JP2007216239A - Casting method - Google Patents

Casting method Download PDF

Info

Publication number
JP2007216239A
JP2007216239A JP2006036967A JP2006036967A JP2007216239A JP 2007216239 A JP2007216239 A JP 2007216239A JP 2006036967 A JP2006036967 A JP 2006036967A JP 2006036967 A JP2006036967 A JP 2006036967A JP 2007216239 A JP2007216239 A JP 2007216239A
Authority
JP
Japan
Prior art keywords
molten metal
casting method
mold
vibration
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006036967A
Other languages
Japanese (ja)
Other versions
JP4836244B2 (en
Inventor
Yoshiaki Osawa
嘉昭 大澤
Susumu Takamori
晋 高森
Takashi Kimura
隆 木村
Kazuhiro Oda
和宏 織田
Yasuo Ishiwatari
保生 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
National Institute for Materials Science
Original Assignee
Nippon Light Metal Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, National Institute for Materials Science filed Critical Nippon Light Metal Co Ltd
Priority to JP2006036967A priority Critical patent/JP4836244B2/en
Publication of JP2007216239A publication Critical patent/JP2007216239A/en
Application granted granted Critical
Publication of JP4836244B2 publication Critical patent/JP4836244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting method with which in the casting method capable to restrain the generation of coarse intermetallic compound, the method can be applied to the various casting methods. <P>SOLUTION: Before becoming lower of the liquidus temperature in the molten metal 10, an ultrasonic vibration is given to the molten metal 10 and thereafter, the molten metal 10 is solidified. In the case of applying this invention to a continuous casting method, it is desirable to give the ultrasonic vibration in a holding furnace 12 and a flow passage 14, etc., from the holding furnace 12 to a mold 13. Further, in the case of applying this invention to a gravity casting method and a die casting method, it is desirable to give the ultrasonic vibration in the holding furnace and a ladle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋳造方法に関するものであり、特に不純物等の他の元素を多く含む金属の鋳造に適した鋳造方法に関する。   The present invention relates to a casting method, and more particularly to a casting method suitable for casting a metal containing many other elements such as impurities.

金属は、結晶が粗大であると機械的特性が低下する原因となる。例えばアルミニウム以外の元素(銅、珪素、鉄など)を含むアルミニウム合金を鋳造すると、凝固する過程でアルミニウムに比して非常に硬度が高い金属間化合物が形成される。これらの金属間化合物は、機械的強度等を向上させる作用もあるが、この金属間化合物が粗大であると、破壊の起点となり、アルミニウム合金の伸びが大きく低下してしまう。金属間化合物は、他の元素量が多いほど粗大化しやすい傾向にあり、金属製品を製造する場合には、不可避的に混入する他の元素量や特性向上のため添加する他の元素量を制限することが行われている。このため、不可避的に他の元素が混入しやすいスクラップ等のリサイクルには制限があった。   If the crystal is coarse, the metal causes a decrease in mechanical properties. For example, when an aluminum alloy containing an element other than aluminum (copper, silicon, iron, etc.) is cast, an intermetallic compound having a very high hardness compared to aluminum is formed in the process of solidification. These intermetallic compounds have an effect of improving mechanical strength and the like, but if this intermetallic compound is coarse, it becomes a starting point of fracture and the elongation of the aluminum alloy is greatly reduced. Intermetallic compounds tend to be coarser as the amount of other elements increases. When manufacturing metal products, the amount of other elements inevitably mixed in and the amount of other elements added to improve properties are limited. To be done. For this reason, there is a limit to the recycling of scraps that are inevitably mixed with other elements.

アルミニウム合金の凝固時(すなわち、液相線温度から固相線温度の間)に高周波の振動(超音波振動)を付与することで粗大な金属間化合物の生成を抑制する鋳造方法が特許文献1に開示されている。この鋳造方法は、鋳型に注入したアルミニウム合金に超音波振動を付与することで、凝固する過程で生成された金属間化合物(初晶)を微細化し、もって粗大な金属間化合物の生成を抑制するものである。
特開2004−209487号公報
Patent Document 1 discloses a casting method that suppresses the formation of coarse intermetallic compounds by applying high-frequency vibration (ultrasonic vibration) during solidification of an aluminum alloy (that is, between the liquidus temperature and the solidus temperature). Is disclosed. In this casting method, by applying ultrasonic vibration to the aluminum alloy injected into the mold, the intermetallic compound (primary crystal) produced during the solidification process is refined, thereby suppressing the formation of coarse intermetallic compounds. Is.
JP 2004-209487 A

特許文献1の鋳造方法においては、超音波振動を発生する振動発生器(超音波振動ホーン)を鋳型に設ける必要があるが、鋳型の構造が複雑である場合やキャビティ形状が複雑で狭小である場合などには、振動発生器を設置することができない場合もある。また、アルミニウムの連続鋳造(DC鋳造等)のように、多数の鋳型に同時に鋳込む場合には、個々の鋳型ごとに振動発生器を設置しなければならない。なお、振動発生器を鋳型に設置することができない場合には、当然のことながら特許文献1の鋳造方法を実施することができない。   In the casting method of Patent Document 1, it is necessary to provide a vibration generator (ultrasonic vibration horn) for generating ultrasonic vibrations in the mold, but the mold structure is complicated or the cavity shape is complicated and narrow. In some cases, it may not be possible to install a vibration generator. Further, when casting into a large number of molds at the same time as in continuous casting of aluminum (DC casting or the like), a vibration generator must be installed for each mold. In addition, when a vibration generator cannot be installed in a casting_mold | template, naturally the casting method of patent document 1 cannot be implemented.

また、特許文献1の鋳造方法では、凝固したアルミニウム合金に振動発生器が埋没しないように、鋳型内のアルミニウム合金に流動性があるうちに振動発生器を取り外す必要があるので、手順が煩雑になるし、キャビティ形状やアルミニウム合金の種類ごとに凝固が完了するまでの時間が異なるので、キャビティ形状等が変わる度に手間と時間とをかけて振動発生器を取り外すタイミングを設定し直さなければならない。   Further, in the casting method of Patent Document 1, it is necessary to remove the vibration generator while the aluminum alloy in the mold is fluid so that the vibration generator is not buried in the solidified aluminum alloy, so the procedure is complicated. However, the time until solidification is completed differs depending on the cavity shape and the type of aluminum alloy, so every time the cavity shape changes, it takes time and effort to reset the timing to remove the vibration generator. .

さらに、特許文献1の鋳造方法においては、振動発生器の取り外しを可能とするための機構を鋳型に設ける必要があるが、このような機構を設けると、鋳型の構造が複雑になり、コストの上昇を招来することになる。   Furthermore, in the casting method of Patent Document 1, it is necessary to provide the mold with a mechanism for enabling the vibration generator to be removed. However, if such a mechanism is provided, the structure of the mold becomes complicated and the cost is reduced. It will cause a rise.

また、超音波振動を付与する時間が短いと、金属間化合物の微細化が不十分になる虞があるので、凝固時間の短い金型鋳造法(重力金型鋳造法、ダイカスト法など)において凝固時に超音波振動を付与するのは、至難の業である。   In addition, if the time for applying ultrasonic vibration is short, the intermetallic compound may not be sufficiently refined, so solidification can occur in die casting methods (gravity die casting method, die casting method, etc.) with a short solidification time. Sometimes applying ultrasonic vibrations is a difficult task.

また、凝固時に超音波振動を付与すると、金属間化合物の晶出が促進されて溶湯の流動性が低下するので、キャビティ形状が複雑である場合やキャビティに狭小部分がある場合には、湯回り不良を起こす虞もある。   In addition, when ultrasonic vibration is applied during solidification, crystallization of the intermetallic compound is promoted and the fluidity of the molten metal is lowered, so if the cavity shape is complex or the cavity has a narrow part, There is also a risk of failure.

なお、前記した問題は、アルミニウム合金の場合に限らず、純アルミニウム、鉄(鋳鉄)、銅、亜鉛その他の金属・合金を鋳造する際に共通して当てはまる問題である。   The above-described problem is not limited to the case of an aluminum alloy, but is a problem that is commonly applied when casting pure aluminum, iron (cast iron), copper, zinc or other metals / alloys.

このような観点から、本発明は、金属間化合物やα相結晶粒の粗大化を抑制することが可能な鋳造方法であって、連続鋳造法、重力鋳造法、ダイカスト法、低圧鋳造法、プロペルチ法その他の鋳造法に容易に適用することが可能な鋳造方法を提供することを課題とする。   From this point of view, the present invention is a casting method capable of suppressing the coarsening of intermetallic compounds and α-phase crystal grains, and is a continuous casting method, gravity casting method, die casting method, low pressure casting method, It is an object of the present invention to provide a casting method that can be easily applied to other casting methods.

前記したように、粗大な金属間化合物の生成を抑制するためには、アルミニウム合金の凝固時(すなわち、液相線温度から固相線温度の間)に超音波振動を付与するこが必要であると考えられていたところ、本発明者らは、鋭意研究を行った結果、溶湯に金属間化合物(初晶)が生成される前に超音波振動を付与することでも、粗大な金属間化合物の生成を抑制できることを見出し、本発明を創案するに至った。すなわち、本発明に係る鋳造方法は、溶湯が液相線温度を下回る前に、前記溶湯に超音波振動を付与し、その後、前記溶湯を凝固させることを特徴とする。   As described above, in order to suppress the formation of coarse intermetallic compounds, it is necessary to apply ultrasonic vibration during the solidification of the aluminum alloy (that is, between the liquidus temperature and the solidus temperature). As a result of intensive studies, the present inventors have conducted extensive research, and even by applying ultrasonic vibration before the intermetallic compound (primary crystal) is generated in the molten metal, the coarse intermetallic compound can be obtained. The inventors have found that the generation of can be suppressed, and have come up with the present invention. That is, the casting method according to the present invention is characterized in that ultrasonic vibration is applied to the molten metal before the molten metal falls below the liquidus temperature, and then the molten metal is solidified.

要するに、本発明は、超音波振動を付与した溶湯を凝固させる鋳造方法であって、液相線温度以上に保たれた溶湯に超音波振動を付与する振動付与過程を含むことを特徴とする。すなわち、本発明は、生成した晶出物(金属間化合物やα相結晶粒)を超音波振動で粉砕するのではなく、液相線温度よりも高温の溶湯中においてエンブリオの数を増大させることで、晶出物の微細化を図るものである。溶湯を液相線温度以下に冷却すると、溶湯内に存在するエンブリオが結晶核に成長し、この結晶核を核として金属間化合物の晶出物が生成されることになるので、エンブリオの数が増大すれば、一つ一つの金属間化合物が微細化し、金属間化合物やα相結晶粒の粗大化が抑制されることになる。そして、粗大な金属間化合物の生成が抑制されれば、靭性の高い鋳造品(鋳物)を得ることが可能となる。   In short, the present invention is a casting method for solidifying a molten metal imparted with ultrasonic vibrations, and includes a vibration imparting process for imparting ultrasonic vibrations to a molten metal maintained at a liquidus temperature or higher. That is, the present invention increases the number of embryos in a molten metal having a temperature higher than the liquidus temperature, rather than pulverizing the produced crystallized product (intermetallic compound or α phase crystal grain) by ultrasonic vibration. Thus, the crystallization product is refined. When the molten metal is cooled below the liquidus temperature, the embryos present in the molten metal grow into crystal nuclei, and crystallites of intermetallic compounds are generated using these crystal nuclei as nuclei. If it increases, each intermetallic compound becomes finer, and coarsening of the intermetallic compound and α-phase crystal grains is suppressed. And if the production | generation of a coarse intermetallic compound is suppressed, it will become possible to obtain a cast product (casting) with high toughness.

従来の鋳造方法においては、溶湯が液相線温度を下回って凝固を開始する時点では超音波振動を付与している必要があったことから、超音波振動を発生する振動発生器(超音波振動ホーンなど)の設置位置が鋳型に限定されていたのに対し、本発明においては、溶湯が液相線温度以上となっている位置で超音波振動を付与すればよいので、振動発生器の設置位置が鋳型に限定されることはなく、溶湯が液相線温度以上となる保持炉、保持炉から鋳型へ至る流路、保温炉、ラドルなどに設置することもできる。したがって、例えば、鋳型の構造が複雑である場合やキャビティ形状が複雑で狭小な場合には、振動発生器を保持炉や保温炉に設置することで、簡単且つ確実に超音波振動を付与することができる。このように、本発明によれば、超音波振動を発生する振動発生器の設置位置を比較的自由に設定することができるので、連続鋳造法、重力鋳造法、ダイカスト法、低圧鋳造法その他の鋳造法において、粗大な金属間化合物の少ない鋳造品を簡単に得ることが可能となる。   In the conventional casting method, it is necessary to apply ultrasonic vibration when the molten metal starts to solidify below the liquidus temperature. Therefore, a vibration generator that generates ultrasonic vibration (ultrasonic vibration) Whereas the installation position of the horn or the like is limited to the mold, in the present invention, it is only necessary to apply ultrasonic vibration at a position where the molten metal is above the liquidus temperature. The position is not limited to the mold, and it can be installed in a holding furnace where the molten metal has a liquidus temperature or higher, a flow path from the holding furnace to the mold, a heat holding furnace, a ladle, and the like. Therefore, for example, when the mold structure is complicated or the cavity shape is complicated and narrow, ultrasonic vibration can be easily and reliably applied by installing the vibration generator in a holding furnace or a heat retaining furnace. Can do. As described above, according to the present invention, the installation position of the vibration generator that generates ultrasonic vibrations can be set relatively freely. Therefore, the continuous casting method, the gravity casting method, the die casting method, the low pressure casting method, and the like. In the casting method, it is possible to easily obtain a cast product with less coarse intermetallic compounds.

溶湯を連続的に鋳込む連続鋳造法などに本発明を適用する場合には、保持炉、保持炉から鋳型に至る流路、保持炉から鋳型に至る流路に設けた貯留槽などにおいて超音波振動を付与することが望ましい。また、重力鋳造法に本発明を適用する場合には、保温炉、ラドルおよび湯溜りの少なくとも一箇所において超音波振動を付与することが望ましいが、重力鋳造法であっても砂型などのように冷却能の低い鋳型を用いる場合には、鋳型に注湯した後に、押湯部にて超音波振動を付与してもよい。また、砂型に比べて冷却能が高い金型を用いる場合(重力金型鋳造法、ダイカスト法など)には、保温炉、ラドルおよび湯溜りの少なくとも一箇所において超音波振動を付与することが望ましい。   When the present invention is applied to a continuous casting method for continuously casting molten metal, ultrasonic waves are used in a holding furnace, a flow path from the holding furnace to the mold, a storage tank provided in a flow path from the holding furnace to the mold, and the like. It is desirable to apply vibration. In addition, when the present invention is applied to the gravity casting method, it is desirable to apply ultrasonic vibrations in at least one place of the heat-retaining furnace, the ladle, and the puddle. When using a mold having a low cooling ability, ultrasonic vibration may be applied at the feeder after pouring into the mold. In addition, when using a mold having a higher cooling ability than the sand mold (gravity mold casting method, die casting method, etc.), it is desirable to apply ultrasonic vibrations in at least one of the heat-retaining furnace, the ladle, and the sump. .

本発明に係る鋳造方法によれば、種々の鋳造法において金属間化合物やα相結晶粒の粗大化を抑制することが可能となる。   According to the casting method of the present invention, it is possible to suppress coarsening of intermetallic compounds and α-phase crystal grains in various casting methods.

以下、本発明を実施するための最良の形態を、添付した図面を参照しつつ詳細に説明する。なお、以下の説明においては、同一の要素には同一の符号を付し、重複する説明は適宜省略する。また、以下の各実施形態においては、アルミニウム合金を鋳造する場合を例示するが、アルミニウム合金に限らず、純アルミニウム、鉄(鋳鉄)、銅、亜鉛その他の金属・合金を鋳造する際に応用できることは言うまでもない。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the following description, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. Further, in each of the following embodiments, the case of casting an aluminum alloy is exemplified, but the present invention is not limited to an aluminum alloy, but can be applied when casting pure aluminum, iron (cast iron), copper, zinc and other metals and alloys. Needless to say.

(第一の実施形態)
第一の実施形態では、本発明に係る鋳造方法をDC連続鋳造法に適用した場合を例示する。図1は、第一の実施形態に係る鋳造方法を実施可能なDC連続鋳造装置1を示す模式図である。DC連続鋳造装置1は、アルミニウム合金製の地金を溶解して溶湯10を生成する溶解炉11と、この溶解炉11で生成された溶湯10の成分調整、脱ガス処理、静置などを行う保持炉12と、鋳型13と、保持炉12から鋳型13に至る樋(流路)14と、保持炉12に設けられた振動発生器15と、を備えている。
(First embodiment)
In 1st embodiment, the case where the casting method which concerns on this invention is applied to DC continuous casting method is illustrated. FIG. 1 is a schematic diagram showing a DC continuous casting apparatus 1 capable of performing the casting method according to the first embodiment. The DC continuous casting apparatus 1 performs a melting furnace 11 that melts an aluminum alloy ingot to generate a molten metal 10, and performs component adjustment, degassing treatment, and standing of the molten metal 10 generated in the melting furnace 11. A holding furnace 12, a mold 13, a rod (flow path) 14 extending from the holding furnace 12 to the mold 13, and a vibration generator 15 provided in the holding furnace 12 are provided.

溶解炉11は、アルミニウムの地金やスクラップを液相線温度以上に熱して溶解させ、溶湯10を生成するものである。溶湯10は、脱滓処理後に保持炉12に移湯される。移湯完了後、保持炉12において、成分調整、脱ガス処理等が行われる。溶湯10は、保持炉12でしばらく静置された後、樋14を通って、鋳型13に注がれる。   The melting furnace 11 heats and melts an aluminum ingot or scrap to a liquidus temperature or higher to generate a molten metal 10. The molten metal 10 is transferred to the holding furnace 12 after the degassing process. After completion of the hot water transfer, component adjustment, degassing processing, and the like are performed in the holding furnace 12. The molten metal 10 is allowed to stand for a while in the holding furnace 12, and then poured into the mold 13 through the trough 14.

振動発生器15は、超音波振動(16KHz以上の弾性振動波)を発生するものであり、高周波の電気信号を生成する発振器、この発振器により生成された電気信号を機械的な振動に変換する振動子、この振動子の振動を増幅するホーンなどを備えて構成されている。なお、ホーンは、溶湯10に浸漬されるためセラミック(サイアロン等)で形成することが望ましい。   The vibration generator 15 generates ultrasonic vibration (elastic vibration wave of 16 KHz or more), an oscillator that generates a high-frequency electric signal, and a vibration that converts the electric signal generated by the oscillator into mechanical vibration. And a horn for amplifying the vibration of the vibrator. In addition, since the horn is immersed in the molten metal 10, it is desirable to form it with a ceramic (sialon etc.).

次に、本実施形態に係る鋳造方法を詳細に説明する。本実施形態に係る鋳造方法は、アルミニウム合金の溶湯10が液相線温度を下回る前に、溶湯10に超音波振動を付与し、その後、溶湯10を凝固させるものであり、溶解過程と、振動付与過程と、注湯過程と、凝固過程とを含んでいる。   Next, the casting method according to this embodiment will be described in detail. The casting method according to this embodiment applies ultrasonic vibration to the molten metal 10 before the molten aluminum alloy 10 falls below the liquidus temperature, and then solidifies the molten metal 10. It includes an application process, a pouring process, and a solidification process.

溶解過程は、アルミニウムやスクラップの地金から溶湯10を生成する過程であり、溶解炉11にて実行される。溶解過程で生成された溶湯10は、保持炉12に送られる。   The melting process is a process of generating the molten metal 10 from aluminum or scrap metal, and is performed in the melting furnace 11. The molten metal 10 generated in the melting process is sent to the holding furnace 12.

振動付与過程は、液相線温度以上に保たれた溶湯10に超音波振動を付与する過程であり、保持炉12にて実行される。超音波振動を付与するには、保持炉12に貯留された溶湯10に振動発生器15のホーンを浸漬し、かかる状態でホーンを振動させればよい。本実施形態では、溶湯10への超音波振動の付与は、溶湯10が保持炉12に滞留している間中、継続して行われる。液相線温度よりも高温の溶湯10に超音波振動を付与すると、結晶核の素となるエンブリオの生成が促進される。なお、超音波付与過程は、鋳造の際に行っても良い。その場合は、図示は省略するが、樋14への出湯口付近で超音波振動を付与することが好ましい。保持炉12の出湯口付近は、狭くなっているので、超音波振動を効率的に溶湯10に付与することが可能となる。   The vibration applying process is a process of applying ultrasonic vibration to the molten metal 10 maintained at the liquidus temperature or higher, and is executed in the holding furnace 12. In order to apply ultrasonic vibration, the horn of the vibration generator 15 may be immersed in the molten metal 10 stored in the holding furnace 12, and the horn may be vibrated in such a state. In the present embodiment, application of ultrasonic vibration to the molten metal 10 is continuously performed while the molten metal 10 stays in the holding furnace 12. When ultrasonic vibration is applied to the molten metal 10 having a temperature higher than the liquidus temperature, the generation of an embryo which is a source of crystal nuclei is accelerated. In addition, you may perform an ultrasonic provision process in the case of casting. In that case, although not shown in the figure, it is preferable to apply ultrasonic vibration in the vicinity of the hot water outlet to the bowl 14. Since the vicinity of the hot water outlet of the holding furnace 12 is narrow, ultrasonic vibration can be efficiently applied to the molten metal 10.

なお、保持炉12に貯留される溶湯10の温度Tが液相線温度Tよりも100℃を超えて高くなると、溶湯10内に形成されたエンブリオが消滅する虞があるので、保持炉12に貯留される溶湯10の温度Tは、T<T≦T+100℃の範囲に調節することが望ましい。また、保持炉12に貯留される溶湯10の温度Tが液相線温度Tよりも50℃を超えて高くなると、鋳型13における冷却時間が長くなるので、より好適には、T<T≦T+50℃の範囲に調節することが望ましい。また、超音波振動の付与時間は、5秒を下回ると、エンブリオの増加が期待できないので、5秒以上であることが望ましく、また、600秒を上回ると、製造時間が延びる場合があるので、600秒以下であることが望ましい。 If the temperature T of the molten metal 10 stored in the holding furnace 12 is higher than the liquidus temperature T 0 by more than 100 ° C., the embryo formed in the molten metal 10 may disappear. It is desirable to adjust the temperature T of the molten metal 10 stored in the range of T 0 <T ≦ T 0 + 100 ° C. Further, when the temperature T of the molten metal 10 to be stored in the holding furnace 12 is increased beyond 50 ° C. than the liquidus temperature T 0, the cooling time in the mold 13 becomes longer, and more preferably is, T 0 <T It is desirable to adjust to the range of ≦ T 0 + 50 ° C. Moreover, since the increase in the embryo cannot be expected if the application time of the ultrasonic vibration is less than 5 seconds, it is desirable that the application time is 5 seconds or more, and if it exceeds 600 seconds, the manufacturing time may be extended. It is desirable that it is 600 seconds or less.

注湯過程は、超音波振動が付与された溶湯10を鋳型13に鋳込む過程である。保持炉12から流出した溶湯10(すなわち、超音波振動が付与された溶湯10)は、樋14を通って鋳型13に注湯される。   The pouring process is a process of casting the molten metal 10 provided with ultrasonic vibration into the mold 13. The molten metal 10 that has flowed out of the holding furnace 12 (that is, the molten metal 10 to which ultrasonic vibration has been applied) is poured into the mold 13 through the trough 14.

凝固過程は、超音波振動が付与された溶湯10を凝固させる過程である。本実施形態においては、鋳型13が常に水冷されているので、鋳型13に接触した溶湯10は、急冷されて鋳塊10’となる。鋳塊10’は、引出装置16により下方に引き出される。なお、溶湯10を液相線温度以下に冷却すると、溶湯10に存在するエンブリオが結晶核に成長し、この結晶核を核として金属間化合物やα相結晶粒の晶出物が生成される。   The solidification process is a process of solidifying the molten metal 10 to which ultrasonic vibration is applied. In the present embodiment, since the mold 13 is always water-cooled, the molten metal 10 in contact with the mold 13 is rapidly cooled to become an ingot 10 '. The ingot 10 ′ is drawn downward by the drawing device 16. When the molten metal 10 is cooled below the liquidus temperature, the embryo existing in the molten metal 10 grows into a crystal nucleus, and an intermetallic compound or a crystallized product of α-phase crystal grains is generated using the crystal nucleus as a nucleus.

以上説明したように、本実施形態に係る鋳造方法においては、液相線温度以上に保持された溶湯10に超音波振動を付与し、溶湯10中のエンブリオの数を増大させることに特徴がある。すなわち、本実施形態に係る鋳造方法は、生成した晶出物(金属間化合物やα相結晶粒)を超音波振動で粉砕するのではなく、液相線温度よりも高温の溶湯中においてエンブリオの数を増大させることで、金属間化合物やα相結晶粒の晶出物の微細化を図るものである。このようにすると、金属間化合物やα相結晶粒が微細化し、粗大な金属間化合物やα相結晶粒の生成が抑制されるので、靭性の高い鋳造品(鋳物)を得ることが可能となる。   As described above, the casting method according to the present embodiment is characterized in that ultrasonic vibration is applied to the molten metal 10 held at the liquidus temperature or higher to increase the number of embryos in the molten metal 10. . That is, the casting method according to the present embodiment does not pulverize the produced crystallized product (intermetallic compound or α phase crystal grain) by ultrasonic vibration, but in Embryo in a molten metal having a temperature higher than the liquidus temperature. By increasing the number, the crystallized product of the intermetallic compound or α phase crystal grain is refined. In this way, the intermetallic compound and α phase crystal grains are refined and the formation of coarse intermetallic compound and α phase crystal grains is suppressed, so that it becomes possible to obtain a cast product (casting) with high toughness. .

なお、本実施形態に係るDC連続鋳造装置1は、既存の連続鋳造装置に軽微な改造を施すだけで得ることができる。すなわち、既存の連続鋳造装置の保持炉に振動発生器15を設置するだけで本実施形態に係る鋳造方法を実施することができる。   Note that the DC continuous casting apparatus 1 according to the present embodiment can be obtained by making a slight modification to an existing continuous casting apparatus. That is, the casting method according to this embodiment can be carried out simply by installing the vibration generator 15 in a holding furnace of an existing continuous casting apparatus.

本実施形態においては、保持炉12に振動発生器15を設け、保持炉12にて溶湯10に超音波振動を付与したが、これに限定されることはなく、例えば、図2に示すように、樋14に複数の振動発生器15を設け、樋14にて溶湯10に超音波振動を付与してもよいし、図示は省略するが、保持炉12と樋14とに振動発生器15を設け、保持炉12と樋14にて超音波振動を付与してもよい。なお、樋14にて超音波振動を付与する場合には、樋14を流れる溶湯10が液相線温度以上となるように、保持炉12の温度を管理する。   In the present embodiment, a vibration generator 15 is provided in the holding furnace 12, and ultrasonic vibration is applied to the molten metal 10 in the holding furnace 12, but the present invention is not limited to this. For example, as shown in FIG. In addition, a plurality of vibration generators 15 may be provided on the scissors 14, and ultrasonic vibrations may be applied to the molten metal 10 with the scissors 14, and although not shown, the vibration generators 15 are provided on the holding furnace 12 and the scissors 14. The ultrasonic vibration may be applied by the holding furnace 12 and the cage 14. In addition, when applying ultrasonic vibration with the scissors 14, the temperature of the holding furnace 12 is managed so that the molten metal 10 flowing through the scissors 14 becomes the liquidus temperature or higher.

また、図示は省略するが、樋14に溶湯10を貯留する貯留槽を設け、この貯留槽にて溶湯10に超音波振動を付与してもよい。貯留槽を設ければ、溶湯10の温度を保持炉12と異なる温度に設定することが可能となるので、保持炉12での超音波振動の付与が効果的でないと予測される場合(例えば、保持炉12における溶湯10の滞留時間が短い場合、保持炉12に貯留される溶湯10の温度が液相線温度よりも低い場合、液相線温度よりも100℃を超えて高い場合など)には、貯留槽に貯留される溶湯10の温度を超音波振動の付与に適した温度に調節することで、超音波振動を付与したことによる効果を向上させることが可能となる。   Moreover, although illustration is abbreviate | omitted, the storage tank which stores the molten metal 10 in the trough 14 may be provided, and ultrasonic vibration may be provided to the molten metal 10 in this storage tank. If the storage tank is provided, the temperature of the molten metal 10 can be set to a temperature different from that of the holding furnace 12, and therefore it is predicted that application of ultrasonic vibration in the holding furnace 12 is not effective (for example, When the residence time of the molten metal 10 in the holding furnace 12 is short, when the temperature of the molten metal 10 stored in the holding furnace 12 is lower than the liquidus temperature, when exceeding 100 ° C. above the liquidus temperature, etc.) Can adjust the temperature of the molten metal 10 stored in the storage tank to a temperature suitable for application of ultrasonic vibration, thereby improving the effect of applying ultrasonic vibration.

(第二の実施形態)
第二の実施形態では、本発明に係る鋳造方法をダイカスト法に適用した場合を例示する。本発明に係る鋳造方法をダイカスト法に適用する場合には、図3に示すように、保温炉(「手元炉」とも言う)21にて溶湯10に超音波振動を付与するとよい。
(Second embodiment)
In 2nd embodiment, the case where the casting method which concerns on this invention is applied to the die-casting method is illustrated. When the casting method according to the present invention is applied to the die casting method, as shown in FIG. 3, it is preferable to apply ultrasonic vibration to the molten metal 10 in a heat retaining furnace (also referred to as “hand furnace”) 21.

保温炉21は、図示せぬ溶解炉等で生成された溶湯10を液相線温度以上に保持するものである。保温炉21の内部は、内壁22によって、貯留室23と振動付与室24とに区分けされている。貯留室23と振動付与室24とは、内壁22に形成された開口22aを介して連通していて、振動付与室24に貯留された溶湯10がラドル25により汲み出されると、貯留室23に貯留された溶湯10が振動付与室24に供給されるようになっている。また、振動発生器15は、振動付与室24に設置されていて、振動付与室24に流入した溶湯10に超音波振動を付与する。保温炉21に内壁22を設けて振動付与室24を形成し、振動付与室24にて超音波振動を限定的に付与すれば、超音波振動が付与された溶湯10(すなわち、エンブリオの濃度が高い溶湯10)が保温炉21の全体に拡散することを防止することができるので、エンブリオの濃度が高い溶湯10を確実に汲み出すことが可能となる。   The heat retaining furnace 21 is for holding the molten metal 10 generated in a melting furnace (not shown) at a liquidus temperature or higher. The inside of the heat insulating furnace 21 is divided into a storage chamber 23 and a vibration applying chamber 24 by an inner wall 22. The storage chamber 23 and the vibration applying chamber 24 communicate with each other through an opening 22 a formed in the inner wall 22, and when the molten metal 10 stored in the vibration applying chamber 24 is pumped out by the ladle 25, The stored molten metal 10 is supplied to the vibration applying chamber 24. The vibration generator 15 is installed in the vibration applying chamber 24 and applies ultrasonic vibration to the molten metal 10 flowing into the vibration applying chamber 24. If the inner wall 22 is provided in the heat insulation furnace 21 to form the vibration applying chamber 24 and ultrasonic vibration is applied in a limited manner in the vibration applying chamber 24, the melt 10 to which the ultrasonic vibration is applied (that is, the concentration of the embryo is reduced). Since it is possible to prevent the high molten metal 10) from diffusing throughout the heat insulating furnace 21, it is possible to reliably pump out the molten metal 10 having a high concentration of embryo.

鋳型26は、可動ダイス26aと、この可動ダイス26aと型合せされる固定ダイス26bと、この固定ダイス26bが固定されるダイス取付板26cと、固定ダイス26bに形成された湯道26dに連通するシリンダ26eと、このシリンダ26eに挿入されたプランジャ26fとを備えて構成されている。   The mold 26 communicates with a movable die 26a, a fixed die 26b matched with the movable die 26a, a die mounting plate 26c to which the fixed die 26b is fixed, and a runner 26d formed on the fixed die 26b. A cylinder 26e and a plunger 26f inserted into the cylinder 26e are provided.

次に、本実施形態に係る鋳造方法を詳細に説明する。本実施形態に係る鋳造方法は、振動付与過程と、注湯過程と、凝固過程とを含んでいる。   Next, the casting method according to this embodiment will be described in detail. The casting method according to the present embodiment includes a vibration applying process, a pouring process, and a solidification process.

振動付与過程は、液相線温度以上に熱せられた溶湯10に超音波振動を付与する過程であり、保温炉21の振動付与室24にて実行される。   The vibration applying process is a process of applying ultrasonic vibration to the molten metal 10 heated to the liquidus temperature or higher, and is executed in the vibration applying chamber 24 of the heat retaining furnace 21.

なお、振動付与室24に貯留される溶湯10の温度Tは、T<T≦T+100℃の範囲に調節することが望ましいが、より好適には、T<T≦T+50℃の範囲に調節することが望ましい。 The temperature T of the molten metal 10 stored in the vibration applying chamber 24 is preferably adjusted to a range of T 0 <T ≦ T 0 + 100 ° C., but more preferably T 0 <T ≦ T 0 + 50 ° C. It is desirable to adjust to the range.

注湯過程は、超音波振動が付与された溶湯10を鋳型26に鋳込む過程である。より具体的に、注湯過程は、保温炉21の振動付与室24からラドル25を使用して溶湯10を汲み出す過程と、汲み出した溶湯10をシリンダ26eに形成された湯口26gから注湯する過程と、シリンダ26eに注湯された溶湯10をプランジャ26fで押圧し、キャビティ内に溶湯10を圧入する過程とを含んでいる。なお、超音波振動の付与を終了した時点(すなわち、ラドル25で汲み出した時点)から鋳型26のキャビティへの注湯が完了するまでの時間が長引くと、溶湯10内に生成されたエンブリオが大幅に減少する虞があるので、超音波振動の付与を終了した時点から2分以内に鋳型26への注湯を完了させることが望ましい。   The pouring process is a process of casting the molten metal 10 provided with ultrasonic vibration into the mold 26. More specifically, in the pouring process, the molten metal 10 is pumped from the vibration applying chamber 24 of the heat retaining furnace 21 using the ladle 25, and the pumped molten metal 10 is poured from the gate 26g formed in the cylinder 26e. And a process of pressing the molten metal 10 poured into the cylinder 26e with the plunger 26f and press-fitting the molten metal 10 into the cavity. In addition, if the time until pouring into the cavity of the mold 26 is completed after the application of the ultrasonic vibration is finished (that is, when the pump is pumped out by the ladle 25), the envelope generated in the molten metal 10 is greatly increased. Therefore, it is desirable to complete the pouring of the mold 26 within 2 minutes from the end of the application of the ultrasonic vibration.

凝固過程は、超音波振動が付与された溶湯10を凝固させる過程である。本実施形態においては、鋳型26が金型であるので、鋳型26に接触した溶湯10は、比較的速やかに液相線温度以下に冷却され、凝固する。なお、溶湯10を液相線温度以下に冷却すると、溶湯10に存在するエンブリオが結晶核に成長し、この結晶核を核として金属間化合物やα相結晶粒の晶出物が生成される。   The solidification process is a process of solidifying the molten metal 10 to which ultrasonic vibration is applied. In the present embodiment, since the mold 26 is a mold, the molten metal 10 in contact with the mold 26 is cooled to the liquidus temperature or less relatively quickly and solidifies. When the molten metal 10 is cooled below the liquidus temperature, the embryo existing in the molten metal 10 grows into crystal nuclei, and an intermetallic compound and a crystallized product of α-phase crystal grains are generated using the crystal nuclei as nuclei.

以上説明した本実施形態に係る鋳造方法においても、金属間化合物等が微細化して粗大な金属間化合物等の生成が抑制されるので、靭性の高い鋳造品(鋳物)を得ることが可能となる。   Also in the casting method according to the present embodiment described above, since the intermetallic compound or the like is refined and the production of a coarse intermetallic compound or the like is suppressed, it becomes possible to obtain a cast product (casting) having high toughness. .

なお、溶湯10が液相線温度を下回って凝固を開始する時点で超音波振動を付与すると、鋳型26のキャビティ内を充填する以前に晶出物が晶出して流動性が低下するので、キャビティ形状が複雑である場合やキャビティに狭小部分がある場合には、湯回り不良を起こす虞もあるが、本実施形態においては、液相線温度以上に保たれた保温炉21にて超音波振動を付与しているので、液相線温度以上の温度で鋳造が可能となり、鋳型26のキャビティ内において溶湯10の流動性が必要以上に低下することはない。   If ultrasonic vibration is applied at the time when the molten metal 10 begins to solidify below the liquidus temperature, the crystallized product crystallizes before filling the cavity of the mold 26 and the fluidity is lowered. In the case where the shape is complicated or there is a narrow portion in the cavity, there is a possibility of causing poor hot water, but in this embodiment, ultrasonic vibration is performed in the heat retaining furnace 21 maintained at the liquidus temperature or higher. Therefore, casting can be performed at a temperature equal to or higher than the liquidus temperature, and the fluidity of the molten metal 10 does not deteriorate more than necessary in the cavity of the mold 26.

また、保温炉21にて超音波振動を付与すれば、構造が複雑な鋳型26に振動発生器を設ける必要がなくなるので、鋳型26については、既存のものをそのまま使用することができる。   Further, if ultrasonic vibration is applied in the heat-retaining furnace 21, it is not necessary to provide a vibration generator in the mold 26 having a complicated structure, so that the existing mold 26 can be used as it is.

なお、本実施形態では、保温炉21にて超音波振動を付与する場合を例示したが、これに限定されることはなく、例えば、図示は省略するが、ラドル25に振動発生器15を設け、ラドル25にて溶湯10に超音波振動を付与してもよい。この場合には、ラドル25内の溶湯10が液相線温度以上となるように、保温炉21の温度を管理する。ラドル25にて超音波振動を付与すれば、鋳型26に鋳込む直前まで溶湯10に超音波振動を付与することが可能となるので、エンブリオの減少を最小限に抑えることが可能となる。   In the present embodiment, the case where ultrasonic vibration is applied in the heat retaining furnace 21 is illustrated, but the present invention is not limited to this. For example, although not illustrated, the vibration generator 15 is provided in the ladle 25. The ladle 25 may apply ultrasonic vibration to the molten metal 10. In this case, the temperature of the heat retaining furnace 21 is managed so that the molten metal 10 in the ladle 25 becomes equal to or higher than the liquidus temperature. If the ultrasonic vibration is applied by the ladle 25, it is possible to apply the ultrasonic vibration to the molten metal 10 immediately before casting into the mold 26, so that it is possible to minimize the decrease in the embryo.

なお、図示は省略するが、保温炉21とラドル25の双方に振動発生器15を設け、保温炉21に貯留されている状態から鋳型26に鋳込まれるまで継続して超音波振動を付与してもよい。   Although illustration is omitted, the vibration generator 15 is provided in both the heat retaining furnace 21 and the ladle 25, and ultrasonic vibration is continuously applied from the state stored in the heat retaining furnace 21 until casting into the mold 26. May be.

(第三の実施形態)
前記した第二の実施形態では、保温炉21にて超音波振動を付与した溶湯10を、ダイカスト用の鋳型26に注湯した場合を例示したが、これに限定されることはなく、図4に示すように、溶湯鍛造用の鋳型31に注湯しても差し支えない。なお、本実施形態に係る鋳型31は、キャビティを形成する上型31aおよび下型31bと、下型31bに形成された湯口31cに接続されるシリンダ31dと、このシリンダ31dに挿入されるプランジャ31eとを備えている。
(Third embodiment)
In the second embodiment described above, the case where the molten metal 10 provided with ultrasonic vibration in the heat retaining furnace 21 is poured into the die casting mold 26 is illustrated, but the present invention is not limited to this. As shown in FIG. 3, it is possible to pour the molten metal into the casting mold 31. The mold 31 according to the present embodiment includes an upper mold 31a and a lower mold 31b that form cavities, a cylinder 31d that is connected to a gate 31c formed in the lower mold 31b, and a plunger 31e that is inserted into the cylinder 31d. And.

そして、超音波振動が付与された溶湯10をシリンダ31dに注湯したうえで、シリンダ31dに注湯された溶湯10をプランジャ31eで押圧してキャビティ内に溶湯10を圧入し、凝固させれば、所望の鋳造品を得ることができる。   Then, after pouring the molten metal 10 provided with ultrasonic vibrations into the cylinder 31d, the molten metal 10 poured into the cylinder 31d is pressed by the plunger 31e to press-fit the molten metal 10 into the cavity and solidify. A desired cast product can be obtained.

(第四の実施形態)
第四の実施形態では、本発明に係る鋳造方法を低圧鋳造法に適用した場合を例示する。図5は、第四の実施形態に係る鋳造方法を実施可能な低圧鋳造装置4を示す模式図である。低圧鋳造装置4は、溶湯10を液相線温度以上で貯留する保温炉41と、この保温炉41の開口を塞ぐ蓋体42と、蓋体42に設置された鋳型43と、保温炉41から鋳型43の湯口に至る給湯管(流路)44と、蓋体42に設置された振動発生器15,15と、を備えている。なお、振動発生器15のホーンは、溶湯10に浸漬される。なお、振動発生器15のホーンを給湯管44の給湯口付近に設けると、超音波振動が溶湯10に効率的付与される。
(Fourth embodiment)
In the fourth embodiment, a case where the casting method according to the present invention is applied to a low pressure casting method is illustrated. FIG. 5 is a schematic view showing a low-pressure casting apparatus 4 capable of performing the casting method according to the fourth embodiment. The low-pressure casting apparatus 4 includes a heat retaining furnace 41 that stores the molten metal 10 at a liquidus temperature or higher, a lid body 42 that closes the opening of the heat retaining furnace 41, a mold 43 installed on the lid body 42, A hot water supply pipe (flow path) 44 reaching the gate of the mold 43 and vibration generators 15 and 15 installed on the lid 42 are provided. The horn of the vibration generator 15 is immersed in the molten metal 10. If the horn of the vibration generator 15 is provided in the vicinity of the hot water supply port of the hot water supply pipe 44, ultrasonic vibration is efficiently applied to the molten metal 10.

次に、本実施形態に係る鋳造方法を詳細に説明する。本実施形態に係る鋳造方法は、振動付与過程と、注湯過程と、凝固過程とを含んでいる。   Next, the casting method according to this embodiment will be described in detail. The casting method according to the present embodiment includes a vibration applying process, a pouring process, and a solidification process.

振動付与過程は、液相線温度以上に熱せられた溶湯10に超音波振動を付与する過程であり、振動発生器15を利用して保温炉41にて実行される。   The vibration applying process is a process of applying ultrasonic vibration to the molten metal 10 heated to the liquidus temperature or higher, and is executed in the heat insulating furnace 41 using the vibration generator 15.

注湯過程は、超音波振動が付与された溶湯10を鋳型43に鋳込む過程である。具体的には、保温炉41の内部に供給した空気もしくは不活性ガスで溶湯10の表面を加圧し、その圧力を利用して給湯管44を通じて鋳型43に溶湯10を注湯すればよい。   The pouring process is a process of casting the molten metal 10 provided with ultrasonic vibration into the mold 43. Specifically, the surface of the molten metal 10 may be pressurized with air or an inert gas supplied to the inside of the heat retaining furnace 41, and the molten metal 10 may be poured into the mold 43 through the hot water supply pipe 44 using the pressure.

凝固過程は、超音波振動が付与された溶湯10を凝固させる過程である。本実施形態においては、鋳型43が金型であるので、鋳型43に接触した溶湯10は、比較的速やかに液相線温度以下に冷却され、凝固する。   The solidification process is a process of solidifying the molten metal 10 to which ultrasonic vibration is applied. In the present embodiment, since the mold 43 is a mold, the molten metal 10 in contact with the mold 43 is cooled to a liquidus temperature or less relatively quickly and solidifies.

以上説明した本実施形態に係る鋳造方法においても、金属間化合物等が微細化して粗大な金属間化合物等の生成が抑制されるので、靭性の高い鋳造品(鋳物)を得ることが可能となる。   Also in the casting method according to the present embodiment described above, since the intermetallic compound or the like is refined and the production of a coarse intermetallic compound or the like is suppressed, it becomes possible to obtain a cast product (casting) having high toughness. .

(第五の実施形態)
第五の実施形態では、本発明に係る鋳造方法を重力金型鋳造法に適用した場合を例示する。本発明に係る鋳造方法を重力金型鋳造法に適用する場合には、図6の(a)に示すように、液相線温度以上に熱せられた溶湯10を湯溜り51aに注湯した後に、湯溜り51aにて振動付与過程を行ってもよい。すなわち、湯溜り51aは、溶湯10に接触する部分が断熱材でコーティングされており、溶湯10が液相線温度以上に保持されるので、湯溜り51aにて超音波振動を付与してもよい。図6の(b)に示すように、超音波振動を付与した後、鋳型51を傾動させ、湯溜り51aの溶湯10を鋳型51に注湯する。
(Fifth embodiment)
In the fifth embodiment, a case where the casting method according to the present invention is applied to a gravity mold casting method is illustrated. When the casting method according to the present invention is applied to the gravity mold casting method, as shown in FIG. 6 (a), after pouring the molten metal 10 heated to the liquidus temperature or higher into the hot water pool 51a. Alternatively, the vibration applying process may be performed in the hot water pool 51a. That is, the hot water reservoir 51a is coated with a heat insulating material at a portion in contact with the molten metal 10, and the molten metal 10 is maintained at a liquidus temperature or higher, so that ultrasonic vibration may be applied by the hot water reservoir 51a. . As shown in FIG. 6B, after applying ultrasonic vibration, the mold 51 is tilted, and the molten metal 10 in the hot water reservoir 51 a is poured into the mold 51.

このようにしても、金属間化合物が微細化して粗大な金属間化合物の生成が抑制されるので、靭性の高い鋳造品(鋳物)を得ることが可能となる。   Even if it does in this way, since an intermetallic compound refines | miniaturizes and the production | generation of a coarse intermetallic compound is suppressed, it becomes possible to obtain a cast product (casting) with high toughness.

なお、図7に示すように、鋳型52が冷却能の低い砂型などである場合には、鋳型52に注湯した後に、押湯部52aにて超音波振動を付与することも可能である。   In addition, as shown in FIG. 7, when the casting_mold | template 52 is a sand type | mold etc. with low cooling capability, after pouring to the casting_mold | template 52, it is also possible to give an ultrasonic vibration in the feeder part 52a.

また、図示は省略するが、保温炉やラドルの少なくとも一方において液相線温度以上に熱せられた溶湯10に超音波振動を付与したうえで、鋳型51,52に注湯しても勿論差し支えない。   In addition, although illustration is omitted, it is of course possible to pour into the molds 51 and 52 after applying ultrasonic vibration to the molten metal 10 heated to the liquidus temperature or higher in at least one of the heat retaining furnace and the ladle. .

(変形例)
前記した各実施形態においては、液相線温度を上回っている間だけ溶湯10に超音波振動を付与する場合を例示したが、液相線温度を下回った後まで継続して超音波振動を付与しても差し支えない。
(Modification)
In each of the above-described embodiments, the case where ultrasonic vibration is applied to the molten metal 10 only while the liquidus temperature is exceeded is illustrated, but the ultrasonic vibration is continuously applied until after the liquidus temperature is lowered. It doesn't matter.

また、前記した各実施形態においては、本発明に係る鋳造方法を、連続鋳造法、ダイカスト法、低圧鋳造法および重力鋳造法に適用した場合を例示したが、遠心鋳造法や真空鋳造法など他の鋳造法に適用できることは言うまでもない。   Further, in each of the above-described embodiments, the case where the casting method according to the present invention is applied to a continuous casting method, a die casting method, a low pressure casting method, and a gravity casting method is exemplified. Needless to say, this method can be applied to the casting method.

表1に示す組成を有するアルミニウム合金を使用して本発明に係る鋳造方法の効果を確認するための実験を行った。   An experiment for confirming the effect of the casting method according to the present invention was performed using an aluminum alloy having the composition shown in Table 1.

実験では、坩堝内において表1のアルミニウム合金を液相線温度以上に熱して溶湯を生成し、自然冷却中に超音波振動を付与した後に、銅製の鋳型に注湯して凝固させた。なお、本実施例においては、溶湯が液相線温度以上にあるときに超音波振動を付与するケースAと、溶湯が液相線温度を挟んで超音波振動を付与するケースBと、超音波振動を付与しないケースCとを行った。なお、図8の(a)〜(c)は、溶湯を坩堝内において自然冷却させた際の温度変化を示すグラフである。   In the experiment, the aluminum alloy shown in Table 1 was heated to a temperature higher than the liquidus temperature in the crucible to generate a molten metal, and ultrasonic vibration was applied during natural cooling, and then poured into a copper mold to be solidified. In this embodiment, the case A for applying ultrasonic vibration when the molten metal is above the liquidus temperature, the case B for applying ultrasonic vibration across the liquidus temperature, and the ultrasonic wave Case C without vibration was performed. In addition, (a)-(c) of FIG. 8 is a graph which shows the temperature change at the time of making a molten metal naturally cool in a crucible.

ケースAでは、溶湯が780℃になった時点で超音波振動の付与を開始し、740℃になった時点で終了した(約40秒)。なお、初晶は、液相線温度である700℃で晶出している。ケースBでは、溶湯が760℃になった時点で超音波振動の付与を開始し、710℃になった時点で終了した(約90秒)。なお、初晶は、液相線温度である720℃で晶出している。なお、ケースAとケースBとで液相線温度が異なるのは、超音波振動を付加する時間によって液相線温度が変化するからである。   In case A, application of ultrasonic vibration was started when the molten metal reached 780 ° C. and ended when the molten metal reached 740 ° C. (about 40 seconds). The primary crystal is crystallized at 700 ° C., which is the liquidus temperature. In Case B, application of ultrasonic vibration was started when the molten metal reached 760 ° C. and ended when the temperature reached 710 ° C. (about 90 seconds). The primary crystal is crystallized at 720 ° C. which is the liquidus temperature. The reason why the liquidus temperature differs between Case A and Case B is that the liquidus temperature changes depending on the time for which the ultrasonic vibration is applied.

実験の結果得られた鋳物の金属組織写真を図9〜図11に示す。なお、これらの写真において、白色部分がα相結晶粒であり、灰色部分がAl−Fe−Mn系の金属間化合物であり、黒色部分(最も色の濃い部分)がSiの結晶である。これらの図に示すように、超音波振動を付与しないケースC(図11参照)では、α相結晶粒とSiの結晶が粗大化するとともに、Al−Fe−Mn系の金属間化合物が針状に粗大化していることが確認された。これに対し、超音波振動を付与したケースA(図9参照)およびケースB(図10参照)では、Al−Fe−Mn系の金属間化合物、α相結晶粒およびSiの結晶のいずれもが微細化していることが確認された。特に、溶湯が液相線温度以上にあるときだけ超音波振動を付与したケースAが最も微細化していることが確認された。   The metal structure photographs of the casting obtained as a result of the experiment are shown in FIGS. In these photographs, the white part is α-phase crystal grains, the gray part is an Al—Fe—Mn intermetallic compound, and the black part (the darkest part) is a Si crystal. As shown in these figures, in the case C (see FIG. 11) in which no ultrasonic vibration is applied, the α-phase crystal grains and the Si crystal are coarsened, and the Al—Fe—Mn intermetallic compound is acicular. It was confirmed that it was coarsened. On the other hand, in case A (see FIG. 9) and case B (see FIG. 10) to which ultrasonic vibration was applied, all of the Al—Fe—Mn-based intermetallic compound, α-phase crystal grains, and Si crystals were observed. It was confirmed that it was miniaturized. In particular, it was confirmed that the case A to which ultrasonic vibration was applied was most refined only when the molten metal was above the liquidus temperature.

以上の実験より、液相線温度以上に熱せられた溶湯に超音波振動を付与することで、金属間化合物やα相結晶粒が微細化することが確認された。   From the above experiments, it was confirmed that the intermetallic compound and α-phase crystal grains were refined by applying ultrasonic vibration to the molten metal heated to the liquidus temperature or higher.

第一の実施形態に係る鋳造方法を説明するための模式図である。It is a schematic diagram for demonstrating the casting method which concerns on 1st embodiment. 第一の実施形態に係る鋳造方法の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the casting method which concerns on 1st embodiment. 第二の実施形態に係る鋳造方法を説明するための模式図である。It is a schematic diagram for demonstrating the casting method which concerns on 2nd embodiment. 第三の実施形態に係る鋳造方法を説明するための模式図である。It is a schematic diagram for demonstrating the casting method which concerns on 3rd embodiment. 第四の実施形態に係る鋳造方法を説明するための模式図である。It is a schematic diagram for demonstrating the casting method which concerns on 4th embodiment. (a)および(b)は第五の実施形態に係る鋳造方法を説明するための模式図である。(A) And (b) is a schematic diagram for demonstrating the casting method which concerns on 5th embodiment. 第五の実施形態に係る鋳造方法の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the casting method which concerns on 5th embodiment. (a)〜(c)は実施例を説明するためのグラフである。(A)-(c) is a graph for demonstrating an Example. 実施例のケースAの鋳造方法により得られた鋳物の金属組織写真である。It is the metal structure photograph of the casting obtained by the casting method of case A of an Example. 実施例のケースBの鋳造方法により得られた鋳物の金属組織写真である。It is the metal structure photograph of the casting obtained by the casting method of case B of an Example. 実施例のケースCの鋳造方法により得られた鋳物の金属組織写真である。It is the metal structure photograph of the casting obtained by the casting method of case C of an Example.

符号の説明Explanation of symbols

10 溶湯
12 保持炉
13 鋳型
14 樋(流路)
15 振動発生器
21 保温炉
25 ラドル
10 Molten metal 12 Holding furnace 13 Mold 14 樋 (Flow path)
15 Vibration generator 21 Insulator 25 Ladle

Claims (8)

溶湯が液相線温度を下回る前に、前記溶湯に超音波振動を付与し、その後、前記溶湯を凝固させることを特徴とする鋳造方法。   A casting method characterized by applying ultrasonic vibration to the molten metal before the molten metal falls below a liquidus temperature, and then solidifying the molten metal. 超音波振動を付与した溶湯を凝固させる鋳造方法であって、液相線温度以上に保たれた溶湯に超音波振動を付与する振動付与過程を含むことを特徴とする鋳造方法。   A casting method for solidifying a molten metal imparted with ultrasonic vibration, comprising a vibration imparting process for imparting ultrasonic vibration to the molten metal maintained at a liquidus temperature or higher. 鋳型に注湯する前に、前記振動付与過程を行うことを特徴とする請求項2に記載の鋳造方法。   The casting method according to claim 2, wherein the vibration applying process is performed before pouring the mold. 保持炉にて前記振動付与過程を行うことを特徴とする請求項3に記載の鋳造方法。   The casting method according to claim 3, wherein the vibration applying process is performed in a holding furnace. 保持炉から前記鋳型に至る流路にて前記振動付与過程を行うことを特徴とする請求項3に記載の鋳造方法。   The casting method according to claim 3, wherein the vibration applying process is performed in a flow path from a holding furnace to the mold. 保持炉から前記鋳型に至る流路に溶湯を貯留する貯留槽を設け、当該貯留槽にて前記振動付与過程を行うことを特徴とする請求項3に記載の鋳造方法。   The casting method according to claim 3, wherein a storage tank for storing molten metal is provided in a flow path from a holding furnace to the mold, and the vibration applying process is performed in the storage tank. 保温炉、ラドルおよび湯溜りの少なくとも一箇所にて前記振動付与過程を行うことを特徴とする請求項3に記載の鋳造方法。   The casting method according to claim 3, wherein the vibration applying process is performed in at least one of a heat-retaining furnace, a ladle, and a hot water pool. 鋳型に注湯した後に、押湯部にて前記振動付与過程を行うことを特徴とする請求項2に記載の鋳造方法。   The casting method according to claim 2, wherein after the molten metal is poured into the mold, the vibration applying process is performed in a feeder part.
JP2006036967A 2006-02-14 2006-02-14 Casting method Expired - Fee Related JP4836244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036967A JP4836244B2 (en) 2006-02-14 2006-02-14 Casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036967A JP4836244B2 (en) 2006-02-14 2006-02-14 Casting method

Publications (2)

Publication Number Publication Date
JP2007216239A true JP2007216239A (en) 2007-08-30
JP4836244B2 JP4836244B2 (en) 2011-12-14

Family

ID=38494040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036967A Expired - Fee Related JP4836244B2 (en) 2006-02-14 2006-02-14 Casting method

Country Status (1)

Country Link
JP (1) JP4836244B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090429A (en) * 2008-10-07 2010-04-22 Nippon Light Metal Co Ltd Method for producing aluminum alloy
CN101829765A (en) * 2009-03-09 2010-09-15 本田技研工业株式会社 Aluminium alloy castings and production method thereof and the equipment and the method for producing sliding component
JP2010207841A (en) * 2009-03-09 2010-09-24 Honda Motor Co Ltd Apparatus and method for producing sliding member
JP2011212737A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Continuous casting apparatus
JP2011255392A (en) * 2010-06-07 2011-12-22 Nippon Light Metal Co Ltd Method for producing aluminum alloy
WO2012008470A1 (en) * 2010-07-16 2012-01-19 日本軽金属株式会社 Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof
JP2012045558A (en) * 2010-08-25 2012-03-08 Nippon Light Metal Co Ltd Method for producing aluminum alloy and casting equipment
JP2014506837A (en) * 2011-02-18 2014-03-20 コンステリウム フランス Aluminum alloy semi-finished product with improved microporosity and manufacturing method
JP5680244B1 (en) * 2014-04-23 2015-03-04 株式会社Lafジャパン Alloy refinement method and precipitate refinement apparatus used therefor
CN109604539A (en) * 2019-01-29 2019-04-12 大连交通大学 It is suitable for handling the ultrasonic vibration apparatus of molten cast iron
CN110918940A (en) * 2019-12-18 2020-03-27 内蒙古工业大学 Casting device and casting method for large-scale non-ferrous metal thin-wall structural part
CN111683765A (en) * 2018-03-01 2020-09-18 诺尔斯海德公司 Casting method
KR102197175B1 (en) * 2019-07-09 2020-12-31 한국생산기술연구원 Continuous casting apparatus
US20220097130A1 (en) * 2020-09-25 2022-03-31 GM Global Technology Operations LLC Aluminum castings using ultrasonic technology
WO2023068716A1 (en) * 2021-10-18 2023-04-27 한국재료연구원 Aluminum casting alloy with high strength, high elongation and high thermal conductivity and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329613A (en) * 1992-06-01 1993-12-14 Mechatro Joban Internatl:Kk Casting method
JPH07278692A (en) * 1994-04-12 1995-10-24 Mitsubishi Materials Corp Production of high-si-content al alloy die casting member having high strength
JPH08103859A (en) * 1994-09-30 1996-04-23 Ube Ind Ltd Formation of half-melting metal
JPH1190615A (en) * 1997-09-22 1999-04-06 Agency Of Ind Science & Technol Method for fining metallographic structure
JP2002053941A (en) * 2000-08-07 2002-02-19 Toyota Motor Corp Method and equipment for manufacturing metal matrix composite material
JP2004098111A (en) * 2002-09-06 2004-04-02 National Institute Of Advanced Industrial & Technology Manufacturing method for semi-molten metal and metal workpiece with fine spheroidized grain structure
JP2004209487A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Method for controlling solidifying crystalline structure of aluminum cast alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329613A (en) * 1992-06-01 1993-12-14 Mechatro Joban Internatl:Kk Casting method
JPH07278692A (en) * 1994-04-12 1995-10-24 Mitsubishi Materials Corp Production of high-si-content al alloy die casting member having high strength
JPH08103859A (en) * 1994-09-30 1996-04-23 Ube Ind Ltd Formation of half-melting metal
JPH1190615A (en) * 1997-09-22 1999-04-06 Agency Of Ind Science & Technol Method for fining metallographic structure
JP2002053941A (en) * 2000-08-07 2002-02-19 Toyota Motor Corp Method and equipment for manufacturing metal matrix composite material
JP2004098111A (en) * 2002-09-06 2004-04-02 National Institute Of Advanced Industrial & Technology Manufacturing method for semi-molten metal and metal workpiece with fine spheroidized grain structure
JP2004209487A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Method for controlling solidifying crystalline structure of aluminum cast alloy

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090429A (en) * 2008-10-07 2010-04-22 Nippon Light Metal Co Ltd Method for producing aluminum alloy
CN101829765A (en) * 2009-03-09 2010-09-15 本田技研工业株式会社 Aluminium alloy castings and production method thereof and the equipment and the method for producing sliding component
JP2010207841A (en) * 2009-03-09 2010-09-24 Honda Motor Co Ltd Apparatus and method for producing sliding member
US9555469B2 (en) 2009-03-09 2017-01-31 Honda Motor Co., Ltd. Aluminum alloy casting and method for producing the same, and apparatus for producing slide member
JP2011212737A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Continuous casting apparatus
JP2011255392A (en) * 2010-06-07 2011-12-22 Nippon Light Metal Co Ltd Method for producing aluminum alloy
US9222151B2 (en) 2010-07-16 2015-12-29 Nippon Light Metal Company, Ltd. Aluminum alloy excellent in high temperature strength and heat conductivity and method of production of same
WO2012008470A1 (en) * 2010-07-16 2012-01-19 日本軽金属株式会社 Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof
CN103003458A (en) * 2010-07-16 2013-03-27 日本轻金属株式会社 Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof
JP2012045558A (en) * 2010-08-25 2012-03-08 Nippon Light Metal Co Ltd Method for producing aluminum alloy and casting equipment
JP2014506837A (en) * 2011-02-18 2014-03-20 コンステリウム フランス Aluminum alloy semi-finished product with improved microporosity and manufacturing method
JP5680244B1 (en) * 2014-04-23 2015-03-04 株式会社Lafジャパン Alloy refinement method and precipitate refinement apparatus used therefor
CN111683765A (en) * 2018-03-01 2020-09-18 诺尔斯海德公司 Casting method
CN109604539B (en) * 2019-01-29 2020-11-13 大连交通大学 Ultrasonic vibration device suitable for treating cast iron melt
CN109604539A (en) * 2019-01-29 2019-04-12 大连交通大学 It is suitable for handling the ultrasonic vibration apparatus of molten cast iron
KR102197175B1 (en) * 2019-07-09 2020-12-31 한국생산기술연구원 Continuous casting apparatus
CN110918940A (en) * 2019-12-18 2020-03-27 内蒙古工业大学 Casting device and casting method for large-scale non-ferrous metal thin-wall structural part
CN110918940B (en) * 2019-12-18 2021-12-31 内蒙古工业大学 Casting device and casting method for large-scale non-ferrous metal thin-wall structural part
US20220097130A1 (en) * 2020-09-25 2022-03-31 GM Global Technology Operations LLC Aluminum castings using ultrasonic technology
WO2023068716A1 (en) * 2021-10-18 2023-04-27 한국재료연구원 Aluminum casting alloy with high strength, high elongation and high thermal conductivity and method for manufacturing same

Also Published As

Publication number Publication date
JP4836244B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4836244B2 (en) Casting method
JP4382152B1 (en) Method for producing semi-solid slurry of iron alloy, method for producing cast iron casting using the method for producing semi-solid slurry, and cast iron casting
JP5051636B2 (en) Casting method and casting apparatus used therefor.
JP4984049B2 (en) Casting method.
JP5565115B2 (en) Method for producing aluminum alloy
JP2011045909A (en) Al-Si BASED ALLOY HAVING FINE CRYSTAL STRUCTURE, METHOD FOR MANUFACTURING THE SAME, DEVICE FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING CASTING OF THE SAME
JP3630327B2 (en) Solid-liquid coexistence state metal slurry production equipment
JP2004114153A (en) Method and apparatus for producing metallic material in solid-liquid coexisting state and method and apparatus for producing semi-solidified metallic slurry
JP2005219107A (en) Machine for manufacturing metal material in solid-liquid coexisting state
JP2011200881A (en) Casting apparatus and casting method
JP3520994B1 (en) Solid-liquid coexisting metal slurry manufacturing equipment
JP2007239102A (en) Aluminum-based casting alloy and manufacturing method therefor
JP2007046071A (en) Mg ALLOY, AND CASTING METHOD OR FORGING METHOD OF THE SAME
CN1301166C (en) Preparation method of high speed steel blank and its equipment
JPH09137239A (en) Method for molding half-molten metal
JP6132642B2 (en) Method for preparing semi-solid metal slurry
JP3246358B2 (en) Forming method of semi-molten metal
JP3491468B2 (en) Method for forming semi-solid metal
JP7457691B2 (en) Ultrasonic enhancement of direct chill casting materials
JP2003126950A (en) Molding method of semi-molten metal
JP2003183756A (en) Aluminum alloy for semi-solid molding
JP5035508B2 (en) Solidified aluminum alloy and method for producing the same
JP3536559B2 (en) Method for forming semi-solid metal
JP2017060975A (en) Manufacturing method for aluminum-based hypoeutectic alloy ingot
JPH07185770A (en) Method for pressurize-casting aluminum alloy and pressurize-casting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees