JPH0217261B2 - - Google Patents

Info

Publication number
JPH0217261B2
JPH0217261B2 JP60031508A JP3150885A JPH0217261B2 JP H0217261 B2 JPH0217261 B2 JP H0217261B2 JP 60031508 A JP60031508 A JP 60031508A JP 3150885 A JP3150885 A JP 3150885A JP H0217261 B2 JPH0217261 B2 JP H0217261B2
Authority
JP
Japan
Prior art keywords
mold
molten metal
casting
solidification
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60031508A
Other languages
Japanese (ja)
Other versions
JPS61193743A (en
Inventor
Masanori Kato
Tsutomu Tominaga
Kanji Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3150885A priority Critical patent/JPS61193743A/en
Publication of JPS61193743A publication Critical patent/JPS61193743A/en
Publication of JPH0217261B2 publication Critical patent/JPH0217261B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は、金属の連続鋳造方法に関する。[Detailed description of the invention] The present invention relates to a continuous metal casting method.

特に一方向凝固が容易に得ることができる方法
に関する。
In particular, it relates to a method by which unidirectional solidification can be easily obtained.

金属の連続鋳造においては、従来方法によれば
樹枝状組織が同方向に成長して得られる柱状晶
が、鋳型側壁より鋳物中央方向に成長し、中央部
に等軸晶が成長する場合が多い。また異物等が鋳
物内部に蓄積され、内部欠陥が多く生じる。
In continuous casting of metals, according to the conventional method, the dendritic structure grows in the same direction, resulting in columnar crystals that grow from the side walls of the mold toward the center of the casting, with equiaxed crystals often growing in the center. . Further, foreign matter and the like accumulate inside the casting, causing many internal defects.

このため塑性加工時に、柱状晶成長方向に圧縮
された場合に、合金によつては、粒界割れを生じ
好ましくない。
For this reason, when compressed in the direction of columnar crystal growth during plastic working, grain boundary cracking may occur depending on the alloy, which is undesirable.

この欠点を解決するために、特公昭55−46265
のように、鋳型を加熱し、鋳型出口部で凝固させ
る装置が提案されているが、その運転においてブ
レークアウトを起こし易く操業上難点があつた。
また鋳型自体を加熱するためヒータを鋳型内に内
蔵させるものであり、好ましい構造及び方法では
なかつた。
In order to solve this drawback,
A device has been proposed that heats the mold and solidifies it at the mold outlet, but it has been difficult to operate because breakouts tend to occur during operation.
Furthermore, a heater is built into the mold to heat the mold itself, which is not a desirable structure or method.

即ち機器内電線等細物の導電用材としてのロツ
ド等を製造する際に要求される材質の項目である 1 異物、ピンホール等内部欠陥の少ないこと。
In other words, the material requirements are as follows when manufacturing rods and the like as conductive materials for thin objects such as electric wires in equipment: 1. Few internal defects such as foreign objects and pinholes.

2 長尺物で均一な品質をもつもので、偏析の少
ないこと。
2. It must be long and of uniform quality, with little segregation.

3 柱状晶が、ロツドの中心に向かつて成長しな
いこと。
3. Columnar crystals do not grow towards the center of the rod.

の条件を満たす製品を得ることが出来、さらに鋳
造の際に必要な項目である安全性を有することを
満たす連続鋳造方法が、要求されている。
There is a need for a continuous casting method that can obtain a product that satisfies the following conditions and also has safety, which is a necessary item during casting.

本発明は、以上の要望を満たすものである。 The present invention satisfies the above needs.

即ち、鋳型を一端部、中間部、他端部に分けた
鋳型の一端部を、溶融金属浴に突出し溶融金属浴
により加熱し、少なくとも他端部は、冷却構造体
に接した構造であつて、鋳型の一端部及び他端部
は、少なくとも熱良導体とし、その中間部の一部
又は全部を断熱構造体11とする装置を用いて、
凝固界面が鋳造方向に対し凹状にならない遅い速
度で鋳造することを特徴とする連続鋳造方法であ
る。
That is, the mold is divided into one end, an intermediate part, and the other end, and one end of the mold protrudes into a molten metal bath and is heated by the molten metal bath, and at least the other end is in contact with a cooling structure. , using a device in which one end and the other end of the mold are at least a good thermal conductor, and a part or all of the middle part is a heat insulating structure 11,
This is a continuous casting method characterized by casting at a slow speed so that the solidification interface does not become concave in the casting direction.

以下本発明について、詳細に述べる。 The present invention will be described in detail below.

本発明方法が適用される金属は、銅、金、銀、
アルミニウム、亜鉛、鉛、スズ等およびこれらの
合金等である。特に熱良導体のものが好ましい。
Metals to which the method of the present invention is applied include copper, gold, silver,
These include aluminum, zinc, lead, tin, etc., and alloys thereof. In particular, those with good thermal conductivity are preferred.

本発明の鋳型の一端部は、溶融金属浴により加
熱されている。特に溶融金属浴に突出させること
により溶融金属の熱により鋳型をより加熱するこ
とができる。この事により別の加熱手段を用いず
に過剰加熱することなく溶湯の入口側で凝固面を
保持できる。また同時に、一方凝固を可能とし、
結晶粒の非常に大きい鋳造組織を得ることができ
るものである。
One end of the mold of the present invention is heated by a molten metal bath. In particular, by protruding into the molten metal bath, the mold can be further heated by the heat of the molten metal. This makes it possible to maintain a solidified surface on the inlet side of the molten metal without using a separate heating means or overheating. At the same time, it also enables coagulation,
It is possible to obtain a cast structure with very large crystal grains.

さらに鋳型の他端部は、冷却構造体に接した構
造である。鋳型の一方を加熱し他端を冷却するこ
とにより一方向凝固を好ましく行い得るものであ
る。
Further, the other end of the mold is in contact with the cooling structure. One-way solidification can be preferably performed by heating one end of the mold and cooling the other end.

また同時に鋳型出口部で溶融金属は、全く存在
しない。これれによりブレークアウトのない連続
鋳造を可能とするものである。
At the same time, no molten metal is present at the mold outlet. This enables continuous casting without breakouts.

また更に、鋳型の一端部及び他端部は、少なく
とも熱良導体とし、中間部は、断熱構造とする。
Furthermore, at least one end and the other end of the mold are made to be good thermal conductors, and the middle part is made to have a heat insulating structure.

このことにより、より効率的に凝固界面が鋳造
方向に対して凹状にならない一方向凝固を可能と
するものである。温度勾配が、急傾斜となるため
である。熱良導体の耐火物としては、例えば、窒
化珪素、炭化珪素、黒鉛等である。断熱構造とし
ては、断熱性の耐火材であるA2O3、MgO、
CaO等のものを配置するかあるいは、さらにその
構造体中に空洞を設けガス等を存在させるものと
する。ガスとしては、空気等で良く、熱の良導体
でないものほど良い。さらに断熱構造体の位置
は、極力溶融金属側に配置し、凝固界面をより溶
融金属側にすることが好ましい。より一方向凝固
を容易にするためである。さらに、鋳型の外部に
も断熱構造体を上記同様に設ける事がより好まし
い。
This enables more efficient unidirectional solidification in which the solidification interface does not become concave with respect to the casting direction. This is because the temperature gradient becomes steep. Examples of refractories with good thermal conductivity include silicon nitride, silicon carbide, and graphite. The heat insulating structure is made of A 2 O 3 , MgO, which is a heat insulating fireproof material.
A substance such as CaO is placed therein, or a cavity is further provided in the structure to allow gas or the like to exist. The gas may be air or the like, and the less it is a good conductor of heat, the better. Further, it is preferable that the heat insulating structure is placed as close to the molten metal as possible so that the solidification interface is closer to the molten metal. This is to facilitate unidirectional solidification. Furthermore, it is more preferable to provide a heat insulating structure on the outside of the mold in the same manner as above.

また、鋳型の冷却構造体の溶融金属浴側から、
鋳型壁面に不活性ガス及び又は中世ガスを吹き込
む構造とする。この構造とすることにより、凝固
した金属の偏析を防止し、溶融金属の温度を均一
に保持するものである。上記ガスは、少なくとも
溶融金属の鋳型への入口部の溶体を攪伴混合する
役割をなすものである。冷却構造体に接した鋳型
の部分より、少なくとも鋳型の入口側から、装入
できる構造であることが好ましい。
Also, from the molten metal bath side of the cooling structure of the mold,
The structure is such that inert gas and/or medieval gas is blown into the mold wall. This structure prevents segregation of the solidified metal and maintains a uniform temperature of the molten metal. The gas serves at least to stir and mix the solution at the entrance of the molten metal to the mold. It is preferable that the structure allows charging from at least the inlet side of the mold, rather than the part of the mold that is in contact with the cooling structure.

さらに本発明に用いる鋳型装置は、溶解炉又は
保持炉の下部に鋳型を設けたもの、あるいは、溶
解炉又は保持炉の側壁横に鋳型を設けたものであ
つても良い。
Furthermore, the mold apparatus used in the present invention may be one in which a mold is provided at the bottom of a melting furnace or a holding furnace, or one in which a mold is provided next to a side wall of a melting furnace or a holding furnace.

本発明方法を用いるに適した製品の大きさとし
ては、あまり大径のものは、適さない。例えば、
直径が20mm以下の大きさのものである。これは、
鋳型の温度が、溶融金属あるいは半固体金属に伝
わる範囲であることが好ましい一方向凝固を可能
にするためである。
As for the size of the product suitable for using the method of the present invention, a product with a very large diameter is not suitable. for example,
The diameter is 20mm or less. this is,
This is to enable unidirectional solidification, which is preferable for the temperature of the mold to be within a range that can be transmitted to molten metal or semi-solid metal.

以上の装置を用いて、凝固界面が、鋳造方向に
対して凹状にならない遅い速度で鋳造することに
より、好ましい一方向凝固組織を得ることができ
る。
By using the above-mentioned apparatus and casting at a slow speed at which the solidification interface does not become concave with respect to the casting direction, a preferable unidirectional solidification structure can be obtained.

以上のように本発明を実施することにより、以
下の効果を得ることができる。
By implementing the present invention as described above, the following effects can be obtained.

(1) ブレークアウトの危険がなく、凝固界面が鋳
造方向に対して凹状にならない一方向凝固組織
の長尺金属塊を得ることができる。
(1) It is possible to obtain a long metal ingot with a unidirectionally solidified structure without the risk of breakout and whose solidified interface does not become concave with respect to the casting direction.

(2) 異物の混入、ピンホールがない長尺金属塊を
得ることができる。
(2) It is possible to obtain long metal ingots that are free from foreign matter and pinholes.

(3) 温度勾配が、急であるため一方向凝固の鋳塊
を容易に得ることができる。
(3) Since the temperature gradient is steep, a unidirectionally solidified ingot can be easily obtained.

(4) 偏析が少ない一方向凝固の鋳塊を得ることが
できる。
(4) A unidirectionally solidified ingot with little segregation can be obtained.

(5) 鋳塊表面が、極めて滑らかである。(5) The ingot surface is extremely smooth.

(6) 一方向凝固のため、加工性が極めて良い。(6) Due to unidirectional solidification, workability is extremely good.

(7) 結晶粒の大きい長尺金属塊を得ることができ
るため、機器内電線(例えば、オーデイオ機器
用電線)等の細物の導電線用材としてのロツド
を製造するために適する。
(7) Since a long metal lump with large crystal grains can be obtained, it is suitable for manufacturing rods as materials for thin conductive wires such as wires for equipment (for example, wires for audio equipment).

実施例 1 第1図に示した装置を用いて実施した。Example 1 The experiment was carried out using the apparatus shown in FIG.

溶解炉2底部側壁に取付けた11mm径の孔を有す
るグラフアイト鋳型6の中間部の一部に空中のア
ルミナ耐火物を配置し、断熱構造体11とし、さ
らに該鋳型の外側にも上記同様の断熱体12を設
けた。その鋳型に外径10.6mmの純銅棒の端を溶融
金属1供給側より1cm内側に位置させる。
An airborne alumina refractory is placed in a part of the middle part of a graphite mold 6 having a hole of 11 mm diameter attached to the bottom side wall of the melting furnace 2 to form a heat insulating structure 11, and a similar structure as described above is placed on the outside of the mold. A heat insulator 12 was provided. The end of a pure copper rod with an outer diameter of 10.6 mm was placed in the mold 1 cm inside from the molten metal 1 supply side.

炉には、溶解された純銅50Kgを入れ1250℃に保
持した。溶融金属供給側と反対側に設置された冷
却構造体5に8/分の水を通じ、純銅の凝固位
置を鋳型内の溶融金属供給側に設定した。
50 kg of molten pure copper was placed in the furnace and maintained at 1250°C. Water was passed at a rate of 8/min through the cooling structure 5 installed on the side opposite to the molten metal supply side, and the solidification position of the pure copper was set on the molten metal supply side in the mold.

グラフアイト鋳型に、第1図に示すごとくN2
ガスを4より導入し、溶融金属中へ10の位置よ
り噴出させた。溶融金属を攪伴し、温度および金
属成分のバラツキをなくす働きをした。
N2 was added to the graphite mold as shown in Figure 1.
Gas was introduced from position 4 and ejected into the molten metal from position 10. It worked to stir the molten metal and eliminate variations in temperature and metal composition.

尚N2ガスが、溶融金属側のみに放出されるよ
う、ガスシール8を設けた。
A gas seal 8 was provided so that N 2 gas was released only to the molten metal side.

凝固したロツドを33mm/分でピンチロール7に
より、連続的に引抜いた。
The solidified rod was continuously pulled out using pinch rolls 7 at 33 mm/min.

この結果得られた純銅は、凝固界面が鋳造方向
に対して、凹状にならない一方向凝固のものであ
り、結晶粒が極めて大きいものであつた。
The resulting pure copper had unidirectional solidification in which the solidification interface did not become concave with respect to the casting direction, and the crystal grains were extremely large.

これをオーデイオ用線に用いることにより、好
ましい音を聞くことができた。これは、電気信号
が伝わる方向に結晶粒界が極めて少ないため、本
来の音が再現されるためである。
By using this as an audio line, I was able to hear desirable sounds. This is because there are extremely few grain boundaries in the direction in which electrical signals are transmitted, so the original sound is reproduced.

実施例 2 第2図の装置においても、N2ガスの吹き込み
位置を変更した他実施例1と同様に行つたとこ
ろ、好ましい一方向凝固のロツドが得られた。
Example 2 Using the apparatus shown in FIG. 2, the same procedure as in Example 1 was carried out except that the N 2 gas injection position was changed, and a preferable unidirectionally solidified rod was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、横型連続鋳造において、適用された
本発明である。第2図は、下向の連続鋳造装置を
示す。 1は、溶融金属、2は、溶解炉、3は、鋳造ロ
ツド、4は、N2ガス導入口、5は、冷却構造体、
6は、グラフアイト鋳型である。
FIG. 1 shows the present invention applied to horizontal continuous casting. FIG. 2 shows a downward continuous casting apparatus. 1: molten metal; 2: melting furnace; 3: casting rod; 4: N2 gas inlet; 5: cooling structure;
6 is a graphite mold.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳型を一端部、中間部、他端部に分けた鋳型
の一端部を、溶融金属浴に突出し溶融金属浴によ
り加熱し、少なくとも他端部は、冷却構造体に接
した構造であつて、鋳型の一端部及び他端部は、
少なくとも熱良導体とし、その中間部の一部又は
全部を断熱構造体11とする装置を用いて、凝固
界面が鋳造方向に対し凹状にならない遅い速度で
鋳造することを特徴とする連続鋳造方法。
1 The mold is divided into one end, a middle part, and the other end, and one end of the mold protrudes into a molten metal bath and is heated by the molten metal bath, and at least the other end is in contact with a cooling structure, One end and the other end of the mold are
A continuous casting method characterized in that casting is performed at a slow speed at which the solidification interface does not become concave with respect to the casting direction, using an apparatus that is at least a good thermal conductor and has a part or all of its intermediate portion as a heat insulating structure 11.
JP3150885A 1985-02-21 1985-02-21 Continuous casting device Granted JPS61193743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150885A JPS61193743A (en) 1985-02-21 1985-02-21 Continuous casting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150885A JPS61193743A (en) 1985-02-21 1985-02-21 Continuous casting device

Publications (2)

Publication Number Publication Date
JPS61193743A JPS61193743A (en) 1986-08-28
JPH0217261B2 true JPH0217261B2 (en) 1990-04-19

Family

ID=12333156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150885A Granted JPS61193743A (en) 1985-02-21 1985-02-21 Continuous casting device

Country Status (1)

Country Link
JP (1) JPS61193743A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292242A (en) * 1986-06-10 1987-12-18 Asaba:Kk Method and apparatus for continuous casting of metallic material
JP3000371B2 (en) * 1989-10-18 2000-01-17 同和鉱業株式会社 Continuous casting method
JP5082157B2 (en) * 2006-03-31 2012-11-28 Dowaメタルマイン株式会社 Zinc casting apparatus and casting method, and zinc rod and zinc rod manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142625A (en) * 1976-05-24 1977-11-28 Oumi Shindo Kk Continuous casting method of metal
JPS5791850A (en) * 1980-11-29 1982-06-08 Nippon Steel Corp Graphite casting mold for horizontal and continuous casting of cast iron plate
JPS5897464A (en) * 1981-12-02 1983-06-09 Atsumi Ono Continuous casting method for eutectic composite material
JPS59229262A (en) * 1983-06-13 1984-12-22 O C C:Kk Method and device for horizontal type continuous casting of metallic molding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671347U (en) * 1979-10-29 1981-06-12

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142625A (en) * 1976-05-24 1977-11-28 Oumi Shindo Kk Continuous casting method of metal
JPS5791850A (en) * 1980-11-29 1982-06-08 Nippon Steel Corp Graphite casting mold for horizontal and continuous casting of cast iron plate
JPS5897464A (en) * 1981-12-02 1983-06-09 Atsumi Ono Continuous casting method for eutectic composite material
JPS59229262A (en) * 1983-06-13 1984-12-22 O C C:Kk Method and device for horizontal type continuous casting of metallic molding

Also Published As

Publication number Publication date
JPS61193743A (en) 1986-08-28

Similar Documents

Publication Publication Date Title
EP0120584B1 (en) Improvements in or relating to the casting of metallic materials
JPH08187547A (en) Production of metallic slurry for casting
JPH051102B2 (en)
JPS59229262A (en) Method and device for horizontal type continuous casting of metallic molding
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JPH0217261B2 (en)
JPH0230698A (en) Casting device of silicon
JPS61169139A (en) Continuous casting device
JPH0217260B2 (en)
JPH08318349A (en) Production of casting metallic billet and producing apparatus thereof
JPS6257418B2 (en)
JP3313220B2 (en) Method and apparatus for producing metal slurry for casting
JP3000371B2 (en) Continuous casting method
JP2531629B2 (en) Video and / or television wire manufacturing method
JPS62286650A (en) Production of electric wire for audio use
JPH0337818B2 (en)
JPS62137147A (en) Apparatus for producing bar-shaped ingot
JPH0620601B2 (en) Continuous casting method
JPS60234740A (en) Continuous casting method of copper ingot having mirror finished surface
JPS60127057A (en) Continuous casting device
JPH04125046U (en) Horizontal continuous casting equipment for strip metal ingots
JPH0243569B2 (en)
JPS6225066B2 (en)
RU1799671C (en) Continuous billet casting method