パススケジュール、熱延仕上げ温度、熱延後の冷却速度、冷却パターン、冷却終点温度を種々に変え、冷却終点温度と同じ温度の保定炉で1時間保定後に空冷した。
この鋼板を酸洗後に、670℃×18hrの焼鈍を行い、穴広げ試験およびミクロ組織を調査した。
First, the fact that it has been found that good stretch flangeability can be obtained when the ferrite average crystal grain size, which is an important constituent factor of the present invention, is 10 μm or less will be described.
In a vacuum melting furnace, a steel having a composition of C: 0.35%, Si: 0.05%, Mn: 0.40%, Cr: 0.15%, S: 0.003% is melted and is 90 mm thick. Build a steel ingot, heat to 1250 ° C, change hot rolling rolling schedule, hot rolling finishing temperature, cooling rate after hot rolling, cooling pattern, cooling end point temperature in a holding furnace at the same temperature as the cooling end point temperature. After holding for 1 hour, it was air-cooled.
After this steel plate was pickled, it was annealed at 670 ° C. for 18 hours, and a hole expansion test and a microstructure were investigated.

穴広げ試験はクリアランス12%で20φの孔を打ち抜き、この孔を60度の円錐のポンチで押し広げ、穴周辺に板厚を貫通するクラックが生じた時点の穴径と初期穴径の差を初期穴径で割り、%表示した。
フェライト粒径はJISで規定されるフェライト結晶粒度 No.を求め、フェライト粒が球と仮定し、その直径を求めて用いた。フェライト粒径の標準偏差はフェライト粒径を測定した同一観察面の、各々のフェライト粒の見かけの面積を求め、見かけのフェライト粒が円を仮定した場合のその直径に4/πをかけ、その標準偏差を求めた。尚、フェライト粒の測定数は500〜1000個の範囲で測定した。
In the hole expansion test, a 20φ hole was punched with a clearance of 12%, and this hole was expanded with a 60 ° conical punch, and the difference between the hole diameter at the time when a crack penetrating the plate thickness occurred around the hole and the initial hole diameter was calculated. Divided by the initial hole diameter and expressed as a percentage.
The ferrite grain size was determined by using the ferrite grain size No. defined by JIS, assuming that the ferrite grains were spheres, and determining the diameter. The standard deviation of the ferrite grain size is to determine the apparent area of each ferrite grain on the same observation surface where the ferrite grain diameter was measured, and the diameter when the apparent ferrite grain is assumed to be a circle is multiplied by 4 / π. Standard deviation was determined. The number of ferrite grains was measured in the range of 500 to 1000.

フェライト平均結晶粒径と穴広げ率の関係を図1に示した。図1から分かるように、フェライト結晶粒径の平均を10μm以下にすることで穴広げ率が良好になることがわかる。この事実からフェライト粒の平均粒径を10μm以下に特定した。下限は特に限定する必要がない。しかし、現在の工業技術で製造可能な平均結晶粒径の下限値は1μm程度である。   The relationship between the average ferrite grain size and the hole expansion rate is shown in FIG. As can be seen from FIG. 1, it can be seen that the hole expansion rate is improved by setting the average ferrite crystal grain size to 10 μm or less. From this fact, the average grain size of ferrite grains was specified to be 10 μm or less. The lower limit need not be particularly limited. However, the lower limit of the average grain size that can be produced by the current industrial technology is about 1 μm.

フェライト粒径が10μm以下のサンプルについて、フェライト粒径の標準偏差と穴広げ率の関係を図2に示した。図2から分かるように、フェライト粒径の標準偏差が3.0μm以下になると安定して良好な穴広げ性が得られることがわかる。この事実から、フェライト粒径の標準偏差3.0μm以下を特定した。好ましい範囲は同様の理由から2.0μm以下である。   FIG. 2 shows the relationship between the standard deviation of the ferrite particle size and the hole expansion rate for the sample having a ferrite particle size of 10 μm or less. As can be seen from FIG. 2, it can be seen that when the standard deviation of the ferrite grain size is 3.0 μm or less, good hole expanding property can be obtained stably. From this fact, a standard deviation of ferrite grain size of 3.0 μm or less was specified. A preferable range is 2.0 μm or less for the same reason.

以下、本発明を構成する鋼成分について説明する。
Cは加工性を劣化させる元素であるが、焼入れ、焼き戻しをして用いる場合は0.20%以上必要である。一方、C量が0.60%を超えると硬質になる上に、硬い炭化物が多くなり、十分な伸びフランジ性を得られなくなる。
Hereinafter, the steel component which comprises this invention is demonstrated.
C is an element that deteriorates workability. However, when it is used after quenching and tempering, it needs to be 0.20% or more. On the other hand, if the amount of C exceeds 0.60%, it becomes hard and hard carbides increase, and sufficient stretch flangeability cannot be obtained.

Crは鋼板を硬質にする元素で、加工性を劣化させるが、伸びフランジ性に重要な要因である熱延鋼板のフェライト粒径の細粒化、フェライト粒径の標準偏差を小さくするのに必要な元素である。また、焼き入れ、焼き戻し後の靭性を良好にする元素である。このため0.75%以下で添加する。フェライト粒を制御する技術は他に存在するので、Cr量の下限は特に限定する必要はないが、好ましい範囲は0.08%以上であるCr is an element that hardens the steel sheet and degrades workability, but it is necessary to refine the ferrite grain size of the hot-rolled steel sheet, which is an important factor for stretch flangeability, and to reduce the standard deviation of the ferrite grain size. Element. Further, it is an element that improves the toughness after quenching and tempering. Therefore, it is added at 0.75% or less. Since there are other techniques for controlling ferrite grains, the lower limit of the Cr amount does not need to be particularly limited, but a preferable range is 0.08% or more .

SはMnS等の介在物となり、伸びフランジ性を劣化させるので、0.005%以下にする必要がある。   Since S becomes an inclusion such as MnS and deteriorates stretch flangeability, it is necessary to make it 0.005% or less.

Bは焼き入れ性を高める元素であることが知られている。本発明でも、C量が低い鋼や、特に焼き入れ性を必要とする場合に0.0003〜0.0050%の範囲で添加するのが望ましい。0.0003%未満では焼き入れ性を高める効果がほとんどなく、0.0050%を超えると鋼の製造時に内部欠陥等の疵の原因となるため、この範囲が望ましい。更に好ましくは同様の理由から0.0005〜0.0030%である。   B is known to be an element that enhances hardenability. Also in the present invention, it is desirable to add in the range of 0.0003 to 0.0050% when steel with a low amount of C, or particularly when hardenability is required. If it is less than 0.0003%, there is almost no effect of improving hardenability, and if it exceeds 0.0050%, it causes defects such as internal defects during the production of steel, so this range is desirable. More preferably, it is 0.0005 to 0.0030% for the same reason.

TiはBを添加する場合に、Bの効果を発揮させるために0.010〜0.050%の範囲で添加する。   Ti is added in the range of 0.010 to 0.050% in order to exert the effect of B when B is added.

介在物は鋼板の組織と同様に伸びフランジ性に影響する要因である。介在物の伸びフランジ性に及ぼす影響はその投影長さで、この長さが大きいほど伸びフランジ性が悪くなる。したがって同一介在物大きさでも、伸展度の大きいほど伸びフランジ性が劣化する。このため、介在物の短軸と長軸の比で表される形状比を2.0以下にするのが望ましい。   Inclusions are factors that affect stretch flangeability as well as the structure of the steel sheet. The influence of the inclusions on the stretch flangeability is the projected length, and the greater this length, the worse the stretch flangeability. Therefore, even with the same inclusion size, the stretch flangeability deteriorates as the degree of extension increases. For this reason, it is desirable that the shape ratio represented by the ratio of the short axis to the long axis of the inclusion is 2.0 or less.

フェライト結晶粒径およびフェライト粒径の標準偏差を制御することにより、伸びフランジ性が良好になる理由は定かでないが、本発明者等は以下のように考えている。
伸びフランジ加工前の打ち抜き面は剪断変形により加工硬化し、伸びフランジ加工前に既にミクロクラックが生じる。これを伸びフランジ加工するとミクロクラックを起点に大きな割れが生じ、これが伸びフランジ加工限界である。したがって、第一には剪断面のマクロクラックの多少、大小に伸びフランジ性が依存する。第二には、剪断面のマクロクラックがない場合は、伸びフランジは加工歪をいかに均一に分担するかによって左右され、不均一な歪分布になると伸びフランジ性は劣化し、均一に歪を分担すると伸びフランジ性が良好になる。
The reason why the stretch flangeability is improved by controlling the ferrite crystal grain size and the standard deviation of the ferrite grain size is not clear, but the present inventors consider as follows.
The punched surface before stretch flange processing is hardened by shear deformation, and microcracks are already generated before stretch flange processing. When this is stretch flanged, a large crack is generated starting from microcracks, which is the stretch flange processing limit. Therefore, firstly, the stretch flangeability depends on the degree of macro cracks on the shear surface. Second, if there is no macro crack on the shear plane, the stretch flange depends on how uniformly the processing strain is shared, and if the strain distribution is uneven, the stretch flangeability deteriorates and the strain is evenly distributed. Then, stretch flangeability becomes favorable.

打ち抜き面のマクロクラックは、変形量の大きな部分および変形能の劣る個所から生じる。変形単位はフェライト粒径であり、フェライト粒径が不均一であると小さな応力で変形する大きなフェライト粒に変形が集中し、その変形能を超えるとクラックが生じる。フェライト粒径が大きい場合も同様の挙動を示す。結晶粒が小さく均一な組織では、各結晶粒が剪断加工および穴広げ加工時に均等に歪を分担し、クラックの発生を抑制する。   The macro crack on the punched surface is generated from a portion having a large deformation amount and a portion having a poor deformability. The deformation unit is a ferrite grain size. If the ferrite grain size is not uniform, the deformation concentrates on large ferrite grains that are deformed by a small stress, and if the deformability is exceeded, cracks occur. The same behavior is exhibited when the ferrite grain size is large. In a uniform structure with small crystal grains, each crystal grain evenly distributes strain during shearing and hole expansion, thereby suppressing the occurrence of cracks.

この発明に用いる鋼は、C:0.20〜0.60%、Cr:0.75%以下、S:0.005%以下、必要に応じて更にTi:0.010〜0.050%、B:0.0003〜0.0050%のほか、フェライト粒径(10μm以下)とその分散、標準偏差(3.0μm以下)、介在物の形状比(2.0以下)となるものであればよく、他の化学成分のSi,Mn,P,Al,Nは通常の範囲で添加すればよく、特に規定する必要がない。これらの元素は他の特性との関係で添加量を決めればよく、添加量により本発明の特徴を損なうことはない。   Steel used in the present invention is: C: 0.20-0.60%, Cr: 0.75% or less, S: 0.005% or less, and if necessary, Ti: 0.010-0.050%, B: In addition to 0.0003 to 0.0050%, if the ferrite particle size (10 μm or less) and its dispersion, standard deviation (3.0 μm or less), inclusion shape ratio (2.0 or less) The other chemical components Si, Mn, P, Al, and N may be added in a normal range and need not be specified. The addition amount of these elements may be determined in relation to other characteristics, and the feature of the present invention is not impaired by the addition amount.

但し、好ましくは次のようにすると良い。
Siは添加量が多くなると鋼板を硬質化するので、0.5%以下とするのが好ましい。
Mnは、過剰に添加すると延性を損なうので、2.0%以下で添加するのが好ましい。
Pは加工性を損なうだけでなく、焼入れ焼き戻し後の靭性を劣化させるので、0.03%以下とするのが好ましい。
Alは過剰に添加すると焼き入れ性が悪くなるので、0.08%以下とするのが好ましい。
Nは、過剰に添加すると延性が劣化するだけでなく、焼き入れ、焼き戻し後の靭性を劣化させるので、0.0l%以下にするのが好ましい。
However, the following is preferable.
Since Si hardens the steel sheet when the addition amount is large, it is preferably 0.5% or less.
Since Mn impairs ductility when added in excess, it is preferably added at 2.0% or less.
P not only impairs the workability but also deteriorates the toughness after quenching and tempering. Therefore, P is preferably 0.03% or less.
If Al is added excessively, the hardenability deteriorates, so 0.08% or less is preferable.
When N is added excessively, not only the ductility deteriorates but also the toughness after quenching and tempering deteriorates. Therefore, N is preferably made 0.01% or less.

さらに、目的に応じ、通常添加される範囲で、Cu,Ni,Nb,V,Zr,Ca,Mg等の元素を添加しても良い。また、製造過程で他の不純物が混入しても本発明の特徴を損なわない。   Furthermore, elements such as Cu, Ni, Nb, V, Zr, Ca, and Mg may be added in a range that is usually added according to the purpose. Even if other impurities are mixed in the manufacturing process, the characteristics of the present invention are not impaired.

フェライト粒径とその標準偏差を小さくすることは、言い換えると均一な組織を制御することである。上記のような鋼は転炉、あるいは電気炉、必要に応じ真空脱ガス処理を用いて成分調整する。このようにして成分調整した高炭素鋼は、造塊−分塊圧延または連続鋳造によりスラブとする。スラブに成分偏析が大きいと、細心の注意を払って製造しても組織に不均一が生じ、本発明の要件を満足する鋼板を得ることが困難である。このためスラブの製造に際しては、電磁撹拌、未凝固域圧下等の偏析を低減する方法を採用することが好ましい。   Reducing the ferrite grain size and its standard deviation is, in other words, controlling a uniform structure. The components of the steel as described above are adjusted using a converter or an electric furnace, and if necessary, vacuum degassing. The high carbon steel whose components have been adjusted in this way is made into a slab by ingot-bundling rolling or continuous casting. If the component segregation is large in the slab, even if it is manufactured with great care, the structure becomes uneven and it is difficult to obtain a steel sheet that satisfies the requirements of the present invention. For this reason, when manufacturing a slab, it is preferable to employ a method of reducing segregation such as electromagnetic stirring and unsolidified region pressure.

このスラブは熱間圧延に供される。熱間圧延は通常の熱間圧延を行っても、フェライト粒径およびその分散を小さくすることは出来ない。加熱温度は、スケール発生による表面欠陥を防止するため1250℃以下とすることが好ましい。   This slab is subjected to hot rolling. In the hot rolling, the ferrite grain size and its dispersion cannot be reduced even if the normal hot rolling is performed. The heating temperature is preferably 1250 ° C. or lower in order to prevent surface defects due to scale generation.

仕上げ熱延は出来るだけAr3 点温度直上の温度の累積圧下率を高めることが好ましい。具体的には、仕上げ温度〜Ar3 点温度+20℃温度範囲の累積圧下率を40%以上とすることが好ましい。
また、熱間圧延の剪断変形による鋼板の表層と内部の組織差を少なくするため、潤滑熱延をしてもかまわない。仕上げ温度は、Ar3 点温度〜Ar3 点温度+40℃間とすることが好ましい。この温度範囲より高い温度で圧延が終了しても、低い温度で圧延を終了しても、組織が混粒組織となりやすい。
In finishing hot rolling, it is preferable to increase the cumulative reduction ratio of the temperature immediately above the Ar3 point temperature as much as possible. Specifically, it is preferable that the cumulative rolling reduction in the temperature range from the finishing temperature to the Ar3 point temperature + 20 ° C. is 40% or more.
Also, lubrication hot rolling may be performed in order to reduce the difference in structure between the surface layer and the inside of the steel sheet due to shear deformation of hot rolling. The finishing temperature is preferably between Ar3 point temperature and Ar3 point temperature + 40 ° C. Even if rolling is finished at a temperature higher than this temperature range or rolling is finished at a lower temperature, the structure tends to be a mixed grain structure.

仕上げ熱延後の冷却は、仕上げ熱延後のフェライト変態温度域とパーライト変態温度域の冷却が重要である。フェライト変態温度域の冷却は冷却速度を速め、フェライト変態温度を低温にすることが肝要である。パーライト変態温度域の冷却はパーライト変態発熱と注水による抜熱がバランスするように冷却し、パーライト変態を等温で進行するように冷却し、均一なパーライト組織となるようにし、パーライト変態後に巻き取ることが好ましい。巻取り温度は冷却帯でパーライト変態が終了すれば何度でも良いが、本発明では520〜600℃の範囲で実施している。   As for cooling after finish hot rolling, it is important to cool the ferrite transformation temperature range and the pearlite transformation temperature range after finish hot rolling. It is important to cool the ferrite transformation temperature range by increasing the cooling rate and lowering the ferrite transformation temperature. The pearlite transformation temperature range is cooled so that the heat generated by pearlite transformation and heat removal by water injection are balanced, and the pearlite transformation is cooled so that it progresses isothermally to form a uniform pearlite structure, which is wound after the pearlite transformation. Is preferred. The winding temperature may be any number of times as long as the pearlite transformation is completed in the cooling zone, but in the present invention, the winding temperature is in the range of 520 to 600 ° C.

このようにして製造した熱延コイルを、脱スケール後に炭化物の球状化焼鈍を行う。球状化焼鈍はAc1 点温度以下で行う。焼鈍温度が高くなると球状化した炭化物が大きくなり、加工時にクラックを生じ易いので、できる限り低温で焼鈍することが望ましい。   The hot rolled coil thus manufactured is subjected to spheroidizing annealing of carbide after descaling. Spheroidizing annealing is performed at a temperature below the Ac1 point. As the annealing temperature increases, the spheroidized carbides increase and cracks are likely to occur during processing, so it is desirable to anneal at as low a temperature as possible.

このように、スラブ製造、熱間圧延、パーライト変態温度制御、焼鈍条件を所定の範囲に厳格に制御することによって、初めて均一な組織の鋼板の製造が可能となる。
このようにして製造された鋼板は、必要に応じ調質圧延して製品に供される。
As described above, by strictly controlling the slab manufacturing, hot rolling, pearlite transformation temperature control, and annealing conditions within a predetermined range, it is possible to manufacture a steel sheet having a uniform structure for the first time.
The steel sheet manufactured in this way is subjected to temper rolling as needed and provided to the product.

質量%で、C:0.35%、Si:0.15%、Mn:0.73%、Cr:0.28%、P:0.015%、S:0.003%、Al:0.0025%、N:0.0035%の鋼を転炉で溶製し、連続鋳造でスラブを造った。このスラブを熱延圧下配分、および冷却条件を変えて熱延コイルを製造した。尚、熱延仕上げ温度は780〜880℃に、巻取り温度は470〜670℃の範囲で変化させた。この熱延コイルを酸洗後に650〜710℃で14〜48時間の焼鈍を行い、板厚4.0mmの熱延コイルを製造した。
これらの鋼板からサンプルを採取し、フェライト平均粒径およびフェライト粒径の標準偏差、介在物の形状比、硬さを測定した。同時に穴広げ試験、穴広げ試験後に据え込み試験を行った。
In mass%, C: 0.35%, Si: 0.15%, Mn: 0.73%, Cr: 0.28%, P: 0.015%, S: 0.003%, Al: 0.00. Steel of 0025%, N: 0.0035% was melted in a converter and a slab was made by continuous casting. A hot rolled coil was manufactured by changing the distribution of the slab under hot rolling and changing the cooling conditions. The hot rolling finishing temperature was changed to 780 to 880 ° C., and the winding temperature was changed in the range of 470 to 670 ° C. The hot rolled coil was pickled and then annealed at 650 to 710 ° C. for 14 to 48 hours to produce a hot rolled coil having a thickness of 4.0 mm.
Samples were taken from these steel plates, and the ferrite average grain size, standard deviation of ferrite grain size, inclusion shape ratio, and hardness were measured. At the same time, a hole expansion test and an upsetting test were performed after the hole expansion test.

フェライト粒径は鋼板の圧延方向に平行な断面を研磨し、5%ナイタールで腐食し、JISの方法で結晶粒度番号を測定し、そのフェライト粒度番号から、フェライト粒が球と仮定してフェライト粒径を算出した。フェライト粒径の標準偏差はフェライト粒径を測定した同一観察面の、各々のフェライト粒の見かけの面積を求め、見かけのフェライト粒が円と仮定した直径に4/πをかけ、その標準偏差を求めた。なお、フェライト粒の測定数は800〜1000個の範囲で測定した。介在物の形状比は介在物100個の長辺と短辺を測定し、長辺と短辺の比の平均値を求めた。   The ferrite grain size is obtained by polishing a cross section parallel to the rolling direction of the steel sheet, corroding with 5% nital, measuring the crystal grain size number by the method of JIS, and assuming that the ferrite grain is a sphere from the ferrite grain size number. The diameter was calculated. The standard deviation of the ferrite grain size is obtained by calculating the apparent area of each ferrite grain on the same observation surface where the ferrite grain diameter is measured, and multiplying the standard deviation by 4 / π to the diameter assuming that the apparent ferrite grain is a circle. Asked. The number of ferrite grains measured was in the range of 800 to 1000. For the shape ratio of inclusions, the long side and short side of 100 inclusions were measured, and the average value of the ratio of long side to short side was determined.

穴広げ試験は、150mm角の鋼板の中央部にクリアランス12%にして、10mmφ(do)の穴を打ち抜いた後、その穴部に60度の円錐ポンチで押し上げる方法で行い、穴周囲に板厚を貫通する亀裂が発生した時点の穴径(d)を測定し、次式で定義する穴広げ率λ(%)を求めた。
λ=(d−do)/do×100
The hole expansion test is performed by punching a 10mmφ (do) hole at the center of a 150mm square steel plate with a clearance of 12% and then pushing it up with a 60 ° conical punch. The hole diameter (d) at the time when the cracks penetrating the hole were measured, and the hole expansion ratio λ (%) defined by the following equation was obtained.
λ = (d−do) / do × 100

据え込み試験は100角の中心部にクリアランス12%にして、15mmφの穴を打ち抜き、径が20mmφの平底ポンチで穴径がポンチ径と同一になるまで押し上げた。これを圧縮試験機で穴広げの頭部を圧縮し、高さが50%になった時点で頭部にクラックが生じるかどうかで評価した。クラックが観察されないものを○、クラックが僅かに観察されるものを△、クラックが存在するものを×の評点とした。これらの測定結果を表1に記載した。   In the upsetting test, a hole of 15 mmφ was punched at a clearance of 12% at the center of 100 corners, and the hole diameter was pushed up with a flat bottom punch with a diameter of 20 mmφ until the hole diameter became the same as the punch diameter. The head of the hole expansion was compressed with a compression tester, and it was evaluated whether or not a crack occurred in the head when the height reached 50%. A case where no cracks were observed was rated as ◯, a case where cracks were slightly observed was evaluated as Δ, and a case where cracks were present was rated as ×. These measurement results are shown in Table 1.

Figure 0004276504
Figure 0004276504

表1の No.1〜5はフェライト平均粒径が10μm以下、フェライト粒径の標準偏差が3.0μm以下、介在物の形状比が2.0以下の本発明例である。
鋼 No.6〜9は比較例であり、鋼 No.6,7はフェライト結晶平均粒径が10μm以上で、フェライト粒径の標準偏差も3.0μm以上である。鋼 No.8はフェライト粒平均粒径、介在物の形状比は本発明範囲内であるが、フェライト粒径の標準偏差が3.0μm超で本発明範囲外である。鋼 No.9はフェライト粒径、フェライト粒径の標準偏差は本発明範囲内であるが、介在物の形状比が2.0以上の本発明範囲外である。
Nos. 1 to 5 in Table 1 are examples of the present invention having an average ferrite particle size of 10 μm or less, a standard deviation of ferrite particle size of 3.0 μm or less, and an inclusion shape ratio of 2.0 or less.
Steel Nos. 6 to 9 are comparative examples, and Steel Nos. 6 and 7 have an average ferrite crystal grain size of 10 μm or more and a standard deviation of ferrite grain size of 3.0 μm or more. Steel No. 8 has an average ferrite grain size and inclusion shape ratio within the scope of the present invention, but the standard deviation of the ferrite grain size exceeds 3.0 μm and is outside the scope of the present invention. Steel No. 9 has the ferrite grain size and the standard deviation of the ferrite grain size within the scope of the present invention, but the inclusion shape ratio is outside the scope of the present invention of 2.0 or more.

表1より、本発明例の No.1〜5は穴広げ率が66〜78%と、優れた伸びフランジ性と穴広げ後の据え込み加工性も良好であることが分かる。
これに対して、フェライト粒平均粒径とフェライト粒径の標準偏差が本発明範囲外の鋼 No.6,7は、硬さが低く軟質であるにも関わらず、穴広げ率が低く、しかも据え込み加工後にクラックが観察され、伸びフランジ性が本発明範囲内の実施例より劣ることが分かる。
鋼 No.8はフェライト粒径の標準偏差が本発明範囲外の比較例であるが、やはり伸びフランジ性が劣ることが分かる。鋼 No.9はフェライト粒の平均粒径とその標準偏差は本発明範囲内であるが、介在物形状比が本発明範囲外の比較例である。この鋼も伸びフランジ性が劣ることが分かる。
From Table 1, it can be seen that Nos. 1 to 5 of the examples of the present invention have a hole expansion ratio of 66 to 78%, excellent stretch flangeability and upsetting workability after hole expansion.
On the other hand, steel Nos. 6 and 7, whose standard deviation between the ferrite grain average grain size and the ferrite grain size is outside the scope of the present invention, have a low hole expansion rate despite being low in hardness and soft. Cracks are observed after upsetting and it can be seen that stretch flangeability is inferior to the examples within the scope of the present invention.
Steel No. 8 is a comparative example in which the standard deviation of the ferrite grain size is outside the scope of the present invention, but it can be seen that the stretch flangeability is also inferior. Steel No. 9 is a comparative example in which the average grain size and standard deviation of ferrite grains are within the scope of the present invention, but the inclusion shape ratio is outside the scope of the present invention. It can be seen that this steel also has poor stretch flangeability.

本発明の鋼板を製造する方法は種々あるが、一例として、鋼 No.4の製造条件について述べる。
この鋼は、連続鋳造時に凝固速度を通常の鋳造条件に比し1.5倍に早めて鋳造し、スラブを造った。このスラブを6スタンドの熱間圧延機で熱間圧延を行うに際し、仕上げ圧延機列の前半2スタンドを1000℃以上の温度で圧延し、2スタンド〜4スタンドのそれぞれのスタンド間で冷却して850℃とし、後半の圧延機列の各スタンドの圧延歪が等しくなる圧下率で潤滑し、仕上げ温度:830℃で行なった。
Although there are various methods for producing the steel sheet of the present invention, the production conditions for steel No. 4 will be described as an example.
This steel was cast at a solidification rate 1.5 times faster than the normal casting conditions during continuous casting to produce a slab. When this slab is hot-rolled by a six-stand hot rolling mill, the first two stands of the finishing rolling stock are rolled at a temperature of 1000 ° C. or more and cooled between each of the two to four stands. The temperature was 850 ° C., lubrication was performed at a reduction rate at which the rolling strain of each stand in the latter half of the rolling mill row was equal, and the finishing temperature was 830 ° C.

仕上げ熱延後に、直ちに上下面の冷却速度が等しく、フェライト変態を生じさせないような冷却速度になるような水量密度で600℃まで冷却し、その後、パーライト変態する温度範囲が20℃以内に入るように水量を制御して冷却し、540℃で巻取り熱延コイルとした。このコイルを酸洗後に、660℃×14時間の焼鈍を行って製造した。
このように鋼組成だけでなく、連続鋳造条件の制御、熱延条件の制御、熱延後の冷却の制御によって、初めて本発明の鋼板の製造が可能となる。
Immediately after finishing hot rolling, the cooling rate of the upper and lower surfaces is equal and the cooling rate is such that the cooling rate does not cause ferrite transformation. Cooling to 600 ° C is performed, and then the pearlite transformation temperature range is within 20 ° C. The amount of water was controlled and cooled, and a hot rolled coil was wound at 540 ° C. The coil was manufactured by pickling and annealing at 660 ° C. for 14 hours.
Thus, not only the steel composition but also the control of continuous casting conditions, the control of hot rolling conditions, and the control of cooling after hot rolling enable the production of the steel sheet of the present invention for the first time.

質量%で、C:0.35%、Si:0.20%、Mn:0.55%、S:0.003%、P:0.012%、Al:0.022%、Ti:0.024%,B:0.0012%、N:0.0045%の鋼を転炉で溶製し、連続鋳造でスラブを造った。このスラブを1250℃に加熱後、熱延圧下配分、および冷却条件を変えて熱延コイルを製造した。尚、熱延仕上げ温度は790〜880℃に、巻取り温度は485〜670℃の範囲で変化させた。この熱延コイルを酸洗後に650〜710℃で16〜48時間の焼鈍を行い、板厚4.0mmの熱延コイルを製造した。
これらの鋼板からサンプルを採取し、フェライト平均粒径およびフェライト粒径の標準偏差、介在物の形状比、表面硬さを測定した。同鋼板の穴広げ試験、穴広げ試験後に据え込み試験を行った。試験方法等は実施例1と同じである。測定結果を表2に示した。
In mass%, C: 0.35%, Si: 0.20%, Mn: 0.55%, S: 0.003%, P: 0.012%, Al: 0.022%, Ti: 0.00. Steel of 024%, B: 0.0012%, N: 0.0045% was melted in a converter and a slab was made by continuous casting. The slab was heated to 1250 ° C., and hot rolled coils were manufactured by changing the distribution under hot rolling and changing the cooling conditions. The hot rolling finishing temperature was changed to 790 to 880 ° C, and the coiling temperature was changed in the range of 485 to 670 ° C. This hot rolled coil was pickled and then annealed at 650 to 710 ° C. for 16 to 48 hours to produce a hot rolled coil having a plate thickness of 4.0 mm.
Samples were collected from these steel plates, and the ferrite average grain size, standard deviation of ferrite grain size, inclusion shape ratio, and surface hardness were measured. The upsetting test was performed after the hole expansion test and the hole expansion test of the steel sheet. The test method and the like are the same as in Example 1. The measurement results are shown in Table 2.

Figure 0004276504
Figure 0004276504

鋼 No.10〜11はフェライト粒平均粒径、フェライト粒径の標準偏差、介在物の形状比共に本発明範囲内のB添加したS35Cの実施例である。本発明範囲内のものは高い穴広げ率、据え込み試験で割れが観繁されず、いずれも優れた伸びフランジ性を有することが分かる。   Steel Nos. 10 to 11 are examples of S35C in which B is added within the scope of the present invention in terms of average ferrite grain size, standard deviation of ferrite grain size, and inclusion shape ratio. Those within the scope of the present invention have a high hole expansion ratio, no cracks are observed in the upsetting test, and all have excellent stretch flangeability.

鋼 No.13はフェライト粒平均粒径とフェライト粒の標準偏差が本発明範囲外の比較例である。この鋼板は穴広げ率が本発明範囲内の実施例の鋼より悪く、しかも据え込み試験で割れが生じた。
鋼 No.14は、フェライト平均粒径は本発明範囲内であるが、フェライト粒径のバラツキが大きい比較例である。フェライト粒径にバラツキが大きいと穴広げ率が本発明の実施例に比較して低く、優れた伸びフランジ性を得られないことが分かる。
Steel No. 13 is a comparative example in which the average grain size of ferrite grains and the standard deviation of ferrite grains are outside the scope of the present invention. This steel sheet had a hole expansion rate worse than that of the steel of the examples within the scope of the present invention, and cracks occurred in the upsetting test.
Steel No. 14 is a comparative example in which the average grain size of ferrite is within the range of the present invention, but the variation in ferrite grain size is large. It can be seen that when the variation in the ferrite grain size is large, the hole expansion ratio is lower than that of the example of the present invention, and excellent stretch flangeability cannot be obtained.

C:0.50%、Si:0.20%、Mn:0.78%、S:0.003%、P:0.015%、Cr:0.12%、Al:0.025%、N:0.0043%の鋼を転炉で溶製し、連続鋳造でスラブを造った。このスラブを熱延圧下配分および冷却条件を変えて熱延コイルを製造した。熱延条件のうち、熱延仕上げ温度は770〜880℃に、巻取り温度は505〜670℃の範囲で変化した。この熱延コイルを酸洗後に650〜710℃で16〜48時間の焼鈍を行い、板厚2.8mmの熱延コイルを製造した。
これらの鋼板からサンプルを採取し、フェライト平均粒径およびフェライト粒径の標準偏差、介在物の形状比、表面硬さを測定した。同時に穴広げ試験および穴広げ試験後に据え込み試験を行った。これらの試験方法は実施例1と同じである。表3に測定結果を示した。
C: 0.50%, Si: 0.20%, Mn: 0.78%, S: 0.003%, P: 0.015%, Cr: 0.12%, Al: 0.025%, N : 0.0043% steel was melted in a converter and a slab was made by continuous casting. A hot rolled coil was manufactured by changing the distribution under the hot rolling and cooling conditions of this slab. Among the hot rolling conditions, the hot rolling finishing temperature was changed to 770 to 880 ° C, and the winding temperature was changed in the range of 505 to 670 ° C. The hot rolled coil was pickled and then annealed at 650 to 710 ° C. for 16 to 48 hours to produce a hot rolled coil having a thickness of 2.8 mm.
Samples were collected from these steel plates, and the ferrite average grain size, standard deviation of ferrite grain size, inclusion shape ratio, and surface hardness were measured. At the same time, the upsetting test was conducted after the hole expansion test and the hole expansion test. These test methods are the same as in Example 1. Table 3 shows the measurement results.

Figure 0004276504
Figure 0004276504

鋼 No.15,16はフェライト粒平均粒径、フェライト粒径の標準偏差、介在物の形状比共に本発明範囲内のS50Cクラスの実施例である。本発明範囲内のものは高い穴広げ率、据え込み試験で割れが観察されず、S50C相当の鋼でも優れた伸びフランジ性を有することが分かる。   Steel Nos. 15 and 16 are examples of the S50C class within the scope of the present invention in terms of average ferrite grain size, standard deviation of ferrite grain size, and inclusion shape ratio. Those within the scope of the present invention have a high hole expansion ratio, no cracks are observed in the upsetting test, and it can be seen that even steel equivalent to S50C has excellent stretch flangeability.

鋼 No.17は、フェライト粒の平均粒径とフェライト粒径の標準偏差が本発明範囲外の比較例である。穴広げ率が本発明範囲内の実施例に比較して、穴広げ率が劣り、据え込み試験で割れが観察され、伸びフランジ性が劣ることが分かる。
鋼 No.18は、フェライト粒の平均粒径は本発明範囲内であるが、フェライト粒径のバラツキが大きい比較例である。やはり伸びフランジ性が劣ることが分かる。
Steel No. 17 is a comparative example in which the average grain size of ferrite grains and the standard deviation of the ferrite grain size are outside the scope of the present invention. It can be seen that the hole expansion rate is inferior compared to the examples within the scope of the present invention, the cracking is observed in the upsetting test, and the stretch flangeability is inferior.
Steel No. 18 is a comparative example in which the average grain size of ferrite grains is within the range of the present invention, but the variation in ferrite grain size is large. It can be seen that the stretch flangeability is poor.

以上の実施例で詳細に説明したように、フェライト粒の平均粒径と標準偏差、介在物の形状比を共に特定することで、優れた伸びフランジ性を有する高炭素熱延鋼板が得られることが分かる。上記要因のうち、いずれか一つでも本発明範囲から外れると、伸びフランジ性の良好加高炭素熱延鋼板が得られないことが分かる。   As described in detail in the above examples, by specifying both the average grain size and standard deviation of ferrite grains and the shape ratio of inclusions, a high carbon hot rolled steel sheet having excellent stretch flangeability can be obtained. I understand. It can be seen that if any one of the above factors falls outside the scope of the present invention, a high-carbon hot-rolled steel sheet having good stretch flangeability cannot be obtained.

表4に示す組成の鋼を熱間圧延で4.0mm厚の熱延鋼板とし、680℃で24時間保定の焼鈍を行い、フェライト平均結晶粒径、フェライト結晶粒径の標準偏差、介在物形状比を測定した。鋼板を880℃×50分の加熱後に60℃の油中に焼き入れ、各々の鋼種による硬さを得る条件で焼き戻し、JIS4号衝撃試験片を作り、20℃で衝撃試験を行った。また、高周波焼入れ性を調査するため、高周波で900℃×3秒加熱後に水冷し、硬度を測定した。これらの値を表5に記した。   Steel with the composition shown in Table 4 is hot rolled into a hot rolled steel sheet having a thickness of 4.0 mm, annealed at 680 ° C. for 24 hours, ferrite average crystal grain size, standard deviation of ferrite crystal grain size, inclusion shape The ratio was measured. The steel plate was 880 ° C. × 50 minutes heated and then quenched in oil at 60 ° C., and tempered under conditions to obtain hardness according to each steel type, JIS No. 4 impact test pieces were made, and the impact test was conducted at 20 ° C. Further, in order to investigate the induction hardenability, the sample was heated at 900 ° C. for 3 seconds at high frequency, then cooled with water, and the hardness was measured. These values are shown in Table 5.

Figure 0004276504
Figure 0004276504

Figure 0004276504
Figure 0004276504

表4,5から分かるように、本発明の要件を満足する鋼板は、焼き入れ・焼き戻し後の衝撃値が比較材より優れている。また、高周波焼入れ後の硬さも本発明の実施例が比較例より高く、高周波焼入れ性も優れていることが分かる。   As can be seen from Tables 4 and 5, the steel sheet that satisfies the requirements of the present invention has an impact value after quenching and tempering superior to that of the comparative material. In addition, it can be seen that the hardness after induction hardening is higher in the examples of the present invention than in the comparative examples and is excellent in induction hardenability.

フェライト粒の平均粒径と穴広げ率の関係を示す図。The figure which shows the relationship between the average particle diameter of a ferrite grain, and a hole expansion rate. フェライト粒径の標準偏差と穴広げ率の関係を示す図。The figure which shows the relationship between the standard deviation of a ferrite particle size, and a hole expansion rate.

Claims (2)

質量%で、
C :0.20〜0.60%、
Si:0.5%以下、
Mn:2.0%以下、
P :0.03%以下、
Al:0.08%以下、
N :0.01%以下、
Cr:0.08〜0.75%
S :0.005%以下
残部Feおよび不可避的不純物の組成で、フェライト平均粒径が1〜10μmフェライト粒径の標準偏差が3.0μm以下、介在物の形状比が2.0以下であることを特徴とする伸びフランジ性の優れた高炭素熱延鋼板。
% By mass
C: 0.20-0.60%,
Si: 0.5% or less,
Mn: 2.0% or less,
P: 0.03% or less,
Al: 0.08% or less,
N: 0.01% or less,
Cr: 0.08~ 0.75%,
S: 0.005% or less ,
Stretch flange characterized by the composition of the balance Fe and unavoidable impurities , ferrite average particle diameter of 1 to 10 μm , standard deviation of ferrite particle diameter of 3.0 μm or less, and inclusion shape ratio of 2.0 or less High carbon hot rolled steel sheet with excellent properties.
質量%で、
C :0.20〜0.60%、
Si:0.5%以下、
Mn:2.0%以下、
P :0.03%以下、
Al:0.08%以下、
N :0.01%以下、
Cr:0.75%以下、
S :0.005%以下、
Ti:0.010〜0.050%、
B :0.0003〜0.0050%
残部Feおよび不可避的不純物の組成で、フェライト平均粒径が1〜10μmフェライト粒径の標準偏差が3.0μm以下、介在物の形状比が2.0以下であることを特徴とする伸びフランジ性の優れた高炭素熱延鋼板。
% By mass
C: 0.20-0.60%,
Si: 0.5% or less,
Mn: 2.0% or less,
P: 0.03% or less,
Al: 0.08% or less,
N: 0.01% or less,
Cr: 0.75% or less,
S: 0.005% or less,
Ti: 0.010 to 0.050%,
B: 0.0003 to 0.0050% ,
Stretch flange characterized by the composition of the balance Fe and unavoidable impurities , ferrite average particle diameter of 1 to 10 μm , standard deviation of ferrite particle diameter of 3.0 μm or less, and inclusion shape ratio of 2.0 or less High carbon hot rolled steel sheet with excellent properties.
JP2003333611A 2003-09-25 2003-09-25 High carbon hot-rolled steel sheet with excellent stretch flangeability Expired - Fee Related JP4276504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333611A JP4276504B2 (en) 2003-09-25 2003-09-25 High carbon hot-rolled steel sheet with excellent stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333611A JP4276504B2 (en) 2003-09-25 2003-09-25 High carbon hot-rolled steel sheet with excellent stretch flangeability

Publications (2)

Publication Number Publication Date
JP2005097681A JP2005097681A (en) 2005-04-14
JP4276504B2 true JP4276504B2 (en) 2009-06-10

Family

ID=34461570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333611A Expired - Fee Related JP4276504B2 (en) 2003-09-25 2003-09-25 High carbon hot-rolled steel sheet with excellent stretch flangeability

Country Status (1)

Country Link
JP (1) JP4276504B2 (en)

Also Published As

Publication number Publication date
JP2005097681A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US7879163B2 (en) Method for manufacturing a high carbon hot-rolled steel sheet
JP6160783B2 (en) Steel sheet and manufacturing method thereof
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
WO2016204288A1 (en) Steel sheet and manufacturing method
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
US8052812B2 (en) Method of manufacturing high carbon cold-rolled steel sheet
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP2007119883A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in workability, and high-carbon cold-rolled steel sheet
JP2006063394A (en) High-carbon hot-rolled steel plate and method for manufacturing the same
JP4319948B2 (en) High carbon cold-rolled steel sheet with excellent stretch flangeability
JP2016216809A (en) Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor
JP4412094B2 (en) High carbon cold-rolled steel sheet and method for producing the same
JP6575733B1 (en) High carbon cold-rolled steel sheet and method for producing the same
JP4276504B2 (en) High carbon hot-rolled steel sheet with excellent stretch flangeability
JP4280202B2 (en) High carbon steel plate with excellent hardenability and stretch flangeability
JP2005133200A (en) High carbon cold rolled steel sheet, and method of manufacturing the same
JP4023225B2 (en) Hot-rolled steel sheet for rotating ironing process, method for producing the same, and automotive part
JP4331646B2 (en) Rolled steel bar and manufacturing method thereof
JP2004100038A (en) Low alloy steel material having spheroidized structure in as hot rolled state, and its manufacturing method
JP4319945B2 (en) High carbon steel plate with excellent hardenability and workability
JP7239072B1 (en) High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet
WO2020203445A1 (en) Medium-carbon steel sheet and method for manufacturing same
JP7355994B2 (en) High carbon steel plate and its manufacturing method
JP2018070963A (en) Bearing component and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees