JP4551995B2 - Aluminum alloy for casting - Google Patents

Aluminum alloy for casting Download PDF

Info

Publication number
JP4551995B2
JP4551995B2 JP2007058303A JP2007058303A JP4551995B2 JP 4551995 B2 JP4551995 B2 JP 4551995B2 JP 2007058303 A JP2007058303 A JP 2007058303A JP 2007058303 A JP2007058303 A JP 2007058303A JP 4551995 B2 JP4551995 B2 JP 4551995B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
ultrasonic vibration
foundry
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007058303A
Other languages
Japanese (ja)
Other versions
JP2007239102A (en
Inventor
嘉昭 大澤
晋 高森
和己 皆川
英樹 垣澤
修 梅澤
幸明 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007058303A priority Critical patent/JP4551995B2/en
Publication of JP2007239102A publication Critical patent/JP2007239102A/en
Application granted granted Critical
Publication of JP4551995B2 publication Critical patent/JP4551995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

この出願の発明は、鉄を含む鋳物用アルミニウム合金とその凝固結晶組織を制御して行う製造方法に関する。 The invention of this application relates to a manufacturing method that performs the control of the foundry aluminum alloys and their solidification crystal structure containing iron.

鋳物用アルミニウム合金に少量の鉄を添加することによって、鋳物用アルミニウム合金の高温強度性が改善されることはよく知られている。そして、この方法を利用して鋳物用アルミニウム合金から高温での強度性を必要とする、シリンダブロックやアルミニウム系ダイキャスト等を成形することも知られている。 By adding a small amount of iron foundry aluminum alloy, the high-temperature strength of foundry aluminum alloys is improved are well known. Then, require strength at high temperatures from foundry aluminum alloys utilizing this method, it is also known to shape the cylinder block and an aluminum-based die-cast or the like.

しかしながら、鉄が鋳物用アルミニウム合金に不純物として混入されている場合には、その鉄を除去することが難しいだけでなく鋳物用アルミニウム合金が凝固する場合に、針状の金属間化合物(
主にAl3Fe)が初晶として生成される。
However, when the iron is mixed as an impurity in the foundry aluminum alloy, when the foundry aluminum alloy not only difficult to remove the iron to solidify, acicular intermetallic compound (
Al3Fe) is mainly produced as primary crystals.

また、鋳物用Al−Si−Fe合金の製造方法においても、凝固時に針状の金属間化合物(主にAl3Fe)の初晶が発生することは不可避であるとされている。 Further, in the manufacturing method of Al-Si- Fe alloy for casting, the primary crystal of the needle shaped intermetallic compounds during solidification (mainly Al3Fe) occurs it is said to be unavoidable.

そして、このように生成される針状の金属間化合物の初晶は、硬度が高く切り欠き効果があるため、圧延成形や押し出し成形等の二次加工をする場合に大きな障害になるとされている。   And the primary crystal of the acicular intermetallic compound produced in this way has high hardness and has a notch effect, which is considered to be a major obstacle when performing secondary processing such as rolling and extrusion. .

このような成形不良を防ぐために、従来はアルミニウム材の中に鉄(Fe)が1wt%を超えるような場合には、そのアルミニウム材を廃棄するか大量の純アルミニウムインゴットで薄めて再生する等の方法が主に採用されている。   In order to prevent such molding defects, conventionally, when iron (Fe) exceeds 1 wt% in an aluminum material, the aluminum material is discarded or regenerated after being diluted with a large amount of pure aluminum ingot. The method is mainly adopted.

しかしながら、このような方法は貴重な資源を無駄にすることになるため、成形時に粗大な初晶が破壊されても鋭利な劈開面のエッジが生じないように、リン(P)やジルコニウム(Zr)あるいはバナジウム(V)等の微細化剤を添加して初晶を約40μm程度にしたり、これにクロム(Cr)を添加して初晶のケイ素(Si)を均質分散する等の改良法が提案されている。ところが、鋳物用アルミニウム合金に、このような第3元素を混入することは鋳物用アルミニウム合金を再利用(リサイクル化)する場合に不純物として残るという問題が生じる。 However, since such a method wastes valuable resources, phosphorus (P) and zirconium (Zr) are prevented so that a sharp cleaved edge is not generated even when a coarse primary crystal is destroyed during molding. Or a finer such as vanadium (V) is added to make the primary crystal about 40 μm, or chromium (Cr) is added thereto to uniformly disperse the primary crystal silicon (Si). Proposed. However, the foundry aluminum alloy, a problem remains as an impurity is generated in the case of such a possible incorporation of third element reuse foundry aluminum alloy (recycling).

このような微細化剤を使用しないで初晶を微細粒状化する方法として超音波を利用する方法が開発されている(たとえば、引用文献1および2を参照)。   A method using ultrasonic waves has been developed as a method for finely granulating primary crystals without using such a finer (see, for example, References 1 and 2).

特公昭60−48575号公報Japanese Patent Publication No. 60-48575 特開平07−278692号公報 しかしながら、引用文献1 に記載の方法は合金を製造するために超音波を利用するものであり本願発明のように初晶を微細粒状化するために使用されているわけではない。また、引用文献2に記載の発明は粗大なケイ素(Si)からなる針状初晶を微細に粉砕して分散するために超音波振動を利用する方法が記載されている。However, the method described in Japanese Patent Laid-Open No. 07-278692 uses ultrasonic waves to produce an alloy, and is used to finely granulate primary crystals as in the present invention. is not. In addition, the invention described in the cited document 2 describes a method that uses ultrasonic vibration to finely pulverize and disperse acicular primary crystals made of coarse silicon (Si).

しかしながら、引用文献2に記載の方法は、Si量が20〜40%と高いAl−Si合金において針状にのびるSiを700〜800℃
の溶融状態で超音波振動を付加して微細塊状にした。しかし、ホーン材質の記述はなく、当時一般的には金属ホーンを使用している。金属ホーンは溶融金属からの侵食が激しく、アルミニウム合金にTiのホーンではTiそのものが微細化効果を持つ金属のため超音波振動の効果が疑問である。またTiが添加されることでリサイクルを阻害する。
However, in the method described in the cited document 2, Si that extends in a needle shape in an Al—Si alloy having a high Si content of 20 to 40% is made to be 700 to 800 ° C.
In the molten state, ultrasonic vibration was added to form a fine lump. However, there is no description of the horn material, and a metal horn is generally used at that time. The metal horn is eroded from the molten metal, and in the case of a Ti horn of an aluminum alloy, Ti itself is a metal having a refinement effect, so the effect of ultrasonic vibration is questionable. Moreover, recycling is inhibited by adding Ti.

超音波振動は溶融域で温度を保持して付加した場合微細化効果は少ない。凝固時の付加が重要となる。そして、凝固時の初晶の金属間化合物が硬く脆いため加工性を阻害するので微細化が重要となる。この文献では微細粒状化したSiは100〜300μmと粗大であり、凝固時の付加では30μmと微細化が可能となる。   When ultrasonic vibration is applied while maintaining the temperature in the melting region, the effect of miniaturization is small. Addition during solidification is important. Further, since the primary intermetallic compound at the time of solidification is hard and brittle, workability is hindered, so miniaturization is important. In this document, finely granulated Si is as coarse as 100 to 300 μm, and can be refined to 30 μm when added during solidification.

この出願の発明は、以上のとおりの従来技術の限界と問題点を解消して、高濃度のFeを含有した鋳物用アルミニウム合金を提供するものである。 The invention of this application is to solve the limitations and problems of the prior art as described above, there is provided a foundry aluminum alloy containing a high concentration of Fe.

この出願の発明は、上記の課題を解決するためのものとして、発明1の鋳物用アルミニウム合金は、Feを2mass%以上20mass%以下、又はFeを2mass%以上20mass%以下、Siを4mass%以上30mass%以下含まれている鋳物用アルミニウム合金であって、その初晶のFe-Al系金属間化合物の粒径が10〜80μmの多角形の微細粒状であることを特徴とする The invention of this application, as to solve the above problems, foundry aluminum alloy of the invention 1, Fe a 2mass% or more 20 mass% or less, or 2mass% or more 20 mass% or less Fe, 4 mass of Si % or more a 30 mass% or less for casting aluminum alloys which contain, the particle size of the Fe-Al intermetallic compound of the primary crystal is characterized in that it is a fine grained polygonal 10~80μm .

発明1は、従来は使用不能とされていた高濃度のFeを含む鋳物用アルミニウム合金の高温強度性、耐磨耗性および摺動特性等の機能性をダイキャスト(die casting)、シリンダブロック、コンロッド(連結棒)や蒸気タービンブレードへの適応を可能とした Invention 1, the high-temperature strength of foundry aluminum alloy which conventionally contains a high concentration of Fe which has been unavailable, die functionality such as abrasion resistance and sliding characteristics casting (die casting), the cylinder Applicable to blocks, connecting rods and steam turbine blades .

この出願の発明は上記のとおりの特徴をもつ鋳物用アルミニウム合金の凝固結晶組織を制御する方法およびその装置を提供するものであるが、以下にその実施の形態について詳しく説明する。 The invention of this application but is intended to provide a method and apparatus for controlling the solidification crystal structure foundry aluminum alloy having the features of as described above, will be described in detail embodiments thereof below.

この出願の発明は、主として二次加工を伴う成型品に割れを生じさせる金属間化合物(A
l3Fe)の初晶を生成する鋳物用アルミニウム合金に超音波振動を付与することによって初晶を微細粒状化することにある。
The invention of this application mainly relates to an intermetallic compound (A
It is to finely granulate the primary crystal by applying ultrasonic vibration to the foundry aluminum alloy to generate a primary crystal l3Fe).

このように初晶を微細粒状化することは、加工時に初晶が破壊されることによって生ずる鋭利な劈開面を有するエッジの発生が抑制されて加工性を向上するだけでなく、エッジへの応力集中が抑制されるので成型品の高温強度性、耐磨耗性および摺動特性等が改良されて鋳物用アルミニウム合金の用途を拡大するものである。 The fine graining of the primary crystal in this way not only improves the workability by suppressing the generation of edges having sharp cleaved surfaces caused by the destruction of the primary crystal during processing, but also stress on the edges. concentration because it is suppressed high-temperature strength of the molded article, in which an improved abrasion resistance and sliding properties or the like to expand the foundry aluminum alloy applications.

この出願の発明は加熱溶解した鉄などの不純物を含む鋳物用アルミニウム合金の溶湯へ超音波振動を直接付与することによって、金属間化合物(主にAl3Fe)初晶を微細粒状化する点に特徴を有するものである。 By this invention application directly applying ultrasonic vibration to the foundry aluminum alloy molten metal containing impurities such as iron dissolved by heating, intermetallic compounds (mainly Al3Fe) the primary crystal in that fine granulation It has characteristics.

この出願の発明は鋳物用アルミニウム合金に超音波振動を与えるための超音波振動ホーン(
horn)を溶融金属中に挿入して超音波振動を直接付加することが重要である。このため超音波振動ホーン(horn)が金属製の場合には、溶融金属に侵食されるため超音波振動ホーンの表面をセラミックコーティングすることが必要になる。また、超音波振動ホーン(horn)自体をセラミックで作製する場合には金属溶湯、すなわち鋳物用アルミニウム合金の溶湯と反応せず、高温強度に優れ、しかも耐熱衝撃性の高い、サイアロンセラミック(Si3N4+Al2O3)や窒化珪素セラミック(Si3N4)等を使用することが好ましい。
Ultrasonic vibration horn for the invention of this application is to provide an ultrasonic vibration to the foundry aluminum alloy (
It is important to insert horn) into the molten metal and directly apply ultrasonic vibrations. For this reason, when the ultrasonic vibration horn (horn) is made of metal, the surface of the ultrasonic vibration horn needs to be ceramic-coated because it is eroded by the molten metal. The ultrasonic vibration horn (horn) molten metal in case of manufacturing itself with ceramic, i.e. does not react with the foundry aluminum alloy of the molten metal, excellent high-temperature strength, yet high thermal shock resistance, sialon ceramics ( It is preferable to use Si3N4 + Al2O3) or silicon nitride ceramic (Si3N4).

この出願の発明は溶融している鋳物用アルミニウム合金が凝固する時に超音波振動を直接付与することによって、金属間化合物(主にAl3Fe)の初晶を粒径数10μm程度の多角形の塊状にするものであるが、超音波振動は結晶が凝固し始める凝固初期の核生成時に液相線を中心に付与することによって初晶は充分に微細粒状化される。このため、結晶が完全凝固終了する固相線まで超音波振動を付与する必要はない。 By applying ultrasonic vibrations directly upon the invention of application of aluminum alloys for casting the melted solidifies, intermetallic compounds (mainly Al3Fe) primary crystal to about particle diameter of several 10μm polygon of Although it is agglomerated, the primary crystal is sufficiently finely granulated by applying ultrasonic vibration around the liquidus at the time of nucleation in the initial stage of solidification when the crystal begins to solidify. For this reason, it is not necessary to apply ultrasonic vibration to the solid phase line where the crystal is completely solidified.

この出願の発明において対象となる鋳物用アルミニウム合金としては、スクラップ材(リサイクル用成形材)のように不純物の鉄(Fe)が多量に含有される鋳物用アルミニウム合金になる。たとえば、鋳物用Al−Fe系合金(Fe量が2〜20mass
含有)または鋳物用Al−Si−Fe系合金(Si量が4〜30mass%、Fe量が2〜20mass%含有)等のアルミニウム系鋳造合金等である。もちろん、鋳物用アルミニウム合金のスクラップ材(リサイクル用成形材)は、鉄(Fe)以外にも銅(Cu),マグネシウム(Mg),ニッケル(N
i)等の不純物が混入されており、このような不純物を含有した鋳物用アルミニウム合金の凝固結晶組織を制御する方法に適用できることはいうまでもない。
The foundry aluminum alloys of interest in the invention of this application, the foundry aluminum alloy which impurity iron (Fe) is contained in a large amount as scrap material (recycled molding material). For example, Al-Fe-based alloy for casting (Fe amount is 2 to 20 mass%
Containing) or foundry Al-Si-Fe-based alloy (Si content is 4 to 30 mass%, Fe weight of aluminum-based casting alloys of 2 to 20 mass% content), and the like. Of course, foundry aluminum alloy scrap material (recycled molding material), iron (Fe) than the copper also (Cu), magnesium (Mg), nickel (N
i) impurities and the like are mixed, it is naturally applicable to a method for controlling the solidification crystal structure foundry aluminum alloy containing such impurities.

鋳物用Al−Si−Fe系合金(Siを6mass%、Feを2〜5mass%含有した合金)を作製した。 Al-Si-Fe-based alloy for casting (the Si 6 mass%, the 2 to 5 mass% containing an alloy Fe) was prepared.

工業用純アルミニウム、Al−25mass%Si合金、Al−50mass%Fe合金を使用して電気炉中で400gを内径40mm、高さ90mmのアルミナるつぼ(3)内で750℃
で溶解した。このアルミナるつぼ(3)を超音波発振器、振動子、2段の水冷ブースタ(1)、超音波振動ホーン(2)、振幅測定器、温度測定用熱電対(4)を持つ温度計測器および水冷銅板から構成されている超音波凝固組織制御装置にセットして超音波振動を付加した。
Pure aluminum for industrial use, Al-25 mass % Si alloy, Al-50 mass % Fe alloy, 400 g in an electric crucible in an alumina crucible (3) having an inner diameter of 40 mm and a height of 90 mm at 750 ° C.
And dissolved. This alumina crucible (3) is composed of an ultrasonic oscillator, a vibrator, a two-stage water-cooled booster (1), an ultrasonic vibration horn (2), an amplitude measuring instrument, a temperature measuring instrument having a temperature measuring thermocouple (4), and water cooling. The ultrasonic vibration was applied to the ultrasonic coagulation tissue control device composed of a copper plate.

この装置の超音波振動は、電歪型振動子が高周波電流で振動するものであり、この振動を拡大器で増幅した後、ブースタ(1)および超音波振動ホーン(2)へ伝達するため超音波振動ホーン(2)は縦振動する構造になっている。 The ultrasonic vibration of this device is such that the electrostrictive vibrator vibrates with a high-frequency current, and after the vibration is amplified by an expander, it is transmitted to the booster (1) and the ultrasonic vibration horn (2). The sonic vibration horn (2) is structured to vibrate longitudinally.

超音波振動ホーン(2)は高温溶湯へ直接挿入するためファインセラミックのサイアロンを選定した。このサイアロンからなる超音波振動ホーン(2)はストレート形で直径20m
mのものを使用した。
Since the ultrasonic vibration horn (2) was directly inserted into the high-temperature molten metal, a fine ceramic sialon was selected. This sialon ultrasonic vibration horn (2) is straight and has a diameter of 20m.
m was used.

図1に超音波振動ホーンと鋳型の位置関係を示す。超音波振動ホーン(2)をアルミナるつぼ(3)内の溶融金属の表面から10mmの深さに挿入し、振動が付加されている溶融金属の温度を温度測定用熱電対(4)で測定しながら、所定の温度に達した時に超音波振動ホーン(2)を引き抜いた。 FIG. 1 shows the positional relationship between the ultrasonic vibration horn and the mold. Insert the ultrasonic vibration horn (2) at a depth of 10 mm from the surface of the molten metal in the alumina crucible (3), and measure the temperature of the molten metal to which vibration is applied with a thermocouple (4) for temperature measurement. However, when the predetermined temperature was reached, the ultrasonic vibration horn (2) was pulled out.

振動を付加する時の温度は液相線温度を中心として完全凝固までが望ましく、本実施例では700℃から完全凝固の直前である600℃の範囲で行った。 The temperature at which the vibration is applied is preferably from the liquidus temperature to the complete solidification, and in this example, the temperature was in the range of 700 ° C. to 600 ° C. just before the complete solidification.

図2および図3は鋳物用Al−6mass%Si−5mass%Fe合金の超音波振動処理の有無による組織の変化を示した拡大写真である。 2 and 3 is an enlarged photograph showing the change in tissue with and without ultrasonic vibration treatment Al-6 mass% Si-5 mass% F e alloy for casting.

一般に、鋳物用Al−Si系合金に鉄が1.5mass% 以上混入されると初晶の粗大な針状Al3Feが発生するとされているが、図2は超音波振動処理をしない時の写真であり、図3は超音波振動を付与した時の写真である。図3の写真から明らかなように初晶のAl3F
eは微細粒状になっており、10〜100μmに微細化されたAl3Feが均一に分散されていることが確認された。
In general, when iron Al-Si-based alloy for casting is mixed 1.5 mass% or more of coarse acicular Al3Fe primary crystal is to occur, FIG. 2 when no ultrasonic vibration treatment FIG. 3 is a photograph when ultrasonic vibration is applied. As is apparent from the photograph in FIG. 3, the primary crystal Al3F
e is finely granular, and it has been confirmed that Al3Fe refined to 10 to 100 μm is uniformly dispersed.

本発明による、高温強度、耐磨耗性および摺動特性等の高機能性が要求されるシリンダブロック、コンロッド(連結棒)や蒸気タービンブレード等の成形材料に改質する方法およびその装置等に使用される。   According to the present invention, a method and an apparatus for reforming a molding material such as a cylinder block, a connecting rod, or a steam turbine blade that require high functionality such as high-temperature strength, wear resistance, and sliding characteristics are provided. used.

凝固時の組織制御のための超音波振動付加装置である。This is an ultrasonic vibration adding device for controlling the tissue during coagulation. 鋳物用Al−6mass%Si−5mass%Fe合金の凝固時に組織制御のため超音波振動付与しない場合の粗大な初晶針状Al3Feが晶出している組織を示す。It shows the organization foundry Al-6 mass% Si-5 mass% F e alloy coarse HatsuAkirahari like Al3Fe when not applying ultrasonic vibration for tissue control during solidification of is crystallized. 鋳物用Al−6mass%Si−5mass%Fe合金の凝固時に組織制御のため超音波振動付加した場合の初晶のAl3Feが微細粒状化している組織を示す。It shows the organization foundry Al-6 mass% Si-5 mass% F e Al3Fe primary crystal in the case where the ultrasonic vibration added for tissue control during solidification of the alloy is finely granulated.

1 ブースタ
2 超音波振動ホーン
3 アルミナるつぼ
4 温度測定用熱電対
1 Booster 2 Ultrasonic Vibrating Horn 3 Alumina Crucible 4 Thermocouple for Temperature Measurement

Claims (1)

アルミニウム合金スクラップを原料とし、Feを2mass%以上20mass%以下、又はFeを2mass%以上20mass%以下、Siを4mass%以上30mass%以下を含む鋳物用アルミニウム合金であって、その初晶のFe-Al系金属間化合物の粒径が10〜80μmの多角形の微細粒状であることを特徴とする鋳物用アルミニウム合金
An aluminum alloy for castings containing aluminum alloy scrap as a raw material and containing 2 mass% or more and 20 mass% or less of Fe , or 2 mass% or more and 20 mass% or less of Fe, and 4 mass% or more and 30 mass% or less of Si. foundry aluminum alloy grain size of the Al-based intermetallic compound is characterized in that it is a fine grained polygonal 10 to 80 [mu] m.
JP2007058303A 2007-03-08 2007-03-08 Aluminum alloy for casting Expired - Fee Related JP4551995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007058303A JP4551995B2 (en) 2007-03-08 2007-03-08 Aluminum alloy for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058303A JP4551995B2 (en) 2007-03-08 2007-03-08 Aluminum alloy for casting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002379104A Division JP2004209487A (en) 2002-12-27 2002-12-27 Method for controlling solidifying crystalline structure of aluminum cast alloy

Publications (2)

Publication Number Publication Date
JP2007239102A JP2007239102A (en) 2007-09-20
JP4551995B2 true JP4551995B2 (en) 2010-09-29

Family

ID=38584921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058303A Expired - Fee Related JP4551995B2 (en) 2007-03-08 2007-03-08 Aluminum alloy for casting

Country Status (1)

Country Link
JP (1) JP4551995B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644011A (en) * 2012-05-15 2012-08-22 中国船舶重工集团公司第十二研究所 Aluminium alloy semi-solid preform body and preparation method thereof
CN104178650B (en) * 2014-09-01 2016-11-16 南昌大学 A kind of preparation method of high-performance praseodymium holmium aluminium alloy
FR3026845B1 (en) * 2014-10-07 2018-11-09 Constellium Issoire METHOD OF MOUNTING A SOUNDRODE
WO2016071613A1 (en) * 2014-11-05 2016-05-12 Constellium Issoire Process for using a tubular sonotrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212320A (en) * 1993-01-20 1994-08-02 Kobe Steel Ltd High perfrmance al alloy material and its prduction
JPH07278692A (en) * 1994-04-12 1995-10-24 Mitsubishi Materials Corp Production of high-si-content al alloy die casting member having high strength
JPH11246953A (en) * 1998-03-03 1999-09-14 Natl Res Inst For Metals Production of al-si-fe series alloy
JP2000246415A (en) * 1999-03-04 2000-09-12 Toyota Motor Corp Rheocasting method and apparatus thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212320A (en) * 1993-01-20 1994-08-02 Kobe Steel Ltd High perfrmance al alloy material and its prduction
JPH07278692A (en) * 1994-04-12 1995-10-24 Mitsubishi Materials Corp Production of high-si-content al alloy die casting member having high strength
JPH11246953A (en) * 1998-03-03 1999-09-14 Natl Res Inst For Metals Production of al-si-fe series alloy
JP2000246415A (en) * 1999-03-04 2000-09-12 Toyota Motor Corp Rheocasting method and apparatus thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10316387B2 (en) 2013-11-18 2019-06-11 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US10441999B2 (en) 2015-02-09 2019-10-15 Hans Tech, Llc Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10639707B2 (en) 2015-09-10 2020-05-05 Southwire Company, Llc Ultrasonic grain refining and degassing procedures and systems for metal casting

Also Published As

Publication number Publication date
JP2007239102A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4551995B2 (en) Aluminum alloy for casting
JP4984049B2 (en) Casting method.
US8992705B2 (en) Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same
JP2004209487A (en) Method for controlling solidifying crystalline structure of aluminum cast alloy
Choi et al. Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and microstructure of Al-7Si-0.3 Mg alloy
JP4836244B2 (en) Casting method
JP5831344B2 (en) Aluminum alloy having excellent rigidity and manufacturing method thereof
JP5051636B2 (en) Casting method and casting apparatus used therefor.
JP5861254B2 (en) Aluminum alloy casting and manufacturing method thereof
Qin et al. Microstructure evolution of in situ Mg2Si/Al–Si–Cu composite in semisolid remelting processing
Song et al. Influence of cooling rate on solidification behavior of sand-cast Mg–10Gd–3Y–0.4 Zr alloy
CN101899634B (en) Method for eliminating elongated flaky Fe-enriched phase in aluminum alloy
Kumar et al. Metallurgical and mechanical characterization of A319 aluminum alloy casting solidified under mold oscillation
Gencalp et al. Effects of Low-Frequency Mechanical Vibration and Casting Temperatures on Microstructure of Semisolid AlSi 8 Cu 3 Fe Alloy
JP3246363B2 (en) Forming method of semi-molten metal
JP2010000514A (en) Method for producing magnesium alloy member
JP2010207842A (en) Al ALLOY CASTING AND METHOD FOR PRODUCING THE SAME
Khalifa et al. Effect of ultrasonic melt-treatment on the eutectic silicon and iron intermetallic phases in Al-Si cast alloys
JP3491468B2 (en) Method for forming semi-solid metal
JP5168069B2 (en) Method for producing aluminum alloy
JP2003126950A (en) Molding method of semi-molten metal
JP3216685B2 (en) Forming method of semi-molten metal
Khalifa et al. Ultrasonic Rheo-Diecasting of A383 Aluminum Alloy
Lin et al. Effects of High Pressure on Fe-Rich Phases and Mechanical Properties of Al-14Si Alloys with Rheo-Squeeze Casting
JP3216684B2 (en) Forming method of semi-molten metal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees