JP3313220B2 - Method and apparatus for producing metal slurry for casting - Google Patents

Method and apparatus for producing metal slurry for casting

Info

Publication number
JP3313220B2
JP3313220B2 JP34149293A JP34149293A JP3313220B2 JP 3313220 B2 JP3313220 B2 JP 3313220B2 JP 34149293 A JP34149293 A JP 34149293A JP 34149293 A JP34149293 A JP 34149293A JP 3313220 B2 JP3313220 B2 JP 3313220B2
Authority
JP
Japan
Prior art keywords
molten metal
semi
heating
plate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34149293A
Other languages
Japanese (ja)
Other versions
JPH07164108A (en
Inventor
茂樹 深井
晋 折井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahresty Corp
Original Assignee
Ahresty Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahresty Corp filed Critical Ahresty Corp
Priority to JP34149293A priority Critical patent/JP3313220B2/en
Publication of JPH07164108A publication Critical patent/JPH07164108A/en
Application granted granted Critical
Publication of JP3313220B2 publication Critical patent/JP3313220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鋳造用金属スラリー、
より具体的にはレオキャストに使用するための金属スラ
リーや、チクソキャストに使用するビレットを鋳造する
ための金属スラリー、等の鋳造用金属スラリーの製造方
法及び製造装置に関するものである。尚、本明細書にお
いて金属には、単体だけでなくその合金も含むものであ
る。
The present invention relates to a metal slurry for casting,
More specifically, the present invention relates to a method and an apparatus for manufacturing a metal slurry for casting, such as a metal slurry for use in rheocasting and a metal slurry for casting billets used in thixocasting. In this specification, metal includes not only a simple substance but also an alloy thereof.

【0002】[0002]

【従来の技術】この種の金属スラリーは、鋳造した製品
の収縮巣の発生を抑制すると共に鋳造製品の機械的強度
を向上させるために、高固相率で低粘度の半溶融金属と
することが要求され、その為には、その結晶粒子ができ
るだけ微細で且つ均一な非樹枝状、好ましくは球状であ
ることが必要である。
2. Description of the Related Art In order to suppress the occurrence of shrinkage cavities in a cast product and improve the mechanical strength of the cast product, this type of metal slurry is made of a semi-molten metal having a high solid fraction and a low viscosity. In order to do so, it is necessary that the crystal grains are as fine and uniform as possible and non-dendritic, preferably spherical.

【0003】その為に従来から、種々の試みが提案され
ているが、本発明に近い技術として特開昭61-235047 号
公報に掲載された鋳造法がある。この従来法は、温度制
御された傾斜板上に溶融金属を注下させ、その溶融金属
が傾斜板上を流下する間に半溶融状態の金属スラリーと
なるようにしたものであり、溶融金属が傾斜板上で急冷
されることにより比較的微細な結晶粒子が得られるが、
結晶粒子の形状が花弁状となり、良好に球状化すること
ができなかった。
[0003] For this purpose, various attempts have been conventionally proposed. As a technique close to the present invention, there is a casting method disclosed in Japanese Patent Application Laid-Open No. 61-235047. In this conventional method, molten metal is poured onto a temperature-controlled inclined plate so that the molten metal becomes a semi-molten metal slurry while flowing down on the inclined plate. By quenching on the inclined plate, relatively fine crystal grains can be obtained,
The shape of the crystal particles became petal-like and could not be spheroidized well.

【0004】[0004]

【発明が解決しようとする課題】本発明はこの様な従来
の不具合に鑑みてなされたものであり、複雑な工程を必
要とせずに簡単な設備でもって、微細で且つほぼ均一な
非樹枝状(球状)の結晶粒子が得られる鋳造用金属スラ
リーの製造方法及び製造装置を提供せんとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has a simple and simple equipment without requiring a complicated process, and has a fine and almost uniform non-dendritic shape. It is an object of the present invention to provide a method and an apparatus for producing a metal slurry for casting from which (spherical) crystal particles can be obtained.

【0005】[0005]

【課題を解決するための手段】斯る目的を達成する本発
明の鋳造用金属スラリーの製造方法は、溶融金属を傾斜
面上に流しながら半溶融状態に急冷し後、該半溶融金
属を傾斜面上に流しながら加熱せしめ、然る後その半溶
融金属を加熱炉内で固液共存温度で所定時間加熱保持す
るようにした事を特徴としたものである。また、上記目
的を達成する本発明の鋳造用金属スラリーの製造装置
は、溶融金属保持炉の出湯口の直下に冷却板を下向き傾
斜状に設置すると共に、該冷却板と連続させて加熱板を
傾斜状に設置せしめ、該加熱板の流下口の直下に半溶融
金属を固液共存温度で所定時間加熱保持するための加熱
炉を配置し、前記溶融金属保持炉の出湯口から溶融金属
を上記冷却板上に注下させて上記加熱板上を通して上記
加熱炉内へ導入させるようにしてなる事を特徴としたも
のである。
Method for producing a cast metal slurry [SUMMARY OF]斯Ru present invention to achieve the object, after quenching in a semi-molten state while flowing molten metal on the inclined plane, a semi molten metal The semi-molten metal is heated while flowing on the inclined surface, and then the semi-molten metal is heated and held at a solid-liquid coexisting temperature in a heating furnace for a predetermined time. In addition, the apparatus for producing a metal slurry for casting of the present invention that achieves the above object has a cooling plate installed in a downwardly inclined shape directly below a tap hole of a molten metal holding furnace, and a heating plate connected to the cooling plate to form a heating plate. A heating furnace for heating and holding the semi-molten metal at a solid-liquid coexistence temperature for a predetermined time immediately below the downflow port of the heating plate, and disposing the molten metal from the tap of the molten metal holding furnace. It is characterized in that it is poured onto a cooling plate and then introduced into the heating furnace through the heating plate.

【0006】[0006]

【作用】本発明に係る鋳造用金属スラリーの製造方法に
よれば、溶融金属を傾斜面上に流しながら半溶融状態に
急冷することにより、半溶融金属中に多数の結晶核が生
成され、その後、この半溶融金属を傾斜面上に流しなが
ら加熱することにより、上記生成した結晶核がより球形
状に近い粒子形状に成長して微細な非樹枝状(球状)の
結晶粒子となるものである。
According to the method for producing a metal slurry for casting according to the present invention, a large number of crystal nuclei are generated in the semi-molten metal by rapidly cooling to a semi-molten state while flowing the molten metal on the inclined surface. By heating the semi-molten metal while flowing it on the inclined surface, the generated crystal nuclei grow into a particle shape closer to a spherical shape and become fine non-dendritic (spherical) crystal particles. .

【0007】そして更に、多数の微細結晶粒子を含む半
溶融金属を加熱炉内で固液共存温度でもって所定時間加
熱保持することにより、半溶融金属中の微細結晶粒子が
良好に球状化されるものである。
Further, the semi-molten metal containing a large number of fine crystal particles is heated and held in a heating furnace at a solid-liquid coexistence temperature for a predetermined time, whereby the fine crystal particles in the semi-molten metal are favorably spheroidized. Things.

【0008】[0008]

【実施例】次に、本発明に係る鋳造用金属スラリーの製
造装置について、その実施の一例を図1に示した模式図
に基づいて説明する。図中、1は溶融金属保持炉、2は
冷却板、3は加熱板、4は加熱炉、を夫々示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the apparatus for producing a metal slurry for casting according to the present invention will be described with reference to the schematic diagram shown in FIG. In the figure, 1 is a molten metal holding furnace, 2 is a cooling plate, 3 is a heating plate, and 4 is a heating furnace.

【0009】溶融金属保持炉1は、アルミニウム等の溶
融金属mを所定の温度、好ましくは液相線温度近傍の温
度で収容保持しておくための炉であり、底部に出湯口11
を有し、その出湯口11を開閉するための開閉弁12、及び
溶融金属mの温度を監視するための熱電対13を備えてい
る。
The molten metal holding furnace 1 is a furnace for holding and holding a molten metal m such as aluminum at a predetermined temperature, preferably at a temperature near the liquidus temperature.
And an on-off valve 12 for opening and closing the tap hole 11 and a thermocouple 13 for monitoring the temperature of the molten metal m.

【0010】冷却板2は、溶融金属mを急冷して多くの
結晶核を生成させるためのものであり、例えばアルミナ
質耐火物材を用いて、表面が平滑なスベリ台状に形成
し、その内部ないしは裏面側に例えば冷却パイプ21を設
置せしめて冷却板2の表面を所定の温度に冷却するよう
にする。
The cooling plate 2 is for rapidly cooling the molten metal m to generate many crystal nuclei. For example, the cooling plate 2 is made of an alumina-based refractory material and is formed into a smooth sliding table shape with a smooth surface. For example, a cooling pipe 21 is installed inside or on the back side to cool the surface of the cooling plate 2 to a predetermined temperature.

【0011】そしてこの冷却板2を、溶融金属保持炉1
の出湯口11の直下位置に所定の角度θで下向き傾斜状に
設置して、溶融金属保持炉1の出湯口11から溶融金属m
を注下させる。この際、溶融金属保持炉1の出湯口11ま
での距離hは、冷却板2の冷却能力に多少依存するが、
実験の結果では冷却板2の冷却能力が十分な場合には1
0〜20cm程度が良好であった。
Then, the cooling plate 2 is connected to the molten metal holding furnace 1.
Of the molten metal from the outlet 11 of the molten metal holding furnace 1 by being installed at a predetermined angle θ at a position directly below the outlet 11 of the molten metal.
Let go down. At this time, the distance h to the tap 11 of the molten metal holding furnace 1 depends somewhat on the cooling capacity of the cooling plate 2,
The experimental results show that if the cooling capacity of the cooling plate 2 is sufficient,
About 0 to 20 cm was good.

【0012】また、冷却板2の表面温度は、溶融金属m
が冷却板2上を流下している間に多数の結晶核を有する
半溶融金属となるようにコントロールされる。即ち、冷
却板2上に注下された溶融金属mが半溶融状態になるこ
となく加熱板3ないしは加熱炉4まで流下してしまった
り逆に凝固してしまうことがないように、溶融金属mの
種類やその初期温度,流量,並びに冷却板2上を流通す
る時間等に応じて冷却板2の表面温度を決定するもので
ある。
The surface temperature of the cooling plate 2 is set to
Is controlled to become a semi-molten metal having many crystal nuclei while flowing down on the cooling plate 2. That is, the molten metal m poured onto the cooling plate 2 is prevented from flowing down to the heating plate 3 or the heating furnace 4 without being in a semi-molten state or being solidified. The surface temperature of the cooling plate 2 is determined in accordance with the type, the initial temperature, the flow rate, and the time of circulation on the cooling plate 2.

【0013】尚、多数の結晶核を有する望ましい半溶融
状態、すなわち微細結晶粒子と望ましい半溶融状態との
関係は、この冷却板2による作用だけでなく後の加熱板
3並びに加熱炉4による作用にも関係し且つ溶融金属m
の種類毎に実験の積重ねによって解明されるため、実際
の溶融金属mの流量や流速(すなわち冷却板2及び加熱
板3の長さL1 ,L2 や傾斜角度θ)並びに冷却板2の
表面温度などのコントロール(設定)は、この実験デー
タに基づて行なわれる。
The desirable semi-molten state having a large number of crystal nuclei, that is, the relationship between the fine crystal grains and the desirable semi-molten state is determined not only by the operation of the cooling plate 2 but also by the subsequent heating plate 3 and the heating furnace 4. Also related to molten metal
The actual flow rate and flow velocity of the molten metal m (that is, the lengths L 1 and L 2 and the inclination angles θ of the cooling plate 2 and the heating plate 3) and the surface of the cooling plate 2 Control (setting) such as temperature is performed based on the experimental data.

【0014】因みに、溶融金属mとしてアルミニウム合
金(AC4C)を使用した実験の結果では、液相線+1
0℃〜+50℃の溶融金属を、長さL1 を2cm〜15c
m,傾斜角度θを20度〜45度,表面温度を30℃〜
60℃に設定した冷却板2上に毎秒20ml〜150ml注
下させて流下させた時に、多数の結晶核を有する望まし
い半溶融状態を得ることができた。
Incidentally, the results of experiments using an aluminum alloy (AC4C) as the molten metal m show that the liquidus line +1
A molten metal of 0 ° C. to + 50 ° C. and a length L 1 of 2 cm to 15 c
m, the inclination angle θ is 20 degrees to 45 degrees, and the surface temperature is 30 degrees C.
When the mixture was poured onto the cooling plate 2 set at 60 ° C. and poured down at a rate of 20 ml to 150 ml per second, a desirable semi-molten state having a large number of crystal nuclei could be obtained.

【0015】この時に得られた半溶融金属の金属組織
を、図2の顕微鏡写真で示す。この顕微鏡写真におい
て、白く見える部分が結晶粒子(固相部分)であり、黒
く見える部分が溶融部分である(以下、金属組織を示す
顕微鏡写真において同じ)。この顕微鏡写真から、微細
なデンドライト形状の結晶が晶出していることが理解さ
れる。
The microstructure of the semi-molten metal obtained at this time is shown in the photomicrograph of FIG. In this photomicrograph, the portions that appear white are the crystal particles (solid phase portions), and the portions that appear black are the molten portions (the same applies to the photomicrograph showing the metallographic structure). From this micrograph, it is understood that fine dendrite-shaped crystals are crystallized.

【0016】また、加熱板3は、溶融金属mが冷却板2
上を流下する間に生成された半溶融金属中の多数の結晶
核を成長させるためのものであり、例えばアルミナ質耐
火物材を用いて、表面が平滑なスベリ台状に形成し、そ
の内部ないしは裏面側に例えば加熱ヒータ31を設置せし
めて加熱板3の表面を所定の温度に加熱するようにな
し、冷却板2の下端に一体的に連続させて下向き傾斜状
に設置せしめる。
Further, the heating plate 3 is formed by melting the molten metal m with the cooling plate 2.
This is to grow a large number of crystal nuclei in the semi-molten metal generated while flowing down.For example, using an alumina refractory material, the surface is formed into a smooth sliding table shape, and the inside thereof is formed. Alternatively, for example, a heater 31 is installed on the back side to heat the surface of the heating plate 3 to a predetermined temperature, and the heating plate 3 is integrally and continuously connected to the lower end of the cooling plate 2 so as to be inclined downward.

【0017】そして、加熱板3の表面温度及び長さL2
の設定は、前記冷却板2の場合と同様に、溶融金属の種
類毎に実験データに基づて行なわれる。因みに、溶融金
属mとしてアルミニウム合金(AC4C)を使用した実
験の結果では、表面温度を200℃〜500℃に設定
し、長さL2 を5cm〜50cmに設定した時に、結晶核の
良好な成長が見られた。
Then, the surface temperature of the heating plate 3 and the length L 2
Is set based on experimental data for each type of molten metal, as in the case of the cooling plate 2 described above. Incidentally, the results of experiments using an aluminum alloy (AC4C) as the molten metal m show that when the surface temperature is set at 200 ° C. to 500 ° C. and the length L 2 is set at 5 cm to 50 cm, the crystal nuclei grow well. It was observed.

【0018】この時に得られた半溶融金属の金属組織
を、図3の顕微鏡写真で示す。この顕微鏡写真から、デ
ントライト形状の結晶が花弁状の結晶に成長しているこ
とが理解される。
The microstructure of the semi-molten metal obtained at this time is shown in the micrograph of FIG. From this micrograph, it is understood that the dentrite-shaped crystal has grown into a petal-shaped crystal.

【0019】また、加熱炉4は、半溶融金属m’を固液
共存温度で所定時間加熱保持して半溶融金属m’中の微
細結晶粒子を良好に球状化させるためのものであり、例
えば周知の電気炉を用いてその内部に鋳型41を設置する
共に、溶融金属m’の温度を監視するための熱電対42を
設備せしめ、加熱板3の流下口32の直下に配置する。
The heating furnace 4 is for heating and holding the semi-molten metal m 'at a solid-liquid coexistence temperature for a predetermined time so that the fine crystal particles in the semi-molten metal m' are favorably spheroidized. A well-known electric furnace is used to install a mold 41 therein, and a thermocouple 42 for monitoring the temperature of the molten metal m 'is provided. The thermocouple 42 is disposed immediately below the downflow port 32 of the heating plate 3.

【0020】この加熱炉4における半溶融金属m’の加
熱温度及び保持時間は、溶融金属mの種類によって異な
るが、溶融金属mとしてアルミニウム合金(AC4C)
を使用した場合には、内部に設置した鋳型41の温度を5
57℃(固相線+15℃)〜600℃(固相線+58
℃)とし、保持時間を10秒〜1800秒に設定した
時、半溶融金属m’中の微細結晶粒子が良好に球状化さ
れた。
The heating temperature and the holding time of the semi-molten metal m 'in the heating furnace 4 vary depending on the type of the molten metal m, but the molten metal m is an aluminum alloy (AC4C).
When using the mold, the temperature of the mold 41 set inside is 5
57 ° C (solidus + 15 ° C) to 600 ° C (solidus +58
° C), and when the holding time was set to 10 seconds to 1800 seconds, the fine crystal particles in the semi-molten metal m 'were well spheroidized.

【0021】この時に得られた半溶融金属の金属組織
を、図4の顕微鏡写真で示す。この顕微鏡写真から、花
弁状の結晶が球形状の結晶に成長していることが理解さ
れる。尚、図2から図4に示した金属組織の顕微鏡写真
の倍率は、いずれも100倍である。
The microstructure of the semi-molten metal obtained at this time is shown in the micrograph of FIG. From this micrograph, it is understood that the petal-shaped crystal has grown into a spherical crystal. The magnification of the micrograph of the metal structure shown in FIGS. 2 to 4 is 100 times.

【0022】而して、溶融金属保持炉1内の溶融金属m
を液相線近傍の温度に保持せしめ、溶融金属mとしてア
ルミニウム合金(AC4C)を使用した場合には好まし
くは液相線+10℃〜液相線+50℃位の範囲に保持せ
しめ、その溶融金属mを溶融金属保持炉1の出湯口11か
ら冷却板2上に注下すると、溶融金属mは冷却板2上を
流下する間に半溶融状態に急冷されて結晶核の生成が促
され、続いてその半溶融金属は加熱板3上を流下する間
に加熱されて結晶核の成長が促され、最後に加熱板3の
流下口32から半溶融金属のまま加熱炉4の鋳型41内に導
入収容され、鋳型41内でもって固液共存温度で所定時間
加熱保持されることにより、微細結晶粒子の良好な球状
化が促される。
Thus, the molten metal m in the molten metal holding furnace 1
Is maintained at a temperature in the vicinity of the liquidus line, and when an aluminum alloy (AC4C) is used as the molten metal m, the temperature is preferably maintained in the range of the liquidus line + 10 ° C to the liquidus line + 50 ° C. Is poured from the outlet 11 of the molten metal holding furnace 1 onto the cooling plate 2, the molten metal m is rapidly cooled to a semi-molten state while flowing down on the cooling plate 2, and the generation of crystal nuclei is promoted. The semi-molten metal is heated while flowing down on the heating plate 3 to promote the growth of crystal nuclei. Finally, the semi-molten metal is introduced into the mold 41 of the heating furnace 4 as the semi-molten metal from the falling port 32 of the heating plate 3. By heating and holding at a solid-liquid coexistence temperature for a predetermined time in the mold 41, good spheroidization of fine crystal particles is promoted.

【0023】以上、溶融金属mとしてアルミニウム合金
(AC4C)を使用した場合の例ではあるが、図5及び
図6に示した金属組織の顕微鏡写真から理解されるよう
に、冷却板2による冷却速度が速いほど、また加熱炉4
における保持時間が長いほど、好ましい微細結晶粒子が
多数得られる。
The above is an example in which an aluminum alloy (AC4C) is used as the molten metal m. As can be understood from the micrographs of the metal structure shown in FIGS. The faster the heating furnace 4
The longer the holding time in, the more preferable fine crystal particles are obtained.

【0024】[0024]

【発明の効果】本発明は斯様に構成したので、複雑な工
程を必要とせず簡単な設備でもって、微細で且つほぼ均
一な非樹枝状(球状)の結晶粒子を得ることが出来る。
As described above, according to the present invention, fine and almost uniform non-dendritic (spherical) crystal particles can be obtained with simple equipment without requiring complicated steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明実施の一例を示す模式図。FIG. 1 is a schematic view showing one embodiment of the present invention.

【図2】 溶融金属を冷却板上で急冷させて半溶融状
態にした時の金属組織(×100)の顕微鏡写真。
FIG. 2 is a micrograph of a metal structure (× 100) when a molten metal is rapidly cooled on a cooling plate to be in a semi-molten state.

【図3】 冷却板上で生成された半溶融金属を加熱板
上で加熱した時の金属組織(×100)の顕微鏡写真。
FIG. 3 is a micrograph of a metal structure (× 100) when a semi-molten metal generated on a cooling plate is heated on a heating plate.

【図4】 加熱板上で加熱した半溶融金属を加熱炉で
加熱保持した時の金属組織(×100)の顕微鏡写真。
FIG. 4 is a micrograph of a metal structure (× 100) when a semi-molten metal heated on a heating plate is heated and held in a heating furnace.

【図5】 溶融金属を冷却板上で急冷させる際の冷却
速度と微細結晶粒子との関係を説明する金属組織(×1
00)の顕微鏡写真であり、(a)は急冷した場合を示
し、(b)は徐冷した場合を示す。
FIG. 5 is a metallographic structure (× 1) for explaining the relationship between the cooling rate and the fine crystal particles when the molten metal is rapidly cooled on a cooling plate.
00) are photomicrographs, in which (a) shows the case of rapid cooling and (b) shows the case of slow cooling.

【図6】 加熱炉における加熱保持時間と微細結晶粒
子との関係を説明する金属組織(×100)の顕微鏡写
真であり、(a)は600秒間加熱保持した場合を示
し、(b)は60秒間加熱保持した場合を示す。
FIGS. 6A and 6B are micrographs of a metal structure (× 100) illustrating the relationship between the heating and holding time and the fine crystal particles in a heating furnace, wherein FIG. 6A shows a case where heating and holding are performed for 600 seconds, and FIG. This shows the case where heating and holding are performed for two seconds.

【符号の説明】[Explanation of symbols]

1:溶融金属保持炉 11:出湯口 2:冷却板 3:加熱板 32:加熱板の流下口 4:加熱炉 m:溶融金属 m’:半溶融金
1: Molten metal holding furnace 11: Outlet 2: Cooling plate 3: Heating plate 32: Downflow opening of heating plate 4: Heating furnace m: Molten metal m ': Semi-molten metal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 1/02 501 C22C 1/02 501B (58)調査した分野(Int.Cl.7,DB名) B22D 1/00 B22D 11/00 B22D 17/30 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI C22C 1/02 501 C22C 1/02 501B (58) Field surveyed (Int.Cl. 7 , DB name) B22D 1/00 B22D 11 / 00 B22D 17/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融金属を傾斜面上に流しながら半溶
融状態に急冷した後、該半溶融金属を傾斜面上に流しな
がら加熱せしめ、然る後その半溶融金属を加熱炉内で固
液共存温度で所定時間加熱保持するようにした事を特徴
とする鋳造用金属スラリーの製造方法。
1. A half-melting process while flowing a molten metal on an inclined surface.
After quenching to the molten state, do not allow the semi-molten metal to flow on the inclined surface.
The semi-molten metal is then solidified in a heating furnace.
It is characterized by heating and holding at the liquid coexistence temperature for a predetermined time
A method for producing a metal slurry for casting.
【請求項2】 溶融金属保持炉の出湯口の直下に冷却
板を下向き傾斜状に設置すると共に、該冷却板と連続さ
せて加熱板を傾斜状に設置せしめ、該加熱板の流下口の
直下に半溶融金属を固液共存温度で所定時間加熱保持す
るための加熱炉を配置し、前記溶融金属保持炉の出湯口
から溶融金属を上記冷却板上に注下させて上記加熱板上
を通して上記加熱炉内へ導入させるようにしてなる事を
特徴とする鋳造用金属スラリーの製造装置。
2. Cooling just below the tap of a molten metal holding furnace
The plate is installed with a downward slope, and the plate is connected to the cooling plate.
The heating plate is installed in an inclined shape,
Heat the semi-molten metal directly below the solid-liquid coexistence temperature for a predetermined time.
A heating furnace for placing the molten metal holding furnace
The molten metal is poured onto the cooling plate from
Through the heating furnace
Characteristic metal slurry production equipment.
JP34149293A 1993-12-10 1993-12-10 Method and apparatus for producing metal slurry for casting Expired - Fee Related JP3313220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34149293A JP3313220B2 (en) 1993-12-10 1993-12-10 Method and apparatus for producing metal slurry for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34149293A JP3313220B2 (en) 1993-12-10 1993-12-10 Method and apparatus for producing metal slurry for casting

Publications (2)

Publication Number Publication Date
JPH07164108A JPH07164108A (en) 1995-06-27
JP3313220B2 true JP3313220B2 (en) 2002-08-12

Family

ID=18346479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34149293A Expired - Fee Related JP3313220B2 (en) 1993-12-10 1993-12-10 Method and apparatus for producing metal slurry for casting

Country Status (1)

Country Link
JP (1) JP3313220B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769473B1 (en) 1995-05-29 2004-08-03 Ube Industries, Ltd. Method of shaping semisolid metals
JP3817786B2 (en) * 1995-09-01 2006-09-06 Tkj株式会社 Alloy product manufacturing method and apparatus
KR100673618B1 (en) * 2005-07-28 2007-01-24 경상대학교산학협력단 Manufacturing apparatus for casting semi-solid materials and process method thereof
JP4931455B2 (en) * 2006-03-31 2012-05-16 株式会社正田製作所 Method for producing semi-solid metal slurry for rheocast

Also Published As

Publication number Publication date
JPH07164108A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
JP3474017B2 (en) Method for producing metal slurry for casting
EP0403594A4 (en) Continuous casting of fine grain ingots
JP2793430B2 (en) Die casting method for producing high mechanical performance parts by injection of semi-fluid metal alloy
EP0931607B1 (en) Method of preparing a shot of semi-solid metal
JP3496833B1 (en) Method for producing metallic material in solid-liquid coexistence state
JP3313220B2 (en) Method and apparatus for producing metal slurry for casting
JP3246296B2 (en) Forming method of semi-molten metal
JPH08318349A (en) Production of casting metallic billet and producing apparatus thereof
JPH10158756A (en) Method for molding semi-molten metal
US5192377A (en) Process of producing continuously cast monotectic aluminum-silicon alloy strip and wire
JPH0910893A (en) Apparatus for producing metal for half melt molding
JP3246273B2 (en) Forming method of semi-molten metal
JPS62500293A (en) Continuous casting method and ingots produced by it
JP3783275B2 (en) Method for forming semi-molten metal
JPH08257722A (en) Casting method by die casting
JP3473214B2 (en) Forming method of semi-molten metal
JPH0987773A (en) Method for molding half-molten metal
Frazier et al. The melt spinning of gamma titanium aluminides
JPS59208042A (en) Dispersion strengthened magnesium alloy
JPH0217260B2 (en)
JPH08103859A (en) Formation of half-melting metal
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
Yuan et al. Fine grain casting process of high-temperature alloys and its application
JPS61169139A (en) Continuous casting device
JPH0217261B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees