JPH08103859A - Formation of half-melting metal - Google Patents

Formation of half-melting metal

Info

Publication number
JPH08103859A
JPH08103859A JP6271908A JP27190894A JPH08103859A JP H08103859 A JPH08103859 A JP H08103859A JP 6271908 A JP6271908 A JP 6271908A JP 27190894 A JP27190894 A JP 27190894A JP H08103859 A JPH08103859 A JP H08103859A
Authority
JP
Japan
Prior art keywords
aluminum alloy
billet
temperature
semi
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6271908A
Other languages
Japanese (ja)
Other versions
JP3216685B2 (en
Inventor
Mitsuru Adachi
充 安達
Hiroto Sasaki
寛人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP27190894A priority Critical patent/JP3216685B2/en
Priority to NO950843A priority patent/NO950843L/en
Priority to EP95103276A priority patent/EP0701002A1/en
Publication of JPH08103859A publication Critical patent/JPH08103859A/en
Priority to US08/683,023 priority patent/US5701942A/en
Application granted granted Critical
Publication of JP3216685B2 publication Critical patent/JP3216685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To simply and easily pressurize-form half-melting metal of aluminum alloy, etc., in a low cost. CONSTITUTION: The molten aluminum alloy adding Ti and B or the molten aluminum alloy limiting Si of which degree of superheat just before casting is 30 deg.C or less to the liquidus and the molten aluminum alloy having composition of the max. solid solution limit or higher and which is cast while giving the fine vibration as necessity requires, is cast at 1 deg.C/sec cooling speed in the solidification range. Thereafter, the temp. of a billet is risen at the eutectic temp. or higher and the liquidus ratio is made to be 20-80% by selecting the holding temp. and the holding time, and after spheroidizing the primary crystal, the billet in the half-melting metal state is pressurize-formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミ合金の半溶融金
属の成形方法に係わり、特に従来鋳造法の改良によって
得られた微細等軸晶を有するアルミ合金ビレットを半溶
融温度領域まで加熱し、球状化組織を保有した状態で加
圧成形する半溶融金属の成形方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semi-molten metal of an aluminum alloy, and particularly to heating an aluminum alloy billet having fine equiaxed crystals obtained by an improvement of the conventional casting method to a semi-melting temperature range. The present invention relates to a method for molding a semi-molten metal, which is pressure-molded while retaining a spheroidized structure.

【0002】[0002]

【従来の技術】チクソキャスト法は、従来の鋳造法に比
べて鋳造欠陥や偏析が少なく、金属組織が均一で、金型
寿命が長いことや成形サイクルが短いなどの利点があ
り、最近注目されている技術である。この成形法(A)
において使用されるビレットは、半溶融温度領域で機械
攪拌や電磁攪拌を実施するか、あるいは加工後の再結晶
を利用することによって得られたものである。これに対
して、従来鋳造法による素材を用いて半溶融成形する方
法も知られている。これは、例えば、等軸晶組織を発生
しやすいマグネ合金においてさらに微細な結晶を生じせ
しめるためにZrを添加する方法(B)や炭素系微細化
剤を使用する方法(C)であり、これら方法により得ら
れた素材を半溶融温度域に加熱し初晶を球状化させ成形
する方法である。また、固溶限以内の合金に対して、固
相線近くの温度まで比較的急速に加熱した後、素材全体
の温度を均一にし局部的な溶融を防ぐために、固相線を
超えて材料が柔らかくなる適当な温度まで緩やかに加熱
して成形する方法(D)が知られている。
2. Description of the Related Art The thixocasting method has attracted attention recently because of its advantages such as less casting defects and segregation, uniform metal structure, longer die life and shorter molding cycle than the conventional casting method. Technology. This molding method (A)
The billet used in (1) is obtained by carrying out mechanical stirring or electromagnetic stirring in the semi-melting temperature range, or by utilizing recrystallization after processing. On the other hand, a method of semi-melt molding using a material by a conventional casting method is also known. This is, for example, a method (B) of adding Zr or a method (C) of using a carbon-based refiner in order to generate finer crystals in a Magne alloy which is apt to generate an equiaxed crystal structure. This is a method of heating the material obtained by the method to a semi-melting temperature range to make the primary crystal spherical and molding. In addition, for alloys within the solid solution limit, after heating relatively quickly to a temperature near the solidus line, the temperature of the entire material is made uniform, and in order to prevent local melting, the material is exceeded above the solidus line. There is known a method (D) of gently heating to an appropriate temperature for softening and molding.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た(A)の方法は攪拌法や再結晶を利用する方法のいず
れの場合も作業が煩雑であり、製造コストが高くなる難
点がある。また、マグネ合金においては(B)や(C)
の方法で、微細化することにより100μm程度の微細
結晶粒の組織を得ることは可能であるが、アルミ合金に
おいては、単に微細化剤を添加するだけでは500μm
程度であり、100μm以下の微細な結晶粒の組織を得
ることは容易ではない。さらに、(D)の方法では、固
相線を超えてから緩やかに加熱して素材の均一加熱と球
状化を図ることを特徴とするチクソ成形法が提案されて
いるが、通常のデンドライト組織を加熱してもチクソ組
織(初晶デンドライトが球状化されている)には変化し
ない。本発明は、上述の従来の各方法の問題点に着目
し、煩雑な方法を採ることなく簡便容易に微細等軸晶を
有する素材を得て、該素材に所定の熱処理を施した後、
半溶融金属を成形する方法を提供することを目的とする
ものである。
However, the method (A) described above has a problem that the work is complicated and the manufacturing cost is high in any case of the stirring method and the method utilizing recrystallization. Also, in the case of Magne alloy, (B) and (C)
Although it is possible to obtain a structure of fine crystal grains of about 100 μm by refining with the method described above, it is possible to obtain a structure of 500 μm in an aluminum alloy by simply adding a refining agent.
However, it is not easy to obtain a fine grain structure of 100 μm or less. Further, in the method (D), a thixomolding method has been proposed, which is characterized by heating the material gently beyond the solidus to achieve uniform heating and spheroidization of the material. It does not change to a thixostructure (primary crystal dendrites are spheroidized) even when heated. The present invention focuses on the problems of each of the above-mentioned conventional methods, easily and easily obtain a material having fine equiaxed crystals without employing a complicated method, and after subjecting the material to a predetermined heat treatment,
It is an object of the present invention to provide a method for forming a semi-molten metal.

【0004】[0004]

【課題を解決するための手段】このような課題を解決す
るために、本発明においては、最大固溶限以上の組成の
亜共晶アルミ合金であって、ビレット用金型給湯時の温
度は過熱度が液相線以上で、かつ該液相線より30℃を
超えない温度領域であり、かつ1℃/秒以上の凝固区間
冷却速度で該金型内で前記アルミ合金溶湯を冷却固化し
てビレットを鋳造した後、該ビレットを共晶温度以上に
昇温し、保持時間、保持温度の選択により液相率を20
〜80%にして初晶を球状化した後、半溶融状態になっ
た該液相率のビレットを成形用金型に供給して加圧成形
する構成とした。また、第2の発明ではBを0.001
〜0.01%、Tiを0.005〜0.30%添加した
アルミ合金とした。また、第3の発明ではBを0.00
1〜0.01%、Tiを0.005〜0.30%添加
し、かつ、Siを4〜6%含むアルミ合金とした。ま
た、第4の発明ではビレット用金型を給湯方向に対して
略直角方向に微小振動させながら給湯する構成とした。
In order to solve such a problem, according to the present invention, a hypoeutectic aluminum alloy having a composition of the maximum solid solution limit or more, and the temperature at the time of hot water supply for a billet die is The aluminum alloy melt is cooled and solidified in the mold at a superheating degree of not less than the liquidus line and in a temperature range not exceeding 30 ° C from the liquidus line, and at a solidification section cooling rate of 1 ° C / sec or more. After the billet is cast by heating, the billet is heated to a temperature higher than the eutectic temperature, and the liquid phase ratio is set to 20 by selecting the holding time and the holding temperature.
After the primary crystal was spheroidized to about 80%, the billet having the liquid phase ratio in a semi-molten state was supplied to a molding die for pressure molding. In the second invention, B is 0.001
.About.0.01% and 0.005 to 0.30% of Ti was added to the aluminum alloy. Further, in the third invention, B is 0.00
1 to 0.01%, 0.005 to 0.30% of Ti, and 4 to 6% of Si were used as an aluminum alloy. Further, in the fourth aspect of the invention, the billet mold is configured to supply hot water while slightly vibrating in a direction substantially perpendicular to the hot water supply direction.

【0005】[0005]

【作用】最大固溶限以上の組成のアルミ合金の溶湯温度
を、液相線温度に対して過熱度を30℃未満にし、1℃
/秒以上の凝固区間冷却速度で鋳造することにより微細
な等軸晶を有するビレットを得ることができる。該ビレ
ットを共晶温度以上に昇温し、保持時間、保持温度の選
択により液相率を20〜80%にすることで初晶を球状
化し、加圧成形することにより均質な組織の成形体が得
られる。
[Function] The temperature of the molten aluminum alloy having a composition above the maximum solid solubility limit is set to a superheat degree of less than 30 ° C. with respect to the liquidus temperature, and 1 ° C.
A billet having fine equiaxed crystals can be obtained by casting at a solidification zone cooling rate of not less than 1 sec. The billet is heated to a temperature higher than the eutectic temperature, the liquid phase ratio is set to 20 to 80% by selecting the holding time and the holding temperature to make the primary crystal spherical, and a molded body having a homogeneous structure by pressure molding. Is obtained.

【0006】[0006]

【実施例】以下図面に基づいて本発明の実施例の詳細に
ついて説明する。図1〜図4は本発明の実施例に係り、
図1は半溶融金属の成形方法を示す工程説明図、図2は
蛇型試料用金型の正面図、図3は代表的なアルミ合金の
平衡状態図、図4は本発明の成形品の金属組織を示す顕
微鏡写真、図5は従来成形法により得られた比較例の金
属組織を示す顕微鏡写真を示す。本発明においては、ア
ルミ合金を対象として、図1や図3に示すように、まず
最大固溶限以上の組成を有するアルミ合金を、ビレット
用金型へ給湯する時温度が液相線以上で、しかも液相線
より30℃を超えない温度領域内の状態にして、ヒレッ
ト用金型へ静かに注入する。ビレット用金型内における
溶湯の冷却速度は1℃/秒以上に管理する。このように
して、冷却固化して室温となって得られたビレットを、
次に室温から、共晶温度以上に昇温し、保持時間、保持
温度を選択することにより液相率を20〜80%にして
初晶を球状化する。次に半溶融状態になったビレットを
加圧成形して成形品を作る。図1に示す本発明と図6に
示す従来のチクソ法(一例)の違いは図より明らかなよ
うに、本発明では、ビレット製造工程において微細結晶
粒を特徴とする金属組織を得、ついで共晶温度以上に昇
温後、所定時間保持して所定の量の液相を生成し、該組
織の特徴を生かして初晶を速やかに球状化させ、その後
半溶融成形を行う。一方、従来チクソ法では、ビレット
製造工程においてすでに球状化した初晶が得られてお
り、共晶温度以上に昇温後、所定時間保持して液相を生
成させ、その後半溶融成形を行う。すなわち、本発明に
おける共晶温度以上での保持は、単に液相を生成するた
めだけではなく、球状化するためにも行われる。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 4 relate to an embodiment of the present invention,
FIG. 1 is a process explanatory view showing a method for forming a semi-molten metal, FIG. 2 is a front view of a mold for a serpentine sample, FIG. 3 is a diagram showing a typical equilibrium state of an aluminum alloy, and FIG. 4 is a molded product of the present invention. A micrograph showing a metal structure, and FIG. 5 shows a micrograph showing a metal structure of a comparative example obtained by a conventional molding method. In the present invention, as shown in FIGS. 1 and 3, for an aluminum alloy, first, when an aluminum alloy having a composition higher than the maximum solid solution limit is supplied to a billet mold at a temperature higher than the liquidus line. Moreover, while keeping the temperature within a temperature range not exceeding 30 ° C. from the liquidus, gently inject it into the mold for the hillet. The cooling rate of the molten metal in the billet mold is controlled to 1 ° C / sec or more. In this way, the billet obtained by cooling and solidifying to room temperature is
Next, the temperature is raised from room temperature to a temperature higher than the eutectic temperature, and the holding time and the holding temperature are selected to make the liquid phase ratio 20 to 80% and the primary crystal is made spherical. Next, the billet in the semi-molten state is pressure-molded to form a molded product. As is clear from the figure, the difference between the present invention shown in FIG. 1 and the conventional thixotropic method (one example) shown in FIG. 6 is that in the present invention, a metallic structure characterized by fine crystal grains is obtained in the billet manufacturing process, and After the temperature is raised to the crystal temperature or higher, a predetermined amount of liquid phase is generated by holding the crystal for a predetermined time, the primary crystal is swiftly spheroidized by utilizing the feature of the structure, and the latter half melt molding is performed. On the other hand, in the conventional thixo method, spheroidized primary crystals have already been obtained in the billet manufacturing process, and after the temperature has been raised to the eutectic temperature or higher, the liquid phase is generated by holding for a predetermined time, and the latter half melt molding is performed. That is, the holding at the eutectic temperature or higher in the present invention is performed not only for producing the liquid phase but also for spheroidizing.

【0007】上述した各工程、すなわち、図1に示すビ
レット製造工程、加熱工程、成形工程のそれぞれにおい
て設定された鋳造条件、球状化および成形条件や第2の
発明、第3の発明、第4の発明で示した数値限定理由に
ついて以下に説明する。鋳造温度が融点に対して30℃
を超えれば、あるいは凝固区間冷却速度が1℃/秒未満
であれば微細化剤がたとえ含まれていても、微細な等軸
晶が得られない。このため、鋳造温度は液相線に対する
過熱度が30℃未満とし、凝固区間冷却速度は1℃/秒
以上とする。液相率が20%未満であれば初晶の球状化
が容易に進行せず、また変形抵抗が高いため加圧成形が
容易でなく良好な外観の成形材が得られない。また80
%を超えると、ビレットが元の形状を十分には維持でき
ない、あるいは均一な組織を有する成形材を得ることが
できないという問題がある。このため、共晶温度以上の
半溶融温度域での液相率は20〜80%とする。さらに
詳しくは、共晶温度における液相率が20%未満である
組成の合金では共晶温度よりも高い温度領域に所定時間
加熱し、また共晶温度における液相発生量が20〜80
%である組成の合金では共晶温度以上の温度領域に所定
時間加熱し、また共晶温度における液相率が80%を超
え100%未満である組成の合金では共晶温度で所定時
間加熱し、実質の液相率を20〜80%にして初晶を球
状化後、半溶融状態になったビレットを成形用金型に供
給して加圧成形することとした。なお、実質の液相率を
30〜70%にすることにより、さらに均質な成形材を
容易に成形できるのでより好ましい。鋳造温度を低く抑
えることにより結晶は微細化するが、さらに微細化させ
るためにTi、Bを添加する。Tiが0.005%未満
では微細化効果は小さく、0.30%を超えれば粗大な
Ti化合物が発生し延性が低下するので、Tiは0.0
05〜0.30%とする。BはTiと相俟って微細化を
促進するが0.001%未満であれば結晶粒が微細化せ
ず、0.01%を超えて添加してもそれ以上の効果を期
待できないので、Bは0.001〜0.01%とする。
Siが6%未満では初晶の形態は花びら状であるため、
半溶融温度域に保持することにより容易に球状化する。
また、4%未満では強度が不足する。このためSiは4
〜6%とする。
Casting conditions, spheroidizing and molding conditions set in each of the above-mentioned processes, ie, the billet manufacturing process, the heating process, and the molding process shown in FIG. 1, the second invention, the third invention, and the fourth invention. The reason for limiting the numerical values shown in the invention will be described below. Casting temperature is 30 ° C against melting point
Or if the solidification zone cooling rate is less than 1 ° C./sec, fine equiaxed crystals cannot be obtained even if the refiner is included. Therefore, the casting temperature is set so that the degree of superheat with respect to the liquidus is less than 30 ° C, and the solidification section cooling rate is set to 1 ° C / sec or more. If the liquid phase ratio is less than 20%, the spheroidization of primary crystals does not easily proceed, and since the deformation resistance is high, pressure molding is not easy and a molding material having a good appearance cannot be obtained. Again 80
If it exceeds%, there is a problem that the billet cannot sufficiently maintain its original shape or a molding material having a uniform structure cannot be obtained. Therefore, the liquid phase ratio in the semi-melting temperature range above the eutectic temperature is set to 20 to 80%. More specifically, in an alloy having a composition having a liquid phase ratio of less than 20% at the eutectic temperature, the alloy is heated to a temperature region higher than the eutectic temperature for a predetermined time, and the liquid phase generation amount at the eutectic temperature is 20 to 80.
% Alloys are heated to a temperature region above the eutectic temperature for a predetermined time, and alloys with a liquid phase ratio at the eutectic temperature of more than 80% and less than 100% are heated at the eutectic temperature for a predetermined time. After making the actual liquid phase rate 20 to 80% and spheroidizing the primary crystal, the billet in a semi-molten state was supplied to a molding die for pressure molding. It is more preferable to set the substantial liquid phase ratio to 30 to 70% because a more homogeneous molding material can be easily molded. The crystals are made finer by suppressing the casting temperature to a low level, but Ti and B are added for further refinement. If Ti is less than 0.005%, the effect of refining is small, and if it exceeds 0.30%, a coarse Ti compound is generated and ductility is deteriorated.
05 to 0.30%. B, together with Ti, promotes the refinement, but if it is less than 0.001%, the crystal grains are not refined, and if it is added in excess of 0.01%, no further effect can be expected. B is 0.001 to 0.01%.
If the Si content is less than 6%, the primary crystal has a petal-like shape,
Sphericalization is easily achieved by maintaining the temperature in the semi-melting temperature range.
If it is less than 4%, the strength is insufficient. Therefore, Si is 4
-6%.

【0008】次に、第4の発明では、ビレット用金型に
溶湯を給湯する時、給湯方向とほぼ直角方向に、例えば
1〜200G、振幅1μm〜10mm程度の微小振動を
ビレット用金型に与える。加振方法はエアバイブレーシ
ョンなどどのようなものでもよい。このような微小振動
を給湯時に溶湯に与えると、より微細な結晶粒の素材が
得られ好ましい。図2は、試験片採取用の蛇型試料用金
型1の正面図であり、ゲート3より溶湯を注入し、内部
に発生したガスはエアベント2より脱気する。本発明に
より蛇型試料用金型1を用いて成形された各種の試験片
の比較表を表1に示す。表1に示すものは、各種の合金
における鋳造温度、微小振動の有無、加熱温度(本発明
では球状化処理温度)、液相率によって成形品の均質性
と成形品の外観に有意差が見られることを示しており、
本発明のサンプル(番号1〜8)は、比較例(番号9〜
14)と異なり、均質性と成形品の外観のいずれにおい
ても良好であることか判る。本発明のサンプルは図4に
示されるように、比較例の図5に比べて全域に亘って微
細均一である。一方、比較例9、10では液相率が少な
いため初晶の球状化が容易に進行しないため均一な組織
が得られず、また良好な外観の成形体も得られない。ま
た、比較例11、12では液相が多いため加熱時にビレ
ットが元の形を維持できずしかも成形体の組織は均一性
に欠ける。比較例13、14では鋳造温度が高いため、
ビレットの結晶粒径が大きく、そのために半溶融温度域
に保持しても初晶は容易に球状組織にならない。その結
果、組織は均一にならない。
Next, in the fourth aspect of the invention, when the molten metal is supplied to the billet mold, a minute vibration of, for example, 1 to 200 G and an amplitude of 1 μm to 10 mm is applied to the billet mold in a direction substantially perpendicular to the hot water supply direction. give. Any vibration method such as air vibration may be used. It is preferable to give such a minute vibration to the molten metal at the time of hot water supply because a material having finer crystal grains can be obtained. FIG. 2 is a front view of a snake-shaped sample mold 1 for collecting a test piece, in which molten metal is injected through a gate 3 and gas generated inside is degassed through an air vent 2. Table 1 shows a comparative table of various test pieces formed by using the mold 1 for a serpentine sample according to the present invention. Table 1 shows that there is a significant difference in the homogeneity of the molded product and the appearance of the molded product depending on the casting temperature of various alloys, the presence or absence of microvibration, the heating temperature (the spheroidizing temperature in the present invention), and the liquid phase ratio. It is indicated that
The samples (Nos. 1 to 8) of the present invention are comparative examples (Nos. 9 to 9).
It can be seen that, unlike 14), both the homogeneity and the appearance of the molded product are good. As shown in FIG. 4, the sample of the present invention is fine and uniform over the entire area as compared with FIG. 5 of the comparative example. On the other hand, in Comparative Examples 9 and 10, since the liquid phase ratio is low, the spheroidization of the primary crystal does not easily proceed, so that a uniform structure cannot be obtained and a molded product having a good appearance cannot be obtained. Further, in Comparative Examples 11 and 12, the billet cannot maintain its original shape when heated because of the large amount of liquid phase, and the structure of the molded body lacks uniformity. Since the casting temperature is high in Comparative Examples 13 and 14,
Since the crystal grain size of the billet is large, the primary crystal does not easily form a spherical structure even if kept in the semi-melting temperature range. As a result, the texture is not uniform.

【0009】[0009]

【発明の効果】以上説明したことからも明らかなよう
に、本発明に係わる半溶融金属の成形方法では、鋳造直
前の過熱度が液相線に対して30℃未満で、必要に応じ
て微小振動を与えながら鋳造した最大固溶限以上の組成
のアルミ合金あるいはTi、B添加アルミ合金あるいは
Si限定アルミ合金の溶湯を1℃/秒以上の凝固区間冷
却速度で鋳造した後、該ビレットを共晶温度以上に昇温
し保持温度、保持時間の選択により液相率20〜80%
にして初晶を球状化した後、半溶融状態のビレットを加
圧成形したことにより、従来の機械攪拌法、電磁攪拌法
によらず、簡便容易にかつ低コストでチクソ組織を有す
る微細均一な優れた成形体を得ることができる。
As is apparent from the above description, in the method for forming a semi-molten metal according to the present invention, the degree of superheat immediately before casting is less than 30 ° C. with respect to the liquidus, and if necessary, a small amount is required. After casting a molten aluminum alloy having a composition higher than the maximum solid solution limit, Ti, B-added aluminum alloy, or Si-limited aluminum alloy at a cooling rate of 1 ° C / sec or more, the billet was co-cast with vibration. Liquid phase ratio of 20-80% depending on the holding temperature and holding time
After spheroidizing the primary crystal, the semi-molten billet was pressure-molded, so that a fine and uniform thixostructure having a thixostructure can be obtained easily and at low cost, regardless of the conventional mechanical stirring method or electromagnetic stirring method. An excellent molded product can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる半溶融金属の成形方法
を示す工程説明図である。
FIG. 1 is a process explanatory view showing a method of forming a semi-molten metal according to an embodiment of the present invention.

【図2】本発明の実施例に係わる蛇型試料用金型の正面
図である。
FIG. 2 is a front view of a mold for a serpentine sample according to an example of the present invention.

【図3】本発明の実施例に係わる代表的なアルミ合金の
平衡状態図である。
FIG. 3 is an equilibrium state diagram of a typical aluminum alloy according to an example of the present invention.

【図4】本発明の実施例に係る成形品の金属組織を示す
顕微鏡写真図である。
FIG. 4 is a micrograph showing a metal structure of a molded product according to an example of the present invention.

【図5】従来成形法による成形品(比較品)の金属組織
を示す顕微鏡写真図である。
FIG. 5 is a micrograph showing a metal structure of a molded product (comparative product) manufactured by a conventional molding method.

【図6】従来成形法を示す工程説明図である。FIG. 6 is a process explanatory view showing a conventional molding method.

【符号の説明】[Explanation of symbols]

1 蛇型試料用金型 2 エアベント 3 ゲート 1 Snake-shaped sample mold 2 Air vent 3 Gate

【表1】 [Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 最大固溶限以上の組成の亜共晶アルミ合
金であって、ビレット用金型給湯時の温度は過熱度が液
相線以上で、かつ該液相線より30℃を超えない温度領
域であり、かつ1℃/秒以上の凝固区間冷却速度で該金
型内で前記アルミ合金溶湯を冷却固化してビレットを鋳
造した後、該ビレットを共晶温度以上に昇温し、保持時
間、保持温度の選択により液相率を20〜80%にして
初晶を球状化した後、半溶融状態になった該液相率のビ
レットを成形用金型に供給して加圧成形することを特徴
とする半溶融金属の成形方法。
1. A hypoeutectic aluminum alloy having a composition of at least the maximum solid solution limit, and the temperature at the time of supplying hot water to the billet mold is such that the degree of superheat is above the liquidus and exceeds 30 ° C. above the liquidus. In a temperature range that is not present, and after cooling and solidifying the molten aluminum alloy in the mold at a solidification section cooling rate of 1 ° C./second or more to cast a billet, the billet is heated to a eutectic temperature or higher, After selecting the holding time and holding temperature to make the liquid phase ratio 20 to 80% and making the primary crystal spherical, the billet having the liquid phase ratio in the semi-molten state is supplied to a molding die and pressure-molded. A method for forming a semi-molten metal, comprising:
【請求項2】 アルミ合金は、Bを0.001〜0.0
1%、Tiを0.005〜0.30%添加したアルミ合
金とした請求項1記載の半溶融金属の成形方法。
2. An aluminum alloy containing B in an amount of 0.001 to 0.0
The method for forming a semi-molten metal according to claim 1, wherein the aluminum alloy is an aluminum alloy containing 1% and 0.005 to 0.30% Ti.
【請求項3】 アルミ合金は、Bを0.001〜0.0
1%、Tiを0.005〜0.30%添加し、かつ、S
iを4〜6%含むアルミ合金とした請求項1記載の半溶
融金属の成形方法。
3. An aluminum alloy containing B in an amount of 0.001 to 0.0
1%, 0.005 to 0.30% of Ti is added, and S
The method for forming a semi-molten metal according to claim 1, wherein the aluminum alloy contains i of 4 to 6%.
【請求項4】 ビレット用金型を給湯方向に対して略直
角方向に微小振動させながら給湯する請求項1、請求項
2、または請求項3記載の半溶融金属の成形方法。
4. The method for forming a semi-molten metal according to claim 1, claim 2, or claim 3, wherein the billet mold is supplied with hot water while slightly vibrating in a direction substantially perpendicular to the direction of hot water supply.
JP27190894A 1994-09-09 1994-09-30 Forming method of semi-molten metal Expired - Fee Related JP3216685B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27190894A JP3216685B2 (en) 1994-09-30 1994-09-30 Forming method of semi-molten metal
NO950843A NO950843L (en) 1994-09-09 1995-03-03 Method of Treating Metal in Semi-Solid State and Method of Casting Metal Bars for Use in This Method
EP95103276A EP0701002A1 (en) 1994-09-09 1995-03-07 Process for moulding aluminium- or magnesiumalloys in semi-solidified state
US08/683,023 US5701942A (en) 1994-09-09 1996-07-15 Semi-solid metal processing method and a process for casting alloy billets suitable for that processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27190894A JP3216685B2 (en) 1994-09-30 1994-09-30 Forming method of semi-molten metal

Publications (2)

Publication Number Publication Date
JPH08103859A true JPH08103859A (en) 1996-04-23
JP3216685B2 JP3216685B2 (en) 2001-10-09

Family

ID=17506565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27190894A Expired - Fee Related JP3216685B2 (en) 1994-09-09 1994-09-30 Forming method of semi-molten metal

Country Status (1)

Country Link
JP (1) JP3216685B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505251A (en) * 1999-07-26 2003-02-12 アルカン・インターナショナル・リミテッド Semi-solid thickening of metal alloy
KR20060006303A (en) * 2004-07-15 2006-01-19 키스타 주식회사 Manufacturing method of al-ti alloy sputtering target for reflection layer of optical disk
JP2007216239A (en) * 2006-02-14 2007-08-30 National Institute For Materials Science Casting method
JP2014213330A (en) * 2013-04-23 2014-11-17 愛三工業株式会社 Production method of semi-solidified metal slurry

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505251A (en) * 1999-07-26 2003-02-12 アルカン・インターナショナル・リミテッド Semi-solid thickening of metal alloy
JP5010080B2 (en) * 1999-07-26 2012-08-29 リオ ティント アルカン インターナショナル リミテッド Semi-solid thickening of metal alloys
KR20060006303A (en) * 2004-07-15 2006-01-19 키스타 주식회사 Manufacturing method of al-ti alloy sputtering target for reflection layer of optical disk
JP2007216239A (en) * 2006-02-14 2007-08-30 National Institute For Materials Science Casting method
JP2014213330A (en) * 2013-04-23 2014-11-17 愛三工業株式会社 Production method of semi-solidified metal slurry

Also Published As

Publication number Publication date
JP3216685B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US5701942A (en) Semi-solid metal processing method and a process for casting alloy billets suitable for that processing method
US5846350A (en) Casting thermal transforming and semi-solid forming aluminum alloys
EP0841406B1 (en) Method of shaping semisolid metals
JPH08187547A (en) Production of metallic slurry for casting
US5911843A (en) Casting, thermal transforming and semi-solid forming aluminum alloys
US5968292A (en) Casting thermal transforming and semi-solid forming aluminum alloys
JP3246363B2 (en) Forming method of semi-molten metal
JP3246296B2 (en) Forming method of semi-molten metal
JPH08103859A (en) Formation of half-melting metal
JP3246273B2 (en) Forming method of semi-molten metal
JP3246358B2 (en) Forming method of semi-molten metal
JP3216684B2 (en) Forming method of semi-molten metal
JP3473214B2 (en) Forming method of semi-molten metal
JP3053063B2 (en) Manufacturing method of aluminum alloy casting material suitable for semi-solid molding
JP3491468B2 (en) Method for forming semi-solid metal
JP2003126950A (en) Molding method of semi-molten metal
JP3536559B2 (en) Method for forming semi-solid metal
JP6975421B2 (en) Aluminum alloy manufacturing method
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JPH0987773A (en) Method for molding half-molten metal
US3744997A (en) Metallurgical grain refinement process
JPH09279266A (en) Method for precast forming metal
JP3246319B2 (en) Forming method of semi-molten metal
JP3339333B2 (en) Method for forming molten metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees