JPS63144849A - Method for controlling performance of unidirectionally solidified material - Google Patents

Method for controlling performance of unidirectionally solidified material

Info

Publication number
JPS63144849A
JPS63144849A JP29320086A JP29320086A JPS63144849A JP S63144849 A JPS63144849 A JP S63144849A JP 29320086 A JP29320086 A JP 29320086A JP 29320086 A JP29320086 A JP 29320086A JP S63144849 A JPS63144849 A JP S63144849A
Authority
JP
Japan
Prior art keywords
casting
ingot
tensile strength
unidirectionally solidified
solidified material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29320086A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
明 山崎
Kosaku Nakano
中野 耕作
Toshihito Komata
小又 利仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29320086A priority Critical patent/JPS63144849A/en
Publication of JPS63144849A publication Critical patent/JPS63144849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a cable stock which is free from dispersion in transmission characteristic from a unidirectionally solidified material to be cast by a unidirectional solidification method by controlling the tensile strength electrical coductivity of the unidirectionally solidified material by the solidifying speed at the time of casting. CONSTITUTION:A unidirectionally solidified ingot of oxygenfree copper is produced by, for example, a continuous casting method using a heated casting mold. Molten copper 4 in a casting furnace 3 is admitted into the casting mold 2 provided with a heating element 1 and the drawn-out ingot 6 is cooled with the water gushed from coolers 5 by which the molten metal 4 in contact with the ingot 6 is solidified in the casting mold 2. The solidified ingot is drawn by pinch rolls 7. The tensile strength and electrical coductivity of the ingot 6 having the unidirectionally solidified structure are controlled by the solidifying speed at the time casting. The tensile strength and electrical coductivity of the ingot 6 worked after the casting are controlled by the solidifying speed at the time of casting and the reduction ratio at the time of working. The cable stock having the excellent transmission characteristics is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一方向凝固法で鋳造するか又は鋳造後に加工を
施す単結晶材を始め一方向凝固材の性能制御法に関し、
特に一方向凝固材の引張強さと導電率の制御を可能にし
たものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling the performance of unidirectionally solidified materials, including single crystal materials cast by a unidirectional solidification method or processed after casting.
In particular, it has made it possible to control the tensile strength and electrical conductivity of unidirectionally solidified materials.

〔従来の技術〕[Conventional technology]

単結晶材を始め一方向凝固材、例えば一方向凝固組織の
無酸素銅鋳塊は、結晶粒を鋳造方向に成長させたもので
、鋳造金属の融点以上に加熱した加熱鋳型を用いる連続
鋳造法、チョコラルスキー法を応用した無私型回転鋳造
法、ブリッジマン法等により造られている。このような
鋳造法で造られた鋳塊は、その後冷間加工のみで細線化
して用いられ、加工の際の加工歪が細線内に残留するも
、素材である鋳塊の一方向凝固組織が有効に作用し、特
にオーディオ機器や映像機の信号伝送ケーブル(以下単
にケーブルと略記)として従来材にない優れた特性を示
す。
Single-crystal materials and unidirectionally solidified materials, such as oxygen-free copper ingots with a unidirectionally solidified structure, have crystal grains grown in the casting direction, and are cast using a continuous casting method that uses a heated mold heated above the melting point of the cast metal. , selfless rotary casting using the Czochralski method, Bridgman method, etc. The ingots made by this casting method are then used after being made into fine wires by only cold working, and although the processing strain during processing remains in the fine wires, the unidirectional solidification structure of the ingot, which is the raw material, is It works effectively and exhibits excellent properties not found in conventional materials, especially as signal transmission cables for audio equipment and video equipment (hereinafter simply referred to as cables).

またケーブルとする細線の内部の残留加工歪量を少なく
すること又は加工歪のないケーブルとすることにより一
層たれた伝送特性をもつケーブルとすることができる。
Furthermore, by reducing the amount of residual processing strain inside the thin wire used as the cable, or by making the cable free from processing distortion, it is possible to obtain a cable with even more sagging transmission characteristics.

即ち、加工歪を少量とするために、従来ケーブルの断面
積より僅かに大きい断面積の鋳塊を鋳造し、僅かな加工
を加えてケーブルとするか、又は加工歪の生ずる伸線加
工等を全く加えずに鋳塊のままケーブルとすることかで
きる。例えば従来のケーブルと同等の断面積をもつ小径
鋳塊を製造し、これをそのまま単線又は複数本撚り合せ
てケーブルとすることもできる。
In other words, in order to minimize processing strain, an ingot with a cross-sectional area slightly larger than that of conventional cables is cast, and a cable is made with slight processing, or wire drawing, etc., which causes processing distortion, is cast. It is possible to use the ingot as a cable without adding it at all. For example, a small-diameter ingot having the same cross-sectional area as a conventional cable may be manufactured, and a single wire or a plurality of wires may be twisted together to form a cable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

伸線加工等を全く施さない小径鋳塊や僅かに加工歪を与
えたケーブルは、従来のケーブルと比較して優れた伝送
特性を有するも、次のような問題があった。
Small-diameter ingots that are not subjected to wire drawing or the like and cables that have been slightly strained have superior transmission characteristics compared to conventional cables, but they have the following problems.

連続鋳造で得られた長尺小径鋳塊に加工歪を与えること
なく、鋳塊のままでケーブル化する場合、及び小径鋳塊
に僅かな加工歪を与えてケーブルとする場合小径鋳塊の
製造ロット間に引張強ざ(Ng/i)や導電率(%IA
C3)に差を生じ、これがケーブルの伝送特性にバラツ
キを生じる欠点がある。
Production of small-diameter ingots: when making a long small-diameter ingot obtained by continuous casting into a cable without applying processing strain, and when making a cable by applying a slight processing strain to a small-diameter ingot Tensile strength (Ng/i) and conductivity (%IA) between lots
C3), which has the disadvantage of causing variations in the transmission characteristics of the cable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、鋳造条件の変化、
特に鋳造速度の変化によって単位時間当りの抽出熱φが
変化し、これに起因して発生する溶湯凝固部近傍の鋳塊
の熱応力が不均一となり、その結果鋳塊内部に熱歪が生
じ、この熱歪の大小によって引張強さや導電率に差が生
ずることを知見し、更に検討の結果ケーブルの伝送特性
の安定化を計り、かつ種々の伝送特性のケーブルを容易
に製造可能とする一方向凝固材の性能制御法を開発した
ものである。
In view of this, as a result of various studies, the present invention was developed based on changes in casting conditions,
In particular, the extracted heat φ per unit time changes due to changes in casting speed, and this causes uneven thermal stress in the ingot near the molten metal solidification zone, resulting in thermal strain inside the ingot. We discovered that there are differences in tensile strength and electrical conductivity depending on the magnitude of this thermal strain, and as a result of further investigation, we found a way to stabilize the transmission characteristics of cables and to easily manufacture cables with various transmission characteristics. This method has been developed to control the performance of solidified materials.

即ち本発明制御法の一つは、一方向凝固法で鋳造する一
方向凝固材において、鋳造時の凝固速度によって一方向
凝固材の引張強さと導電率を制御することを特徴とする
ものである。
That is, one of the control methods of the present invention is characterized by controlling the tensile strength and electrical conductivity of the directionally solidified material cast by the unidirectional solidification method by the solidification rate during casting. .

また本発明制御法の他の一つは、一方向凝固法で鋳造俊
、鋳塊を加工する一方向凝固材において、鋳造時の凝固
速度と加工時の加工率により一方向凝固材の引張強さと
導電率を制御することを特徴とするものである。
Another control method of the present invention is that the tensile strength of the unidirectionally solidified material is determined by the solidification rate during casting and the processing rate during processing in the unidirectionally solidified material that is cast using the unidirectional solidification method and processed into an ingot. It is characterized by controlling the electrical conductivity.

〔作 用〕[For production]

単結晶を始め一方向凝固鋳塊の長尺材は、加熱鋳型を用
いる連続鋳造法、チョコラルスキー法を応用した無鋳型
回転鋳造法、ブリッジマン法等により造られる。この鋳
造条件、特に鋳造速度を一定に制御して鋳造することに
より、鋳塊内部の熱歪を均一化し、鋳塊の性能(引張強
ざ及び導電率)を安定化することができる。また鋳造速
度を変えることにより鋳塊内部の熱歪を異にする異なる
性能の鋳1鬼を1qることができる。更に上記鋳塊の加
工において、ぞの加工率を制御することにより、一方向
凝固材としてその特性(引張強ざ及び導電率)を再度制
御することができる。
Long materials of directionally solidified ingots, including single crystals, are produced by continuous casting using a heated mold, moldless rotary casting using the Czochralski method, Bridgman method, and the like. By controlling the casting conditions, particularly the casting speed, to a constant value, the thermal strain inside the ingot can be made uniform, and the performance (tensile strength and electrical conductivity) of the ingot can be stabilized. In addition, by changing the casting speed, it is possible to create castings with different performance by varying the thermal strain inside the ingot. Furthermore, by controlling the processing rate in processing the ingot, its properties (tensile strength and electrical conductivity) as a unidirectionally solidified material can be controlled again.

実施例1 加熱鋳型を用いる鋳造法により直径1.5mの無酸素銅
の一方向凝固鋳塊を製造した。即ら第1図に示すように
周囲に発熱体(1)を設()た内径1.5mm、外径3
0.のS i C製鋳型(2)を、鋳造炉(3)の側壁
の溶湯(4)の湯面下に取付け、鋳型(2)の出口付近
に冷却装置(5)を設置した。
Example 1 A unidirectionally solidified ingot of oxygen-free copper having a diameter of 1.5 m was produced by a casting method using a heated mold. That is, as shown in Fig. 1, a heating element (1) is installed around the inner diameter of 1.5 mm and outer diameter of 3 mm.
0. A SiC mold (2) was attached to the side wall of the casting furnace (3) below the surface of the molten metal (4), and a cooling device (5) was installed near the outlet of the mold (2).

このようにして鋳型(2)の内面温度を1200’Cに
加熱し、鋳造炉(3)に図示せぬ溶解炉より酸素量3 
ppmの銅溶湯(4)を供給し、鋳型(2)内に銅溶湯
(4)を流入せしめる。一方鋳型(2)の出口部では引
き出された鋳塊(6)を冷却装置(5)より噴出する水
で冷却し、鋳型(2)内で鋳塊(6)と接する銅溶湯(
4)を凝固させる。鋳塊(6)はピンチロール(7)に
より引き出される。
In this way, the inner temperature of the mold (2) is heated to 1200'C, and the amount of oxygen is 3
ppm of molten copper (4) is supplied, and the molten copper (4) is caused to flow into the mold (2). On the other hand, at the outlet of the mold (2), the drawn ingot (6) is cooled by water spouted from the cooling device (5), and the molten copper (
4) Solidify. The ingot (6) is pulled out by pinch rolls (7).

このようにして鋳造速度を冷却装置から噴出する水量を
増加すると共にピンチロールの回転数を段階的に100
 an/minから520 s/minまで変化させ、
直径1.5mの一方向凝固組織の無酸素銅鋳塊を得た。
In this way, the casting speed is increased by increasing the amount of water jetted from the cooling device, and the number of rotations of the pinch rolls is gradually increased to 100.
Varying from an/min to 520 s/min,
An oxygen-free copper ingot with a unidirectional solidification structure and a diameter of 1.5 m was obtained.

各鋳造速度で得られた鋳塊の横断面における結晶粒の数
は1〜2個であった。
The number of crystal grains in the cross section of the ingot obtained at each casting speed was 1 to 2.

次にチョコラルスキー法を応用した無鋳型回転鋳造法に
より直径1,5履の無酸素銅の一方向凝固鋳塊を製造し
た。即ち第2図に示すように酸素131)I)mの銅溶
湯(4)を保持した鋳造炉(3)の炉詰(8)に穴を設
け、該穴より冷却装置(5)を下降させて湯面直上にセ
ットし、上方より無酸素銅棒(9)を冷却装置(5)の
中心部に位置するように挿入し、湯面に接触させる。そ
の状態で冷却装置(5)からN2ガスを吹き付けて銅棒
(9)を冷却させながら、炉蓋(8)上方の回転式エア
ーチャック(10)により引上げて一方向凝固鋳塊(6
)を得た。面図において(11)は断熱材を示す。
Next, a unidirectionally solidified ingot of oxygen-free copper having a diameter of 1.5 mm was produced by a moldless rotary casting method applying the Czochralski method. That is, as shown in Fig. 2, a hole is made in the furnace plug (8) of the casting furnace (3) holding the molten copper (4) containing 131)I)m of oxygen, and the cooling device (5) is lowered through the hole. The oxygen-free copper rod (9) is inserted from above so as to be located in the center of the cooling device (5), and brought into contact with the hot water surface. In this state, while cooling the copper rod (9) by blowing N2 gas from the cooling device (5), it is pulled up by the rotary air chuck (10) above the furnace lid (8) and unidirectionally solidified ingot (6
) was obtained. In the top view, (11) indicates a heat insulating material.

このようにして鋳造速度、即ち回転式エアーチt’ツク
の引き上げ速度を50酬/minから170酬/min
まで段階的に変化させ、直径1.5mの一方向凝固組織
の無酸素銅鋳塊を得た。各鋳造速度で1ソられた鋳塊の
横断面における結晶粒の数は1〜2gであった。
In this way, the casting speed, that is, the pulling speed of the rotary air arch, was increased from 50 turns/min to 170 turns/min.
The oxygen-free copper ingot with a unidirectional solidification structure and a diameter of 1.5 m was obtained. The number of crystal grains in the cross section of the ingot cast at each casting speed was 1 to 2 g.

上記の両鋳造法で得られた直径1.5 mmの鋳塊の引
張強さと導電率を測定し、鋳造速度との関係を第3図及
び第4図に示す。第3図は鋳造速度と引張強ざの関係を
、第4図は鋳造速度と導電率の関係を示すもので、両図
から明らかなように鋳造速度が低速側から高速側へと移
行するに従い引張強ざ(Ky/i)は増大し、導電率(
%IAC3)は減少することが判る。
The tensile strength and electrical conductivity of ingots with a diameter of 1.5 mm obtained by both of the above casting methods were measured, and the relationship with casting speed is shown in FIGS. 3 and 4. Figure 3 shows the relationship between casting speed and tensile strength, and Figure 4 shows the relationship between casting speed and electrical conductivity.As is clear from both figures, as the casting speed shifts from low to high speed, The tensile strength (Ky/i) increases and the electrical conductivity (
%IAC3) is found to decrease.

また各鋳造速度で得た鋳塊を100 mの長さに切断し
、可聴周波数を含む広範囲の減衰♀を測定し、鋳造速度
と減衰量の関係を第5図に示す。
Furthermore, the ingots obtained at each casting speed were cut into 100 m lengths, and the attenuation was measured over a wide range including audio frequencies. The relationship between the casting speed and the amount of attenuation is shown in Figure 5.

図から明らかなように低速鋳造材は減衰量が小さく安定
しており、鋳造速度が低速側から高速側へと移行するに
従い減衰量が増大することが判る。
As is clear from the figure, the attenuation amount of the low-speed cast material is small and stable, and as the casting speed shifts from the low speed side to the high speed side, the attenuation amount increases.

以上の実験結果から鋳造速度と引張強さ、導電率及び減
衰♀の関係が定量的に把握される。
From the above experimental results, the relationship between casting speed, tensile strength, electrical conductivity, and attenuation ♀ can be quantitatively understood.

これに基いて周波数の減衰量が少なく、かつ安定してい
る低速鋳造領域で、引張強ざの目標値12KI/mr4
、導電率の目標値100.9%lAC3,50h++z
における減衰量の目標値0.0055dBの鋳塊を得る
ため、加熱鋳型を用いた連続鋳造設備を用い、200 
m/minの鋳造速度で100時間にわたる鋳造を行な
い、長さ1200m、直径1.5mの無酸素銅鋳塊を製
造した。これについて引張試験片。
Based on this, the target value of tensile strength is 12KI/mr4 in the low speed casting region where frequency attenuation is small and stable.
, target value of conductivity 100.9%lAC3,50h++z
In order to obtain an ingot with a target value of attenuation of 0.0055 dB, continuous casting equipment using a heating mold was used to
Casting was carried out for 100 hours at a casting speed of m/min to produce an oxygen-free copper ingot with a length of 1200 m and a diameter of 1.5 m. About this tensile test piece.

導電率用試験片及び減衰量測定用試験片を交互に採取し
、測定を行なった。その結果引張強ざは11.8〜12
.3Kg/m、導電率は100.8〜101.1%lA
C3,減哀量は0.0052〜o、 0057dBの範
囲にあり、第3図乃至第5図の結果と良く一致すること
が判る。
Test pieces for conductivity and test pieces for attenuation measurement were taken alternately and measured. As a result, the tensile strength was 11.8 to 12
.. 3Kg/m, conductivity 100.8-101.1%lA
It can be seen that the amount of reduction in C3 is in the range of 0.0052 to 0.0057 dB, which agrees well with the results shown in FIGS. 3 to 5.

また無鋳型回転鋳造設備を用い、100m/minの鋳
造速度で同様な長時間鋳造を行ない、これについて同様
な測定を行なったが、その結果は第3図乃至第5図に示
した結果と良く一致した。
In addition, using a moldless rotary casting equipment, similar long-time casting was carried out at a casting speed of 100 m/min, and similar measurements were carried out, but the results were similar to those shown in Figures 3 to 5. Agreed.

尚本実施例では直径1.5mmの小径鋳塊について述べ
たが、円形断面を有する鋳塊のみならず条や板材につい
ても適用できる。
In this embodiment, a small-diameter ingot with a diameter of 1.5 mm has been described, but the present invention can be applied not only to ingots having a circular cross section but also to strips and plates.

実施例2 加熱鋳型を用いた連続鋳造設備と無鋳型回転鋳造設備を
用い、鋳造速度100 #/min、 200 mm/
min及び400 #/minで実施例1と同様にして
直径1.5.の無酸素銅鋳塊を製造し、第1表に示す性
能の鋳塊を得た。
Example 2 Using continuous casting equipment using a heating mold and moldless rotary casting equipment, casting speed was 100 #/min, 200 mm/min.
min and 400 #/min in the same manner as in Example 1, with a diameter of 1.5. Oxygen-free copper ingots were manufactured, and ingots having the performance shown in Table 1 were obtained.

第1表 上記3種の鋳塊を用い、これに5.10.15及び20
%の加工率(断面減少率)で加工を加えた後、引張強さ
、導電率及び長さ100 mmの試料について50kH
2における減衰量を測定した。その結果を第6図乃至第
8図に示す。第6図は加工率と引張強さ、第7図は加工
率と導電率、第8図は加工率と減衰量の関係を示すもの
で図から明らかなように加工率O〜20%の範囲におい
て、加工率が増加するに従って引張強さは増大し、導電
率は減少し、減衰率は増大することが判る。
Table 1 Using the above three types of ingots, 5.10.15 and 20.
% processing rate (area reduction rate), tensile strength, electrical conductivity, and 50kHz for a sample of length 100 mm.
The amount of attenuation in 2 was measured. The results are shown in FIGS. 6 to 8. Figure 6 shows the relationship between working rate and tensile strength, Figure 7 shows the relationship between working rate and electrical conductivity, and Figure 8 shows the relationship between working rate and attenuation.As is clear from the figure, working rate ranges from O to 20%. It can be seen that as the processing rate increases, the tensile strength increases, the electrical conductivity decreases, and the damping rate increases.

即ち鋳造時に性能を制御した鋳塊に加工を加え、その加
工率を制御することにより、ケーブルの特性が制御でき
ることが判る。
That is, it can be seen that the characteristics of the cable can be controlled by processing an ingot whose performance has been controlled during casting and controlling the processing rate.

尚本実施例では鋳塊の直径を1.5Mとし、これに各加
工率を加えて線材としたもので、加工率20%の線材の
直径は約1 、34mである。しかしこれに限るもので
はなく、加工後の直径を一定とするならば、鋳塊の外径
を加工率に合せて太くすればよい。例えば20%の加工
率を加えて線径を1,5履とするならば、鋳塊の直径を
約1.68mとすればよい。
In this example, the diameter of the ingot was 1.5 m, and each processing rate was added to this to form a wire rod, and the diameter of the wire rod with a processing rate of 20% was approximately 1.34 m. However, the invention is not limited to this, and if the diameter after processing is to be constant, the outer diameter of the ingot may be increased in accordance with the processing rate. For example, if the wire diameter is 1.5 mm by adding a processing rate of 20%, the diameter of the ingot should be approximately 1.68 m.

また本実施例では円形断面を有する鋳塊について述べた
が、これに限定するものではなく、条や板材にも適用す
ることができる。
Further, in this embodiment, an ingot having a circular cross section has been described, but the invention is not limited to this, and the present invention can also be applied to strips or plates.

〔発明の効果〕〔Effect of the invention〕

ケーブルの要求特性に応じ少量の材料で測定可能な鋳塊
の引張強さと導電率を、鋳造速度により制御可能とし、
また特性の制御された鋳塊を加工し、その加工率により
更に特性の制御を可能にするもので、高性能のケーブル
製造を容易にする等工業上顕著な効果を奏するものであ
る。
The tensile strength and conductivity of the ingot, which can be measured with a small amount of material according to the required characteristics of the cable, can be controlled by casting speed.
Furthermore, it is possible to process an ingot with controlled characteristics, and to further control the characteristics by changing the processing rate, which has significant industrial effects such as facilitating the production of high-performance cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加熱鋳型を用いる一方向凝固材の連続鋳造法の
一例を示す説明図、第2図は一方向凝固材の無鋳型回転
鋳造法の一例を示す説明図、第3図は鋳造速度と鋳塊の
引張強さとの関係図、第4図は鋳造速度と鋳塊の導電率
との関係図、第5図は鋳造速度と伝送信号減衰量との関
係図、第6図は加工率と加工材の引張強さとの関係図、
第7図は加工率と加工材の導電率との関係図、第8図は
加工率と加工材の伝送信号減衰量との関係図である。 1、発熱体 2、鋳型 3、鋳造炉 4、銅溶湯 5、冷却装置 6、鋳塊 7、ピンチロール 8、炉蓋 9、無酸素銅棒 10、エアチャック 11、断熱材 第1図 第2図 第3図 一洗違胤 (mm/m1n) 第4図 M il t 11   I mm /min )第5
図 M jt 111E  (mm/m1n )第8図 力D 工 圭    (%) 導電率 (IAC5%) 引張り強さ (Kg/mm2)
Figure 1 is an explanatory diagram showing an example of a continuous casting method for directionally solidified material using a heating mold, Figure 2 is an explanatory diagram showing an example of a moldless rotary casting method for directionally solidified material, and Figure 3 is an explanatory diagram showing an example of a moldless rotary casting method for directionally solidified material. Figure 4 is a diagram showing the relationship between casting speed and the ingot's electrical conductivity, Figure 5 is a diagram showing the relationship between casting speed and transmission signal attenuation, and Figure 6 is the working rate. Relationship diagram between and tensile strength of processed material,
FIG. 7 is a diagram showing the relationship between the machining rate and the electrical conductivity of the workpiece, and FIG. 8 is a diagram showing the relationship between the machining rate and the amount of transmission signal attenuation of the workpiece. 1, heating element 2, mold 3, casting furnace 4, molten copper 5, cooling device 6, ingot 7, pinch roll 8, furnace cover 9, oxygen-free copper rod 10, air chuck 11, heat insulating material Fig. 1 Fig. 2 Figure 3 Issai difference (mm/m1n) Figure 4 M il t 11 I mm /min) No. 5
Figure M jt 111E (mm/m1n) 8th figure Force D Engineering Kei (%) Electrical conductivity (IAC5%) Tensile strength (Kg/mm2)

Claims (2)

【特許請求の範囲】[Claims] (1)一方向凝固法で鋳造する一方向凝固材において、
鋳造時の凝固速度によって一方向凝固材の引張強さと導
電率を制御することを特徴とする一方向凝固材の性能制
御法。
(1) In the unidirectionally solidified material cast by the unidirectional solidification method,
A method for controlling the performance of a unidirectionally solidified material, which is characterized by controlling the tensile strength and electrical conductivity of the unidirectionally solidified material by the solidification rate during casting.
(2)一方向凝固法で鋳造後鋳塊を加工する一方向凝固
材において、鋳造時の凝固速度と加工時の加工率により
一方向凝固材の引張強さと導電率を制御することを特徴
とする一方向凝固材の性能制御法。
(2) The tensile strength and electrical conductivity of the directionally solidified material are controlled by the solidification rate during casting and the processing rate during processing in the directionally solidified material in which the ingot is processed after casting using the unidirectional solidification method. Performance control method for unidirectionally solidified materials.
JP29320086A 1986-12-08 1986-12-08 Method for controlling performance of unidirectionally solidified material Pending JPS63144849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29320086A JPS63144849A (en) 1986-12-08 1986-12-08 Method for controlling performance of unidirectionally solidified material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29320086A JPS63144849A (en) 1986-12-08 1986-12-08 Method for controlling performance of unidirectionally solidified material

Publications (1)

Publication Number Publication Date
JPS63144849A true JPS63144849A (en) 1988-06-17

Family

ID=17791716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29320086A Pending JPS63144849A (en) 1986-12-08 1986-12-08 Method for controlling performance of unidirectionally solidified material

Country Status (1)

Country Link
JP (1) JPS63144849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080559A1 (en) * 2012-11-22 2014-05-30 トヨタ自動車株式会社 Hoisting type continuous casting device, hoisting type continuous casting method, and solid interface detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229262A (en) * 1983-06-13 1984-12-22 O C C:Kk Method and device for horizontal type continuous casting of metallic molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229262A (en) * 1983-06-13 1984-12-22 O C C:Kk Method and device for horizontal type continuous casting of metallic molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080559A1 (en) * 2012-11-22 2014-05-30 トヨタ自動車株式会社 Hoisting type continuous casting device, hoisting type continuous casting method, and solid interface detection device
JP2014104467A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Draw-up type continuous casting apparatus, draw-up type continuous casting method and solidification interface detection device
GB2521988A (en) * 2012-11-22 2015-07-08 Toyota Motor Co Ltd Hoisting type continuous casting device, hoisting type continuous casting method, and solid interface detection device
CN104853866A (en) * 2012-11-22 2015-08-19 丰田自动车株式会社 Hoisting type continuous casting device, hoisting type continuous casting method, and solid interface detection device
AU2013349225B2 (en) * 2012-11-22 2016-07-21 Toyota Jidosha Kabushiki Kaisha Hoisting type continuous casting device, hoisting type continuous casting method, and solid interface detection device

Similar Documents

Publication Publication Date Title
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPH051102B2 (en)
CN110494235B (en) Method for continuously casting steel
JPS63144849A (en) Method for controlling performance of unidirectionally solidified material
JPS63195253A (en) Manufacture of phosphor bronze sheet metal
JP5201446B2 (en) Target material and manufacturing method thereof
JPS58217419A (en) Method and device for manufacturing polycrystal silicon rod
JP2004284892A (en) Method of producing polycrystal silicon
JPH0810905A (en) Continuous casting mold for slab
JPS60203339A (en) Electric wire for audio apparatus
JP2507723B2 (en) Copper wire for signal transmission
JP7120319B2 (en) Method for producing thin cast slab
JPS61209758A (en) Continuous casting method for copper or copper alloy
JPH09175808A (en) Precursor of silicon formed body
JPH0413496A (en) Phosphor copper brazing wire and production thereof
JPH05131B2 (en)
JPS58192663A (en) Horizontal and continuous casting method of cast iron
JPS63231802A (en) Signal transmitting conductor
JPH0625400B2 (en) Annealing method for unidirectional texture materials
JPS62292244A (en) Production of ingot
JPS63148501A (en) Signal transmission conductor
JP3887029B2 (en) Quenched metal ribbon with excellent soft magnetic properties and method for producing the same
CN108456930A (en) A kind of polycrystalline silicon ingot casting porous silicon seed and its preparation method and application
JPH0217261B2 (en)
JPS63314710A (en) Signal transmission cable