JP4984049B2 - Casting method. - Google Patents

Casting method. Download PDF

Info

Publication number
JP4984049B2
JP4984049B2 JP2007037273A JP2007037273A JP4984049B2 JP 4984049 B2 JP4984049 B2 JP 4984049B2 JP 2007037273 A JP2007037273 A JP 2007037273A JP 2007037273 A JP2007037273 A JP 2007037273A JP 4984049 B2 JP4984049 B2 JP 4984049B2
Authority
JP
Japan
Prior art keywords
ultrasonic vibration
alloy
casting
molten metal
supercooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007037273A
Other languages
Japanese (ja)
Other versions
JP2008200692A (en
Inventor
嘉昭 大澤
晋 高森
和己 皆川
敏司 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007037273A priority Critical patent/JP4984049B2/en
Publication of JP2008200692A publication Critical patent/JP2008200692A/en
Application granted granted Critical
Publication of JP4984049B2 publication Critical patent/JP4984049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶湯に超音波を付加して凝固結晶組織を微細化する鋳造方法に関する。   The present invention relates to a casting method in which ultrasonic waves are added to a molten metal to refine a solidified crystal structure.

凝固組織は一般に冷却速度で決定される。鋳造品などのように製品の肉厚が異なる場合凝固組織が大きく異なり、薄肉急冷部は微細チル組織になる。厚肉部は最終凝固部となり凝固組織が粗大になると共にひけ欠陥が生じる。
凝固時に特に液相線温度を挟んだ温度で超音波振動を付加することにより凝固結晶組織を微細化することができることが、以下に示す特許文献1及び非特許文献1に示されるとおり、従来より公知である。
また発明者らは、特願2006−036967により、相液線温度に降下するよりも高い温度で超音波振動を付加しても核生成を促進し微細化することを提案している。
特許公開2004−209487 鋳造工学78(2006)2,65−70
The solidified structure is generally determined by the cooling rate. When the thickness of the product is different, such as in a cast product, the solidified structures are greatly different, and the thin-wall rapidly cooled portion has a fine chill structure. The thick part becomes the final solidified part, and the solidified structure becomes coarse and sink defects occur.
As shown in Patent Document 1 and Non-Patent Document 1 shown below, it is conventionally possible to refine the solidified crystal structure by applying ultrasonic vibration at a temperature sandwiching the liquidus temperature during solidification. It is known.
The inventors have also proposed in Japanese Patent Application No. 2006-036967 that nucleation is promoted and miniaturized even if ultrasonic vibration is applied at a temperature higher than that at which the temperature drops to the liquidus temperature.
Patent Publication 2004-209487 Casting Engineering 78 (2006) 2, 65-70

前記先願の発明によると凝固組織の微細化には1分前後の超音波振動の付加が必要となるもので、溶湯が多すぎる場合には鋳造品質の安定化や十分な超音波振動が行えない問題があった。
本発明は、このような実情に鑑み、溶湯が過冷状態にあるため従来に比較し超音波振動の付加を極短時間行うことにより、一気に核生成が生じ凝固結晶組織を微細化できる鋳造方法を提供することを目的とする。
According to the invention of the previous application, it is necessary to add ultrasonic vibration for about 1 minute to refine the solidification structure. When there is too much molten metal, the casting quality can be stabilized and sufficient ultrasonic vibration can be performed. There was no problem.
In view of such circumstances, the present invention is a casting method in which nucleation occurs at a stretch and the solidified crystal structure can be refined by adding ultrasonic vibration for an extremely short time compared to the prior art because the molten metal is in a supercooled state. The purpose is to provide.

超音波振動を付加しながら凝固をさせることでこの過冷現象が起こることが少なくなる。
本発明は、この過冷現象が起きているときに超音波振動を付加することにより非常に短い時間で凝固が一気に始まり容易に微細凝固組織合金を製造するとの知見によるものである。
This supercooling phenomenon is less likely to occur by solidifying while applying ultrasonic vibration.
The present invention is based on the knowledge that, when this supercooling phenomenon occurs, by adding ultrasonic vibration, solidification starts at once in a very short time and easily produces a finely solidified alloy.

発明1の鋳造方法は、溶湯の超音波振動の非付加状態における過冷却域において超音波振動の付加を開始、前記超音波振動の付加は、前記過冷却域のみであることを特徴とする。
The casting method of the invention 1, start the addition of ultrasonic vibration in the subcooling zone in the non-addition state of the ultrasonic vibration of the molten metal, the addition of ultrasonic vibrations, characterized in der Rukoto only the supercooling zone .

発明2は、発明1の鋳造方法において、溶湯はアルミニウム合金であり、初晶にアルミニウムのデンドライト、SiやAlSiFe金属間化合物が晶出することを特徴とする。
Invention 2 provides a method of casting the first aspect, the soluble water is aluminum alloy, aluminum dendrites, Si and AlSiFe intermetallic compound is characterized by crystallizing in the primary crystal.

発明1により、10秒前後の超音波振動の付加により、微細化を達成でき、更に、非付加状態での過冷却域が短い合金や溶湯の冷却速度が速い場合に適用することで、上記課題を大きく解決することができた。アルミニウム合金の凝固時に過冷状態であれば液相線温度より低い状態で初晶が晶出しない。このアルミニウム合金の過冷時に超音波振動を付加すると初晶のアルミニウムのデンドライト、SiやAlSiFe金属間化合物が一気に微細に晶出する。AlSiFe金属間化合物は砂型凝固の時は金型凝固などに比べ粗大に晶出し脆いため嫌われている。これは電磁攪拌でも微細化できず、超音波振動付加で微細化できる。そして、晶出時の過冷が大きいためこの過冷時に超音波振動を付加することで短時間付加することにより一気に微細にすることができることによる。
According to the first aspect of the present invention, it is possible to achieve miniaturization by adding ultrasonic vibration around 10 seconds, and further, when the cooling rate of an alloy or molten metal with a short supercooling region in a non-addition state is short, the above problem It was possible to solve the problem . Primary crystal does not crystallize at A aluminum lower than the liquidus temperature if undercooled state during solidification of the alloy. When ultrasonic vibration is applied during the supercooling of the aluminum alloy, primary dendrites of aluminum, Si and AlSiFe intermetallic compounds are crystallized finely at once. AlSiFe intermetallic compounds are disliked during sand-type solidification because they are coarsely crystallized and brittle compared to mold solidification. This cannot be miniaturized even by electromagnetic stirring, and can be miniaturized by adding ultrasonic vibration. And since supercooling at the time of crystallization is large, it is because it can be made minute at a stretch by adding ultrasonic vibration at the time of this supercooling, and adding for a short time.

図12から図16は、本発明を実施するのに使用する鋳造装置の例を示す。   12 to 16 show examples of casting apparatuses used to carry out the present invention.

今回の実験で用いた、アルミニウム合金の過冷度と超音波振動の付加温度と負荷時間および組織の変化をまとめた。図4のAl−12%Si−4%Fe合金の振動付加無しでは灰色の粗大な板状の金属間化合物でこの写真内の大きさを等価円直径で表した。   The changes in the supercooling degree, the applied temperature of ultrasonic vibration, the loading time, and the structure of the aluminum alloy used in this experiment were summarized. In the Al-12% Si-4% Fe alloy of FIG. 4 without vibration addition, the size in this photograph was represented by an equivalent circular diameter with a gray coarse plate-like intermetallic compound.

図1は、Al−X%Si−4%Fe合金の超音波振動付加による冷却曲線の変化を示すグラフである。
これよりAl−X%Si−4%Fe合金では、初晶としてAlSiFe金属間化合物が晶出する。このとき、砂型鋳造くらいの除冷でも大きく過冷する。しかし超音波振動を付加して凝固をさせた場合はほとんど過冷することがない。この一般凝固の過冷時に超音波振動を付加することで一気に再輝現象とともに結晶が晶出すると考えられる。この場合はわずか数秒の超音波振動付加でしかも微細粒状化が期待できることがわかった。
FIG. 1 is a graph showing the change in the cooling curve of an Al—X% Si-4% Fe alloy due to the addition of ultrasonic vibration.
As a result, in the Al-X% Si-4% Fe alloy, an AlSiFe intermetallic compound crystallizes as the primary crystal. At this time, even if the cooling is as much as sand casting, it is overcooled. However, when ultrasonic vibration is applied to solidify, there is almost no overcooling. It is thought that crystals are crystallized at once with the re-brightening phenomenon by adding ultrasonic vibration during the general cooling of the solidification. In this case, it was found that fine granulation can be expected with addition of ultrasonic vibration for only a few seconds.

図2は、Al−6%Si−4%Fe合金をるつぼ中冷却の組織写真である。Al−6%Si−4%Fe合金をるつぼ冷却の組織、灰色の粗大な板状の金属間化合物があるのが明らかである。   FIG. 2 is a structural photograph of cooling an Al-6% Si-4% Fe alloy in a crucible. It is clear that there is a structure of crucible cooling of an Al-6% Si-4% Fe alloy, a gray coarse plate-like intermetallic compound.

図3は、Al−6%Si−4%Fe合金における過冷状態での超音波振動付加効果を示す組織写真である。Al−6%Si−4%Fe合金の液相線温度が690℃で10℃過冷した680℃で超音波振動を10secと言う短時間処理を行った時の鋳塊中央部組織を示すものである。初晶のAlSiFe金属間化合物が微細粒状なっていることが明らかである。   FIG. 3 is a structural photograph showing the effect of applying ultrasonic vibration in an undercooled state in an Al-6% Si-4% Fe alloy. This shows the structure of the central part of the ingot when the liquidus temperature of the Al-6% Si-4% Fe alloy is 690 ° C, which is supercooled at 690 ° C, and the ultrasonic vibration is performed for a short time of 10 seconds at 680 ° C. It is. It is clear that the primary crystal AlSiFe intermetallic compound is finely granular.

図4は、Al−12%Si−4%Fe合金をるつぼ中冷却の組織写真である。超音波振動付加なしで、Al−12%Si−4%Fe合金をるつぼ冷却したときの組織は、図4に示すように灰色の粗大な板状の金属間化合物が存在する。   FIG. 4 is a structural photograph of cooling an Al-12% Si-4% Fe alloy in a crucible. The structure when the Al-12% Si-4% Fe alloy is cooled with a crucible without adding ultrasonic vibrations has a gray coarse plate-like intermetallic compound as shown in FIG.

図5は、Al−12%Si−4%Fe合金へ過冷度2℃、 10sec超音波振動付加したときの組織写真である。Al−12%Si−4%Fe合金の液相線温度が681.7℃で2℃過冷した680℃で超音波振動を10secと言う短時間付加した鋳塊中央部組織の写真である。
初晶のAlSiFe金属間化合物が微細粒状になっていることを示している。
FIG. 5 is a structural photograph when an ultrasonic vibration is applied to an Al-12% Si-4% Fe alloy at a subcooling degree of 2 ° C. for 10 seconds. It is the photograph of the ingot center structure | tissue which added the ultrasonic vibration for 10 seconds at 680 degreeC which the liquidus temperature of the Al-12% Si-4% Fe alloy was supercooled 2 degreeC at 681.7 degreeC.
It shows that the primary crystal AlSiFe intermetallic compound is finely granular.

図6は、Al−18%Si−4%Fe合金をるつぼ中冷却の組織写真である。超音波振動を付加しないで、Al−18%Si−4%Fe合金をるつぼ冷却した組織写真である。灰色の粗大な塊状は金属間化合物が存在することを示し、濃い灰色はSi粒でAl-Siの溶湯と初晶の金属間化合物があるところに、あとから晶出してきたものである。   FIG. 6 is a structure photograph of cooling an Al-18% Si-4% Fe alloy in a crucible. It is the structure | tissue photograph which crucible cooled Al-18% Si-4% Fe alloy, without adding ultrasonic vibration. Gray coarse lump indicates that an intermetallic compound is present, and dark gray is a Si grain, where Al-Si melt and primary intermetallic compound are crystallized later.

図7は、Al−18%Si−4%Fe合金へ過冷度10℃、 10sec超音波振動付加時の組織写真である。Al−18%Si−4%Fe合金の液相線温度が702.4℃で12℃過冷した690℃で超音波振動を10secと言う短時間付加した鋳塊中央部組織を示す写真である。初晶のAlSiFe金属間化合物は、わずかに微細粒状になっていることがわかる。   FIG. 7 is a micrograph of an Al-18% Si-4% Fe alloy with a supercooling degree of 10 ° C. and a 10 sec ultrasonic vibration. It is the photograph which shows the ingot center part structure | tissue which added the ultrasonic vibration for 10 seconds at 690 degreeC which the liquidus temperature of Al-18% Si-4% Fe alloy was supercooled at 702.4 degreeC and 12 degreeC. . It can be seen that the primary AlSiFe intermetallic compound is slightly finely granular.

図8は、Al−6%Si合金をるつぼ中冷却の組織写真である。これは、代表的なAl−Si鋳造合金で不純物の鉄は入っていない。超音波振動を付加せずともほとんど過冷はなく、わずか3℃である。組織は大きなデンドライト組織でこの画面からはみ出しており、サイズは参考値である。   FIG. 8 is a structural photograph of cooling an Al-6% Si alloy in a crucible. This is a typical Al-Si casting alloy and does not contain impurity iron. Even without adding ultrasonic vibration, there is almost no overcooling, and it is only 3 ° C. The organization is a large dendrite organization that protrudes from this screen, and the size is a reference value.

図9は、Al−6%Si合金へ過冷度2℃、 10sec超音波振動を付加時の組織写真である。液相線温度が624℃で2℃過冷した622℃で超音波振動を10secと言う短時間付加した鋳塊中央部組織写真である。初晶のα−Alは、デンドライト状ではなく粒状になることを示している。   FIG. 9 is a structural photograph when an Al-6% Si alloy is subjected to supercooling at 2 ° C. and 10 sec ultrasonic vibration. It is the structure | tissue photograph of the ingot center part which added the ultrasonic vibration for 10 seconds for a short time at 622 degreeC which the liquidus temperature was 624 degreeC and 2 degreeC supercooled. The primary crystal α-Al is not dendritic but granular.

図10は、Al−18%Si合金をるつぼ中冷却の組織写真である。超音波振動を付加せずになされたもので、濃い灰色が初晶の過共晶Siである。粗大な塊状を呈していることを示している。   FIG. 10 is a structural photograph of cooling an Al-18% Si alloy in a crucible. It is made without adding ultrasonic vibration, and the dark gray is the primary hypereutectic Si. It shows that it is a coarse lump.

図11は、Al−18%Si合金へ過冷度10℃、 10sec超音波振動を付加したときの組織写真である。液相線温度が660℃で10℃過冷した650℃で超音波振動を10secと言う短時間の付加による鋳塊中央部組織を示す。初晶の過共晶Siは、微細粒状になっている。   FIG. 11 is a structural photograph when an ultrasonic vibration is applied to an Al-18% Si alloy at a subcooling degree of 10 ° C. for 10 seconds. The ingot central part structure | tissue by the addition of a short time that ultrasonic vibration is 10 sec at 650 degreeC which liquid phase temperature was 660 degreeC and 10 degreeC supercooled is shown. The primary hypereutectic Si is finely granular.

図12は、過冷溶湯のバッチ処理の超音波振動鋳造装置を示す。高温の溶湯を18の鋳型に鋳造し15の超音波振動ホーンを挿入する。21の熱電対で測温して過冷状態になったとき電源のスイッチを入れ高周波電源の出力により10の振動発生器で生じさせた振動を15の超音波振動ホーンを介して12の溶湯に付加する。過冷状態の溶湯は非常に短時間の超音波振動で一気に核生成が生じ結晶粒が微細粒状化に凝固する。   FIG. 12 shows an ultrasonic vibration casting apparatus for batch processing of a supercooled molten metal. A hot molten metal is cast into 18 molds and 15 ultrasonic vibration horns are inserted. When the temperature is measured with 21 thermocouples and the state is supercooled, the power is switched on and the vibration generated by 10 vibration generators by the output of the high frequency power supply is transferred to 12 melts via 15 ultrasonic vibration horns. Append. In the supercooled molten metal, nucleation occurs at a stretch by ultrasonic vibration for a very short time, and the crystal grains solidify into fine granules.

図13は、液相線近傍の過冷状態溶湯の鋳型鋳造時の超音波振動鋳造装置を示す。17の砂型や金型などの鋳型に溶湯が冷却し液相線温度直下の過冷状態にあるときに鋳造する。この時、15の超音波振動ホーンは、振動状態にしておき注湯と同時に核生成を生じさせ、鋳型内で結晶粒が微細粒状化に凝固した18の鋳物を得ることができる。   FIG. 13 shows an ultrasonic vibration casting apparatus during casting of a supercooled molten metal near the liquidus. Casting is performed when the molten metal cools in a mold such as 17 sand mold or mold and is in a supercooled state just below the liquidus temperature. At this time, the 15 ultrasonic vibration horn is made to vibrate and causes nucleation at the same time as pouring, so that 18 castings in which the crystal grains are solidified into fine granules can be obtained.

図14は、鋳型鋳造後の静止過冷状態での超音波振動鋳造装置を示す。あらかじめ、17の砂型や金型などの鋳型に15の超音波振動ホーンを挿入する。そこへ12の高温の溶湯を15の鋳型に鋳造し所定時間経過して過冷状態になったとき電源のスイッチを入れ高周波電源の出力により10の振動発生器で生じさせた振動を15の超音波振動ホーンを介して12の溶湯に付加する。15の鋳型内の過冷状態の溶湯は非常に短時間の超音波振動で一気に核生成が生じ結晶粒が微細粒状化に凝固した18の鋳物を得る。   FIG. 14 shows an ultrasonic vibration casting apparatus in a still supercooled state after mold casting. In advance, 15 ultrasonic vibration horns are inserted into a mold such as 17 sand molds or molds. There, 12 hot melts were cast into 15 molds, and after a predetermined time had passed and the system was overcooled, the power supply was switched on and the vibrations generated by 10 vibration generators by the output of the high frequency power supply exceeded 15 It is added to 12 melts through a sonic vibration horn. The melt of the supercooled state in 15 molds produces 18 castings in which nucleation is generated at once by ultrasonic vibration for a very short time and crystal grains are solidified into fine granules.

図15は、液相線近傍の過冷状態溶湯への連続鋳造時の超音波振動鋳造装置を示す。13の湯口に11の取鍋の12の溶湯が冷却し液相線温度直下の過冷状態にあるときに鋳造する。この時、15の超音波振動ホーンは、振動状態にしておき注湯と同時に核生成を生じさせ、14の水冷鋳型内で結晶粒が微細粒状化に凝固した16の連続鋳塊を得ることができる。   FIG. 15 shows an ultrasonic vibration casting apparatus during continuous casting to a supercooled molten metal near the liquidus. Casting is performed when the molten metal of 12 in the ladle of 11 is cooled to the gate of 13 and is in a supercooled state just below the liquidus temperature. At this time, the 15 ultrasonic vibration horn is kept in a vibrating state and causes nucleation at the same time as pouring, thereby obtaining 16 continuous ingots in which the crystal grains are solidified into fine granules in the 14 water-cooled mold. it can.

図16は、タンディッシュ内の液相線近傍の過冷状態溶湯への連続鋳造時の超音波振動鋳造装置を示す。19のタンディシュに11の取鍋の12の溶湯が冷却し液相線温度直下の過冷状態にあるときに注湯する。この時、15の超音波振動ホーンは、振動状態にしておき注湯と同時に核生成を生じさせ、13の湯口を介して14の水冷鋳型内で結晶粒が微細粒状化に凝固した16の連続鋳塊を得ることができる。   FIG. 16 shows an ultrasonic vibration casting apparatus during continuous casting to a supercooled molten metal near the liquidus in the tundish. When twelve melts in 11 ladle are cooled in 19 tundishes and are in a supercooled state just below the liquidus temperature, pouring is performed. At this time, 15 ultrasonic vibration horns are kept in a vibrating state to cause nucleation at the same time as pouring, and 16 continuous grains in which crystal grains are solidified into fine granules in 14 water-cooled molds through 13 pouring gates. An ingot can be obtained.

超音波振動は、凝固時の過冷の発生を抑止できる。これは通常の静かに冷却した場合などで、水などでは、−2℃位で氷へ凝固する。超音波振動下では凝固時に核生成が促進し、ほとんど過冷が生じることなく凝固する。また、過冷が生じている場合には、超音波振動の付加で一気に凝固が起きる。また、この場合は微細化の効果も高く、高い生産性に結びつくことが予想できる。
このような観点から、アルミニウム合金の凝固時の過冷状態での短時間超音波振動処理を行うことで効率よく連続的に微細組織材料を創製できることが予測できる。過冷状態では少しの衝撃で凝固が生じるが、その時の核生成に効率よく振動が伝達できることで、微細加工が向上することから過冷状態はほんの少しで良く、液相線直下が振動付加制御にふさわしい。
Ultrasonic vibration can suppress the occurrence of supercooling during solidification. This is the case of normal cooling, etc., and with water etc., it solidifies to ice at around -2 ° C. Under ultrasonic vibration, nucleation is promoted during solidification, and solidifies almost without overcooling. Moreover, when supercooling has occurred, solidification occurs at once by the addition of ultrasonic vibration. In this case, the effect of miniaturization is also high, and it can be expected to lead to high productivity.
From this point of view, it can be predicted that a microstructure material can be created efficiently and continuously by performing ultrasonic vibration treatment for a short time in a supercooled state during solidification of the aluminum alloy. In the supercooled state, solidification occurs with a slight impact, but since the vibration can be efficiently transmitted to the nucleation at that time, the microfabrication is improved, so the supercooled state is only a little, and the vibration addition control is just below the liquidus line. Suitable for.

金属では、結晶粒が微細になるほど強度が高くなることが知られている。また、結晶粒が微細になるほど靱性も向上する。近年、地球の温暖化や石油資源の枯渇問題から輸送機器の軽量化による省エネルギーが求められている。軽量化に効果が高いのはアルミニウム合金やマグネシウム合金などの軽量材料を用いることである。しかし、自動車などのフレームや足回り部品などでは、高張力鋼板や鉄鋼材料の鍛造品などの靱性や強度が高い材料が使われてきた。アルミニウム合金やマグネシウム合金などでは、そのような部品への適応には靱性や強度の一段の向上が求められている。そのため、この特許で示した凝固時の過冷状態の溶湯に超音波振動を短時間付加するだけで、非常に簡単に微細組織材料を創製する技術を用いることで、安価に生産性が良く高靱性で高強度アルミニウム合金を生産できる可能性がある。これでは、自動車などの複雑形状の足回り鋳造部品。自動車のフレームなど押出し成型品を製造するための微細凝固組織のビレットの製造が予想される。
Al-6%Si-4%Fe合金、Al-12%Si-4%Fe合金、Al-18%Si-4%Fe合金、Al-18%Si合金では、初晶にAlSiFe金属間化合物やSiが晶出する。これらは硬度も高く耐摩耗性が高く、高温強度も高くなる。そのため微細粒状化させて、均一分散させれば自動車のエンジンなどのシリンダーの内面に用いることなどが想定される。
It is known that the strength of the metal increases as the crystal grains become finer. Further, the toughness is improved as the crystal grains become finer. In recent years, energy saving has been demanded by reducing the weight of transportation equipment due to global warming and the depletion of petroleum resources. It is effective to use a lightweight material such as an aluminum alloy or a magnesium alloy that is highly effective in reducing the weight. However, for frames and undercarriage parts of automobiles, materials having high toughness and strength such as forged products of high-tensile steel plates and steel materials have been used. For aluminum alloys, magnesium alloys, etc., further improvements in toughness and strength are required for adaptation to such parts. For this reason, it is possible to achieve high productivity at a low cost by using a technique for creating a microstructure material very easily by simply applying ultrasonic vibration to the supercooled molten metal shown in this patent for a short time. There is a possibility that high strength aluminum alloys can be produced with toughness. This is an undercarriage casting part of complicated shape such as automobiles. Production of billets of finely solidified structure for producing extruded products such as automobile frames is expected.
In Al-6% Si-4% Fe alloy, Al-12% Si-4% Fe alloy, Al-18% Si-4% Fe alloy, Al-18% Si alloy, AlSiFe intermetallic compound or Si Crystallizes out. These have high hardness, high wear resistance, and high temperature strength. For this reason, if it is finely granulated and uniformly dispersed, it can be used on the inner surface of a cylinder of an automobile engine or the like.

Al−X%Si−4%Fe合金の超音波振動付加による冷却曲線の変化を示すグラフThe graph which shows the change of the cooling curve by the ultrasonic vibration addition of an Al-X% Si-4% Fe alloy Al−6%Si−4%Fe合金をるつぼ中冷却の組織写真Structure picture of Al-6% Si-4% Fe alloy cooled in crucible Al−6%Si−4%Fe合金における過冷状態での超音波振動付加効果を示す組織写真Structure photograph showing the effect of adding ultrasonic vibration in an undercooled state in an Al-6% Si-4% Fe alloy Al−12%Si−4%Fe合金をるつぼ中冷却の組織写真Structure photograph of Al-12% Si-4% Fe alloy cooled in crucible Al−12%Si−4%Fe合金へ過冷度2℃、 10sec超音波振動付加したときの組織写真Microstructure photograph when supercooling is applied to Al-12% Si-4% Fe alloy with supercooling degree of 2 ℃ for 10sec Al−18%Si−4%Fe合金をるつぼ中冷却の組織写真Structure picture of Al-18% Si-4% Fe alloy cooled in crucible Al−18%Si−4%Fe合金へ過冷度10℃、 10sec超音波振動付加時の組織写真Structure photograph when adding supersonic vibration to Al-18% Si-4% Fe alloy with supercooling degree 10 ° C, 10sec Al−6%Si合金をるつぼ中冷却の組織写真Microstructure picture of Al-6% Si alloy cooling in crucible Al−6%Si合金へ過冷度2℃、 10sec超音波振動を付加時の組織写真Structure photograph when adding supersonic vibration to Al-6% Si alloy with supercooling degree 2 ° C and 10 sec. Al−18%Si合金をるつぼ中冷却の組織写真Structure picture of Al-18% Si alloy cooling in crucible Al−18%Si合金へ過冷度10℃、 10sec超音波振動を付加したときの組織写真Structure photograph when supersonic vibration is added to Al-18% Si alloy at 10 ° C for 10 sec. 過冷溶湯のバッチ処理の超音波振動鋳造装置Ultrasonic vibration casting equipment for batch processing of supercooled molten metal 液相線近傍の過冷状態溶湯の鋳型鋳造時の超音波振動鋳造装置Ultrasonic vibration casting equipment for casting of supercooled molten metal near liquidus 鋳型鋳造後の静止過冷状態での超音波振動鋳造装置Ultrasonic vibration casting equipment in stationary supercooled state after mold casting 液相線近傍の過冷状態溶湯への連続鋳造時の超音波振動鋳造装置Ultrasonic vibration casting equipment for continuous casting to supercooled molten metal near the liquidus タンディッシュ内の液相線近傍の過冷状態溶湯への連続鋳造時の超音波振動鋳造装置Ultrasonic vibration casting equipment during continuous casting to supercooled molten metal near liquidus in tundish

Claims (2)

溶湯に超音波を付加して凝固結晶組織を微細化する鋳造方法であって、前記溶湯の超音波振動の非付加状態における過冷却域において超音波振動の付加を開始し、前記超音波振動の付加は、前記過冷却域のみであることを特徴とする鋳造方法。 A casting method in which ultrasonic waves are added to the molten metal to refine the solidification crystal structure, and the addition of ultrasonic vibrations is started in the supercooling region in the non-addition state of the ultrasonic vibrations of the molten metal . additions, casting method, characterized in der Rukoto only the supercooling zone. 請求項1に記載の鋳造方法において、溶湯はアルミニウム合金であり、初晶にアルミニウムのデンドライト、SiやAlSiFe金属間化合物が晶出することを特徴とする鋳造方法。
2. The casting method according to claim 1, wherein the molten metal is an aluminum alloy, and aluminum dendrite, Si or AlSiFe intermetallic compound is crystallized in the primary crystal.
JP2007037273A 2007-02-19 2007-02-19 Casting method. Expired - Fee Related JP4984049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037273A JP4984049B2 (en) 2007-02-19 2007-02-19 Casting method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037273A JP4984049B2 (en) 2007-02-19 2007-02-19 Casting method.

Publications (2)

Publication Number Publication Date
JP2008200692A JP2008200692A (en) 2008-09-04
JP4984049B2 true JP4984049B2 (en) 2012-07-25

Family

ID=39778713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037273A Expired - Fee Related JP4984049B2 (en) 2007-02-19 2007-02-19 Casting method.

Country Status (1)

Country Link
JP (1) JP4984049B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247179A (en) * 2009-04-15 2010-11-04 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy ingot, and the aluminum alloy ingot
JP5328569B2 (en) * 2009-08-27 2013-10-30 トヨタ自動車株式会社 Al-Si alloy having fine crystal structure, method for producing the same, device for producing the same, and method for producing the casting
JP5641761B2 (en) * 2010-04-01 2014-12-17 新日鐵住金株式会社 Continuous casting equipment
CN103894589A (en) * 2013-10-31 2014-07-02 中南大学 Multifunctional work table of ultrasonic casting device
JP6340893B2 (en) * 2014-04-23 2018-06-13 日本軽金属株式会社 Method for producing aluminum alloy billet
JP5680244B1 (en) * 2014-04-23 2015-03-04 株式会社Lafジャパン Alloy refinement method and precipitate refinement apparatus used therefor
CN103993186B (en) * 2014-05-06 2016-04-20 东北大学 The lower carbon aluminium boundary moisture of ultrasonic field coupling and structure regulating device and method
CN106521195B (en) * 2016-11-10 2018-07-10 东北大学 Ti powder prepares the device of high-purity Al-Ti alloys with the direct reaction method of aluminum melt
KR102207623B1 (en) * 2019-01-07 2021-01-26 한국재료연구원 Ultrasonic casting system and manufacturing method of casting alloy using the same
CN109676115A (en) * 2019-01-23 2019-04-26 上海理工大学 ULTRASONIC COMPLEX device applied to aluminium-magnesium alloy melt processing
CN109692941A (en) * 2019-02-28 2019-04-30 攀钢集团攀枝花钢铁研究院有限公司 Improve the device and method of bottom casting molding ingot quality using ultrasonic wave
CN114951571A (en) * 2022-06-16 2022-08-30 武汉钢铁有限公司 Method for expanding equiaxial crystal zone in cord steel continuous casting billet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133692A (en) * 1997-07-24 1999-02-09 Ahresty Corp Manufacture of metallic slurry for semi-solidified casting
JP2004209487A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Method for controlling solidifying crystalline structure of aluminum cast alloy
JP2006102807A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Method for reforming metallic structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10316387B2 (en) 2013-11-18 2019-06-11 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US10441999B2 (en) 2015-02-09 2019-10-15 Hans Tech, Llc Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10639707B2 (en) 2015-09-10 2020-05-05 Southwire Company, Llc Ultrasonic grain refining and degassing procedures and systems for metal casting

Also Published As

Publication number Publication date
JP2008200692A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4984049B2 (en) Casting method.
JP5051636B2 (en) Casting method and casting apparatus used therefor.
US8992705B2 (en) Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same
JP4382152B1 (en) Method for producing semi-solid slurry of iron alloy, method for producing cast iron casting using the method for producing semi-solid slurry, and cast iron casting
JP4836244B2 (en) Casting method
JP6340893B2 (en) Method for producing aluminum alloy billet
JP4551995B2 (en) Aluminum alloy for casting
JP6495246B2 (en) Aluminum alloy and die casting method
JPH1133692A (en) Manufacture of metallic slurry for semi-solidified casting
Gencalp et al. Effects of Low-Frequency Mechanical Vibration and Casting Temperatures on Microstructure of Semisolid AlSi 8 Cu 3 Fe Alloy
JP2007046071A (en) Mg ALLOY, AND CASTING METHOD OR FORGING METHOD OF THE SAME
JP3246363B2 (en) Forming method of semi-molten metal
Birol Evolution of globular microstructures during processing of aluminium slurries
JP2010000514A (en) Method for producing magnesium alloy member
JP3491468B2 (en) Method for forming semi-solid metal
JP5168069B2 (en) Method for producing aluminum alloy
JP6975421B2 (en) Aluminum alloy manufacturing method
JP3053063B2 (en) Manufacturing method of aluminum alloy casting material suitable for semi-solid molding
JP5035508B2 (en) Solidified aluminum alloy and method for producing the same
JP2962453B2 (en) Manufacturing method of magnesium alloy casting material suitable for semi-solid molding
JP3339333B2 (en) Method for forming molten metal
US20120000317A1 (en) Method Of Refining The Grain Structure Of Alloys
Pandel et al. Study on the Effect of Vibrations During Solidification on Cast Al-Si Alloys
Cardoso-Legorreta et al. Effect of mechanical vibration during the solidification process of an aluminium alloy A356
JP2019136760A (en) Al-Cu BASED ALLOY CAST MATERIAL MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees