JP2004114153A - Method and apparatus for producing metallic material in solid-liquid coexisting state and method and apparatus for producing semi-solidified metallic slurry - Google Patents

Method and apparatus for producing metallic material in solid-liquid coexisting state and method and apparatus for producing semi-solidified metallic slurry Download PDF

Info

Publication number
JP2004114153A
JP2004114153A JP2003102319A JP2003102319A JP2004114153A JP 2004114153 A JP2004114153 A JP 2004114153A JP 2003102319 A JP2003102319 A JP 2003102319A JP 2003102319 A JP2003102319 A JP 2003102319A JP 2004114153 A JP2004114153 A JP 2004114153A
Authority
JP
Japan
Prior art keywords
solid
container
molten metal
producing
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003102319A
Other languages
Japanese (ja)
Other versions
JP3549054B2 (en
Inventor
Chunpyo Hong
洪 俊杓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2003-0013517A external-priority patent/KR100445643B1/en
Application filed by Individual filed Critical Individual
Publication of JP2004114153A publication Critical patent/JP2004114153A/en
Application granted granted Critical
Publication of JP3549054B2 publication Critical patent/JP3549054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for producing semi-solidified metallic slurry with which further fine and uniform spheroidized grains are obtained and, the improvement of energy efficiency, the saving of producing cost, the improvement of mechanical properties, the simplification of casting process and the shortening of producing time can be realized. <P>SOLUTION: Molten metal is poured into a slurry-producing vessel disposed in a space part impressing electromagnetic field. The slurry-producing vessel is transported to out of the space part and the molten metal in the slurry-producing vessel is made to be the semi-solidified metallic slurry. Grain distribution having wholly uniform and fine spheroidized structure can be obtained in this slurry, and the mechanical properties of alloy can be improved. Nuclei-generating density on the wall surface of the slurry-producing vessel is remarkably increased only by stirring for short time at higher temperature than the liquidus and the grains can be spheroidized. The high quality semi-solidified metallic slurry can be produced for short time and has excellent cooperation property with the following process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属に電磁気場を印加して固液共存状態金属材料とする固液共存状態金属材料の製造方法、その製造装置、半凝固金属スラリの製造方法およびその製造装置に関する。
【0002】
【従来の技術】
固液共存状態の金属材料、すなわち半凝固あるいは半溶融金属スラリは、通常半凝固成形法(Reocasting)および半溶融成形法(Thixocasting)などの複合加工法の中間品をいい、半凝固領域の温度で液相と球状の結晶粒とが適切な割合で混在した状態でチクソトロピー(Thixotropic)性により小さな力によっても変形が可能であり、かつ流動性に優れて液相のように成形加工が容易な状態の金属材料である。
【0003】
ここで、半凝固成形法とは、完全に凝固されずに所定の粘性を有するスラリを鋳造あるいは鍛造でビレットや最終成形品を製造する加工法である。また、半溶融成形法とは、半凝固成形法により製造されたビレットを半溶融状態のスラリに再加熱した後、このスラリを鋳造あるいは鍛造して最終製品に製造する加工法である。
【0004】
そして、このような半凝固あるいは半溶融成形法は、鋳造や溶融鍛造など溶融金属を利用する一般的な成形方法に比べて色々な長所を有している。例えば、これら半凝固あるいは半溶融成形法で使用するスラリは溶融金属より低温で流動性を有するので、このスラリに露出されるダイの温度を溶融金属の場合よりさらに低めることができ、これによりダイの寿命が延びる。
【0005】
また、スラリがシリンダに沿って押し出される時に乱流の発生が少なくて鋳造過程で空気の混入を減らし、これにより最終製品への気孔発生を減らすことができる。その他にも凝固収縮が少なくて作業性が改善され、製品の機械的特性および耐食性が向上し、製品の軽量化が可能である。これにより、自動車や航空機産業分野、電気電子情報通信装備などの新素材として利用できる。
【0006】
このように、これら半凝固あるいは半溶融成形法では、いずれも半凝固状態の金属スラリを使用するが、前述したように、半凝固成形法では溶融金属を所定の方法により冷却したスラリを使用し、半溶融成形法では固相のビレットを再加熱して得られたスラリを使用する。ここで、半凝固金属スラリは、金属の液相線と固相線との間で液相と固相とが共存する領域、すなわち、金属の半凝固領域の温度で金属内部の結晶粒界が部分的には溶解され、部分的には固相成分として残留する状態の金属材料を意味するものであり、半凝固成形法により製造された、すなわち、溶融金属から冷却されて得られた半凝固状態のスラリをいう。
【0007】
一方、従来の半凝固成形法は、溶融金属を冷却する時に主に液相線以下の温度で攪拌して既に生成された樹枝状結晶組織を破砕することによって半凝固成形に適合に球状の粒子に作る方法である。攪拌方法には、機械的攪拌法と電磁気的攪拌法、ガスバブリング、低周波、高周波あるいは電磁気波振動を利用するか、電気的衝撃による攪拌法などが利用された。
【0008】
そして、液相固相混合物を製造する方法としては、溶融金属が固相化する間に強く攪拌しながら冷却している。さらに、この液相固相混合物を製造するための製造装置は、容器に固液混合物を注湯した状態で攪拌棒により攪拌するが、この攪拌棒は所定の粘性を有する固液混合物を攪拌して流動させることによって混合物内の樹枝状構造を破砕するか、破砕された樹枝状構造を分散させるものである。
【0009】
ところが、上記液相固相混合物を製造する方法では、冷却過程で既に形成された樹枝状結晶形態を粉砕し、この粉砕した樹枝状結晶を結晶核として球状の結晶を得ているため、初期凝固層の形成による潜熱の発生により冷却速度の減少と製造時間の増加および攪拌容器内での温度不均一による不均一な結晶状態など多くの問題を有している。また、この液相固相混合物を製造するための製造装置の場合にも、機械的攪拌が有する限界によって容器内の温度分布が不均一であり、チャンバ内で作動するために作業時間および後続工程への連係が非常に難しい限界を有している(例えば、特許文献1参照。)。
【0010】
また、半凝固合金スラリの製造装置としては、コイル付き電磁気場印加手段の内側に順次に冷却マニホールドおよび金型を備えている。そして、この金型の上側は溶融金属が連続して注湯されるように形成されており、冷却マニホールドには冷却水が流れて金型を冷却するように構成されている。さらに、上記半凝固合金スラリの製造装置による半凝固合金スラリの製造方法によれば、まず、金型の上側から溶融金属を注湯し、この溶融金属が金型内を通過しながら冷却マニホールドにより固相化領域を形成するが、ここで電磁気場印加手段により磁場が印加されて樹枝状組織を破砕しながら冷却が進み、下部からインゴットが形成される(例えば、特許文献2参照。)。
【0011】
ところが、このような半凝固合金スラリの製造方法および装置においても、基本的な技術的思想は凝固が起きた後で振動を加えて樹枝状組織を破砕するものであるが、この場合にも上述のように工程上および組織構成上多くの問題を有している。また、上記半凝固合金スラリの製造装置の場合にも溶融金属が上部から下部に進みながら連続してインゴットを形成するが、連続して成長させることによって金属の状態を調節しにくく、全体的な工程制御が困難である。また、電磁気場の印加前の段階で既に容器を水冷するため、容器壁体付近と中心付近での温度差が激しい。
【0012】
さらに、半溶融成形材の製造方法としては、合金中のあらゆる金属成分が液体状態に存在するように合金を加熱した後、得られる液体金属を液相線と固相線との間の温度に冷却する。この後、剪断力を加えて冷却される溶融金属から形成される樹枝状構造を破壊することによって半溶融成形材を製造している(例えば、特許文献3参照。)。
【0013】
また、半凝固鋳造用金属スラリの製造方法としては、液相線温度の付近または液相線より50℃まで高い温度で溶融金属を容器に注湯する。この後、溶融金属が冷却される過程で溶融金属の少なくとも一部が液相線温度以下になる時点、すなわち、最初に液相線温度を通過する時点で、例えば超音波振動により溶融金属に運動を加える。さらに、この溶融金属に運動を加えた後、徐々に冷却することによって粒相結晶形態の金属組織を有する半凝固鋳造用金属スラリを製造している(例えば、特許文献4参照。)。
【0014】
ところが、上記半凝固鋳造用金属スラリの製造方法でも、超音波振動などの力が冷却初期に形成される樹枝状結晶組織を破砕するために使われている。また、注湯温度を液状線温度より高くすれば、粒相の結晶形態を得難く、同時に溶湯を急激に冷却し難い。さらに、表面部と中心部の組織が不均一になる。
【0015】
さらに、半溶融金属の成形方法としては、溶融金属を容器に注湯した後、振動バーを溶融金属中に浸漬させて溶融金属と直接接触させた状態で振動させて溶融金属に振動を与えている。具体的には、振動バーの振動力を溶融金属に伝達することによって、液相線温度以下で結晶核を有する固液共存状態の合金を形成する。この後、所定の液相率を示す成形温度まで溶融金属を容器内で冷却しながら30秒以上60分以下の間維持することによって結晶核を成長させて半溶融金属を得る。ところが、この方法で得られる結晶核の大きさは約100μMであり、工程時間が相当長く、所定大きさ以上の容器に適用し難い(例えば、特許文献5参照。)。
【0016】
また、半溶融金属スラリの製造方法としては、冷却と攪拌とを同時に精密に制御することによって半溶融金属スラリを製造している。具体的には、溶融金属を混合容器に注湯した後、混合容器周囲に設置された固定子アセンブリを作動させて容器内の溶融金属を急速に攪拌するのに十分な起磁力を発生させる。さらに、混合容器の周囲に設けられて容器および溶融金属の温度を精密に調節する作用をするサーマルジャケットを利用して溶融金属の温度を急速に落とす。溶融金属が冷却される時に溶融金属は攪拌され続け、固相率が低い時には速い攪拌を提供し、固相率が増加するにつれて増大した起電力を提供する方式で調節される(例えば、特許文献6参照。)。
【0017】
【特許文献1】
米国特許第3948650号明細書(第3−8欄および図3)
【0018】
【特許文献2】
米国特許第4465118号明細書(第4−12欄、図1、図2、図5および図6)
【0019】
【特許文献3】
米国特許第4694881号明細書(第2−6欄)
【0020】
【特許文献4】
特開平11−33692号公報(第3−5頁および図1)
【0021】
【特許文献5】
特開平10−128516号公報(第4−7頁および図3)
【0022】
【特許文献6】
米国特許第6432160号明細書(第7−15欄、図1Aないし図2Bおよび図4)
【0023】
【発明が解決しようとする課題】
上述したように、上記従来の半凝固金属スラリの製造方法およびその製造装置では、冷却過程で既に形成された樹枝状結晶形態を粉砕して粒相の金属組織にするために剪断力を利用している。したがって、溶融金属の少なくとも一部が液相線以下に下がってこそ振動などの力を加えるので初期凝固層の形成による潜熱の発生により冷却速度の減少および製造時間の増加など各種の問題を避けにくい。また、得られた金属組織も容器内での温度の不均一によって全体的に均一でかつ微細な組織を得難く、溶融金属の容器への注湯温度を調節しなければ容器壁面部と中心部との温度差によって組織の不均一性がさらに増大してしまう。
【0024】
本発明は、このような点に鑑みなされたもので、より微細かつ均一な球状化粒子を得ると同時にエネルギ効率の改善、製造コストの節減、機械的性質の向上、鋳造工程の簡便化および製造時間短縮の利点を実現できるとともに、短時間に高品質の固液共存状態金属材料を製造でき、後続工程との連係性に優れた固液共存状態金属材料の製造方法、その製造装置、半凝固金属スラリの製造方法およびその製造装置を提供することを目的とする。
【0025】
【課題を解決するための手段】
請求項1記載の固液共存状態金属材料の製造方法は、容器が載置される所定の空間部に電磁気場を印加する印加工程と、この印加工程にて前記空間部に電磁気場が印加されている状態で、前記空間部に配置された前記容器に溶融金属を注湯する注湯工程と、この注湯工程にて前記溶融金属が注湯された前記容器を前記空間部外へ移送して、前記溶融金属を固液共存状態金属材料とする移送工程とを具備したものである。
【0026】
そして、従来に比べ、全体的に均一でかつ微細な球状の組織を得ることができるので合金の機械的性質の向上を実現できる。また、液相線より高い温度での短時間の攪拌だけでも容器壁面での核生成密度を顕著に増加させて粒子の球状化を実現でき、全体的に均一でかつ微細な粒子分布を実現できるので合金の機械的性質の向上を実現できる。
【0027】
請求項2記載の固液共存状態金属材料の製造方法は、請求項1記載の固液共存状態金属材料の製造方法において、印加工程は、注湯工程にて容器に溶融金属を注湯する前に、空間部に電磁気場を印加するものである。
【0028】
そして、注湯工程にて容器に溶融金属を注湯する前に、印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0029】
請求項3記載の固液共存状態金属材料の製造方法は、請求項1または2記載の固液共存状態金属材料の製造方法において、印加工程は、空間部に電磁気場を印加した後に、この空間部内に容器が配置されるものである。
【0030】
そして、印加工程にて空間部に電磁気場を印加した後に、この空間部内に容器を配置しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0031】
請求項4記載の固液共存状態金属材料の製造方法は、請求項1記載の固液共存状態金属材料の製造方法において、印加工程は、注湯工程にて容器に溶融金属を注湯すると同時に、空間部に電磁気場を印加するものである。
【0032】
そして、注湯工程にて容器に溶融金属を注湯すると同時に、印加工程にて空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0033】
請求項5記載の固液共存状態金属材料の製造方法は、請求項1記載の固液共存状態金属材料の製造方法において、印加工程は、注湯工程にて容器に溶融金属を注湯する途中で、空間部に電磁気場を印加するものである。
【0034】
そして、注湯工程にて容器に溶融金属を注湯する途中で、印加工程にて空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0035】
請求項6記載の固液共存状態金属材料の製造方法は、請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法において、印加工程は、容器内の溶融金属の固相率が0.001以上0.7以下となるまで、空間部に電磁気場を印加するものである。
【0036】
そして、容器内の溶融金属の固相率が0.001以上0.7以下となるまで印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができる。
【0037】
請求項7記載の固液共存状態金属材料の製造方法は、請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法において、印加工程は、容器内の溶融金属の固相率が0.001以上0.4以下となるまで、空間部に電磁気場を印加するものである。
【0038】
そして、容器内の溶融金属の固相率が0.001以上0.4以下となるまで印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0039】
請求項8記載の固液共存状態金属材料の製造方法は、請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法において、印加工程は、容器内の溶融金属の固相率が0.001以上0.1以下となるまで、空間部に電磁気場を印加するものである。
【0040】
そして、容器内の溶融金属の固相率が0.001以上0.1以下となるまで印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0041】
請求項9記載の固液共存状態金属材料の製造方法は、請求項1ないし8いずれか記載の固液共存状態金属材料の製造方法において、注湯工程にて容器に溶融金属を注湯した後に、この容器を冷却する冷却工程を具備したものである。
【0042】
そして、注湯工程にて容器に溶融金属を注湯した後に、冷却工程にて容器を冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができる。
【0043】
請求項10記載の固液共存状態金属材料の製造方法は、請求項9記載の固液共存状態金属材料の製造方法において、冷却工程は、容器内の溶融金属の固相率が0.1以上0.7以下となるまで、前記容器を冷却するものである。
【0044】
そして、容器内の溶融金属の固相率が0.1以上0.7以下となるまで冷却工程にて容器を冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0045】
請求項11記載の固液共存状態金属材料の製造方法は、請求項9記載の固液共存状態金属材料の製造方法において、冷却工程は、容器内の溶融金属を0.2℃/sec以上5.0℃/sec以下の速度で冷却するものである。
【0046】
そして、容器内の溶融金属を冷却工程にて0.2℃/sec以上5.0℃/sec以下の速度で冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0047】
請求項12記載の固液共存状態金属材料の製造方法は、請求項9記載の固液共存状態金属材料の製造方法において、冷却工程は、容器内の溶融金属を0.2℃/sec以上2.0℃/sec以下の速度で冷却するものである。
【0048】
そして、容器内の溶融金属を冷却工程にて0.2℃/sec以上2.0℃/sec以下の速度で冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0049】
請求項13記載の半凝固金属スラリの製造方法は、請求項1ないし12いずれか記載の固液共存状態金属材料は、半凝固金属スラリであるものである。
【0050】
そして、請求項1ないし12いずれか記載の固液共存状態金属材料が半凝固金属スラリであることにより、請求項1ないし12いずれか記載の固液共存状態金属材料と同様の作用を有する。
【0051】
請求項14記載の固液共存状態金属材料の製造装置は、所定の空間部を備え、この空間部に電磁気場を印加する攪拌部と、この攪拌部の空間部内に収容される容器と、この容器を前記空間部内に収容させる駆動部と、前記容器に溶融金属を注湯する注湯部とを具備したものである。
【0052】
そして、全体工程を単純化して電磁気場攪拌時間を大幅に短縮できるので攪拌に必要なエネルギの消耗が少なく、製品成形時間も短縮して経済的にも相当な利点を有するとともに、後続工程との連係性も優れて収率を大きく増進できる。
【0053】
請求項15記載の固液共存状態金属材料の製造装置は、請求項14記載の固液共存状態金属材料の製造装置において、攪拌部は、注湯部にて容器に溶融金属が注湯される前に、空間部に電磁気場を印加するものである。
【0054】
そして、注湯部にて容器に溶融金属が注湯される前に、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0055】
請求項16記載の固液共存状態金属材料の製造装置は、請求項14記載の固液共存状態金属材料の製造装置において、攪拌部は、注湯部にて容器に溶融金属が注湯されると同時に、空間部に電磁気場を印加するものである。
【0056】
そして、注湯部にて容器に溶融金属が注湯されると同時に、攪拌部が空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0057】
請求項17記載の固液共存状態金属材料の製造装置は、請求項14記載の固液共存状態金属材料の製造装置において、攪拌部は、注湯部にて容器に溶融金属が注湯される途中で、空間部に電磁気場を印加するものである。
【0058】
そして、注湯部にて容器に溶融金属が注湯される途中で、攪拌部が空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0059】
請求項18記載の固液共存状態金属材料の製造装置は、請求項14ないし17いずれか記載の固液共存状態金属材料の製造装置において、駆動部は、注湯部にて容器に溶融金属が注湯された後に、前記容器を上昇させてこの容器を空間部外へ移送するものである。
【0060】
そして、注湯部にて容器に溶融金属が注湯された後に、駆動部が容器を上昇させてこの容器を空間部外へ移送するので、溶融金属が注湯された容器の移送が容易になる。
【0061】
請求項19記載の固液共存状態金属材料の製造装置は、請求項14ないし18いずれか記載の固液共存状態金属材料の製造装置において、駆動部は、容器を水平移動させるものである。
【0062】
そして、駆動部が容器を水平移動させるので、この容器内に注湯された溶融金属を溢すことなく、この容器を空間部外へと移送できる。
【0063】
請求項20記載の固液共存状態金属材料の製造装置は、請求項14ないし19いずれか記載の固液共存状態金属材料の製造装置において、駆動部は、縁部に容器が設置される回転プレートを具備し、注湯部にて前記容器に溶融金属が注湯された後に前記回転プレートを下降させるとともに回転させて前記容器を前記空間部外へ移送するものである。
【0064】
そして、注湯部にて容器に溶融金属が注湯された後に、縁部に容器が設置された回転プレートを下降させるとともに回転させて、この容器を空間部外へ移送するので、この容器の空間部外への移送が簡単な構成で確実にできる。
【0065】
請求項21記載の固液共存状態金属材料の製造装置は、請求項18または19記載の固液共存状態金属材料の製造装置において、駆動部を水平移動可能に支持するレールを具備し、前記駆動部は、容器に溶融金属が注湯された後に前記容器を下降させてから、前記レールに沿って水平移動して前記容器を空間部外に移送するものである。
【0066】
そして、容器に溶融金属が注湯された後に、駆動部が容器を下降させてから、レールに沿って水平移動させて、この容器を空間部外に移送するので、溶融金属が注湯された容器の空間部外への移送が簡単な構成で確実にできる。
【0067】
請求項22記載の固液共存状態金属材料の製造装置は、請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置において、攪拌部は、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.7以下となるまで、空間部に電磁気場を印加するものである。
【0068】
そして、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.7以下となるまで、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0069】
請求項23記載の固液共存状態金属材料の製造装置は、請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置において、攪拌部は、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.4以下となるまで、空間部に電磁気場を印加するものである。
【0070】
そして、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.4以下となるまで、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0071】
請求項24記載の固液共存状態金属材料の製造装置は、請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置において、攪拌部は、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.1以下となるまで、空間部に電磁気場を印加するものである。
【0072】
そして、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.1以下となるまで、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0073】
請求項25記載の固液共存状態金属材料の製造装置は、請求項14ないし24いずれか記載の固液共存状態金属材料の製造装置において、容器に取り付けられ、この容器内の溶融金属の温度を調整する温度調節装置を具備したものである。
【0074】
そして、容器に取り付けた温度調節装置にて容器内の溶融金属の温度を調整することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易かつ確実に得ることができる。
【0075】
請求項26記載の固液共存状態金属材料の製造装置は、請求項25記載の固液共存状態金属材料の製造装置において、温度調節装置は、容器に取り付けられ、この容器内の溶融金属を冷却する冷却装置を備えたものである。
【0076】
そして、容器に取り付けた冷却装置で、この容器内の溶融金属を冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易かつ確実に得ることができる。
【0077】
請求項27記載の固液共存状態金属材料の製造装置は、請求項25または26記載の固液共存状態金属材料の製造装置において、温度調節装置は、容器に取り付けられ、この容器内の溶融金属を加熱する加熱装置を備えたものである。
【0078】
そして、容器に取り付けた加熱装置で、この容器内の溶融金属を加熱することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易かつ確実に得ることができる。
【0079】
請求項28記載の固液共存状態金属材料の製造装置は、請求項27記載の固液共存状態金属材料の製造装置において、加熱装置は、電気ヒータであるものである。
【0080】
そして、加熱装置を電気ヒータとすることにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を簡単な構成でより容易に得ることができる。
【0081】
請求項29記載の固液共存状態金属材料の製造装置は、請求項25または26記載の固液共存状態金属材料の製造装置において、温度調節装置は、容器内の溶融金属の固相率が0.1以上0.7以下となるまで冷却するものである。
【0082】
そして、容器内の溶融金属の固相率が0.1以上0.7以下となるまで温度調節装置が冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0083】
請求項30記載の固液共存状態金属材料の製造装置は、請求項25または26記載の固液共存状態金属材料の製造装置において、温度調節装置は、容器内の溶融金属を0.2℃/sec以上5.0℃/sec以下の速度で冷却するものである。
【0084】
そして、容器内の溶融金属を0.2℃/sec以上5.0℃/sec以下の速度で温度調節装置が冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0085】
請求項31記載の固液共存状態金属材料の製造装置は、請求項25または26記載の固液共存状態金属材料の製造装置において、温度調節装置は、容器内の溶融金属を0.2℃/sec以上2.0℃/sec以下の速度で冷却するものである。
【0086】
そして、容器内の溶融金属を0.2℃/sec以上2.0℃/sec以下の速度で温度調節装置が冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0087】
請求項32記載の半凝固金属スラリの製造装置は、請求項14ないし31いずれか記載の固液共存状態金属材料は、半凝固金属スラリであるものである。
【0088】
そして、請求項14ないし31いずれか記載の固液共存状態金属材料が半凝固金属スラリであることにより、請求項14ないし31いずれか記載の固液共存状態金属材料と同様の作用を有する。
【0089】
【発明の実施の形態】
以下、本発明の第1の実施の形態の固液共存状態金属材料の製造方法を図面を参照して説明する。
【0090】
まず、固液共存状態金属材は半凝固金属スラリであり、この半凝固金属スラリは、注湯工程にてスラリ製造容器2aに溶融金属Mを注湯する前に電磁気場で攪拌する。すなわち、注湯工程にてスラリ製造容器2aに溶融金属Mを注湯する前、注湯工程にてスラリ製造容器2aに溶融金属Mを注湯すると同時に、または注湯工程にてスラリ製造容器2aに溶融金属Mを注湯する途中で、印加工程にて電磁気場による攪拌をすることによって、初期樹枝状組織の生成を遮断する。この時、この攪拌には電磁気場の代わりに超音波などを利用することもできる。
【0091】
すなわち、この印加工程での電磁気場による攪拌は、所定の空間部13に溶融金属Mが注湯されずに空いているスラリ製造容器2aを配置工程として配置させ、このようにスラリ製造容器2aが空いている状態で、印加工程として空間部13に電磁気場を印加して溶融金属Mを注湯する。この時、電磁気場の印加は溶融金属Mを攪拌できる強度でなされる。
【0092】
この後、図1に示すように、注湯工程として溶融金属Mを注湯温度Tでスラリ製造容器2aに注湯する。このときのスラリ製造容器2aには電磁気場が印加されて溶融金属Mが攪拌される。空間部13にスラリ製造容器2aを配置する段階である配置工程は、空間部13に電磁気場が印加された後にもできる。なお、このとき、溶融金属Mの注湯と同時に電磁気場で攪拌でき、また、溶融金属Mが注湯されている途中でも電磁気場で攪拌できる。
【0093】
このように、スラリ製造容器2aへの溶融金属Mの注湯が完了する前に電磁気場を印加することによって、溶融金属Mが低温のスラリ製造容器2aの内壁で初期凝固層が形成されにくくなる。そして、このスラリ製造容器2a全体にわたって微細な結晶核が同時に発生し、このスラリ製造容器2a内の溶融金属M全体が均一に液状線温以下に急速に冷却されて多数の結晶核を同時に発生する。
【0094】
これは、スラリ製造容器2aに溶融金属Mを注湯する前または注湯と同時に電磁気場を印加することによって活発な初期攪拌作用により内部の溶融金属Mと表面の溶融金属Mとがよく攪拌されて溶融金属M内での熱伝逹が速く、スラリ製造容器2aの内壁での初期凝固層形成が抑制されるからである。
【0095】
また、よく攪拌されている溶融金属Mと低温のスラリ製造容器2aの内壁との対流熱伝逹が増加して溶融金属M全体の温度を急速に冷却する。すなわち、注湯された溶融金属Mが注湯と同時に電磁気場の攪拌により分散粒子に分散され、この分散粒子が結晶核としてスラリ製造容器2a内に均一に分布され、これによりスラリ製造容器2a全体にわたって温度差が発生しなくなる。これに対し、上述の従来の技術によれば、注湯された溶融金属Mが低温のスラリ製造容器2aの内壁と接触して急速な対流熱伝逹により初期凝固層での樹枝状結晶に成長する。
【0096】
そして、このような原理は凝固潜熱と関連して説明できる。すなわち、スラリ製造容器2aの壁面で溶融金属Mの初期凝固が発生しないので凝固潜熱が発生せず、これにより溶融金属Mの冷却は単に溶融金属Mの比熱(凝固潜熱の1/400程度に過ぎない)に該当する程度の熱量の放出だけで可能になる。したがって、従来の技術においてスラリ製造容器2aの壁面部でよく発生する初期凝固層である樹枝状結晶が形成されずに、スラリ製造容器2a内の溶融金属Mがスラリ製造容器2aの壁面から中心部にわたって全体的に均一にかつ急速に温度が下がる様子を示す。このときの温度を下げるのに必要な時間は溶融金属Mの注湯後約1秒以上10秒以下程度の短い時間にすぎない。これにより、多数の結晶核がスラリ製造容器2a内の溶融金属M全体にわたって均一に生成され、結晶核生成密度の増加によって結晶核間の距離は非常に短くなって樹枝状結晶が形成されずに独立的に成長して球状粒子を形成する。
【0097】
これは溶融金属Mが注湯されている途中で電磁気場が印加される場合にも同じである。すなわち、スラリ製造容器2aの内壁面において初期凝固層は、注湯される過程での電磁気場攪拌により形成されにくくなる。
【0098】
このとき、溶融金属Mの注湯温度Tは液相線温度以上、液相線+100℃以下の温度(溶湯過熱度=0℃以上100℃以下)に維持されることが望ましい。上述のように、溶融金属Mが入っているスラリ製造容器2aの内部全体が均一に冷却されるので、このスラリ製造容器2aに溶融金属Mを注湯する前に液相線温度付近まで冷却する必要がなく、液相線温度より100℃程度の高い温度を維持しても関係ないからである。
【0099】
一方、溶融金属Mをスラリ製造容器2aに注湯した後、溶融金属Mの一部が液相線以下になる時点でスラリ製造容器2aに電磁気場を印加する従来の方法によれば、スラリ製造容器2aの壁面に初期凝固層が形成されながら凝固潜熱が発生するが、凝固潜熱は比熱の約400倍であるため、スラリ製造容器2a全体の溶融金属Mの温度が下がるには長時間がかかる。したがって、このような従来の方法では、液相線程度または液相線より約50℃高い温度まで溶融金属Mの温度を冷却した後、スラリ製造容器2aに注湯することが一般的であった。
【0100】
また、電磁気場による攪拌は、図1に示すように、スラリ製造容器2a内の溶融金属Mが少なくとも一部分でも、溶融金属Mの温度が液状線温度T以下と下がった時、すなわち、この溶融金属Mの固相率が約0.001で所定の結晶核でも生成された後ならばいつ終了しても余り問題にならない。すなわち、スラリ製造容器2aに溶融金属Mを注湯してこの溶融金属Mを冷却する段階まで電磁気場を印加して、後続の図示しないダイキャスティング工程や、熱間鍛造工程などの成形工程前に電磁気場による攪拌を停止させてもよい。これは既にスラリ製造容器2a全体にわたって結晶核が均一に分布されているために、この結晶核を中心として結晶粒が成長する段階での電磁気場の攪拌は製造される金属スラリの特性に影響を及ぼさないからである。したがって、電磁気場による攪拌は、少なくとも溶融金属Mの固相率が0.001以上0.7以下のうちいずれの時点に到達するまで持続させる。
【0101】
ただし、電磁気場による攪拌の持続時間は、エネルギ効率面で考慮できるため、少なくともスラリ製造容器2a内の溶融金属Mの固相率が0.001以上0.4以下になるまで持続でき、さらに望ましくは溶融金属Mの固相率が0.001以上0.1以下になるまで持続させる。
【0102】
上述のように、電磁気場による攪拌を加えた後にはスラリ製造容器2aを電磁気場が印加されている空間部13の外側へ移送させて後続工程に連係させる。すなわち、後続工程であるダイカスト工程や、熱間鍛造工程またはビレット製造工程に移して成形することである。このようなスラリ製造容器2aの移送は、電磁気場の終了とは関係なく進行でき、まず、電磁気場の印加を終了した後でスラリ製造容器2aを移送でき、空間部13に電磁気場が印加されている状態でこの空間部13の外側にスラリ製造容器2aを移送して離脱できる。
【0103】
一方、スラリ製造容器2aへの溶融金属Mの注湯が完了する前に電磁気場を印加して、均一な分布の結晶核を形成した後に、冷却工程としてスラリ製造容器2aを冷却して生成された結晶核の成長を加速できる。したがって、このような冷却工程は、スラリ製造容器2aに溶融金属Mを注湯するときからできる。
【0104】
また、この冷却工程の間にも電磁気場を持続的に印加してもよい。したがって、この冷却工程は、電磁気場が印加される空間部13にスラリ製造容器2aがあるときに、すなわち、このスラリ製造容器2aを空間部13から離脱させる前にしてもよい。これにより、この空間部13に位置したスラリ製造容器2aで半凝固状態の金属スラリを製造した後、これを直ちに後続工程である成形工程で使用できるようになる。
【0105】
一方、このような冷却工程は、後続工程である成形工程前まで持続できるが、溶融金属Mが0.1以上0.7以下の固相率に至る時点tまで冷却工程を維持できる。このとき、この溶融金属Mの冷却速度は0.2℃/sec以上5.0℃/sec以下程度になるが、これは、結晶核の分布度および粒子の微細度によって0.2℃/sec以上2.0℃/sec以下にできる。
【0106】
この結果、所定の固相率を有する半凝固状態の金属スラリを製造でき、これを直ちにビレット製造工程へと移送工程にて移送させて急冷により半溶融成形用ビレットを製造するか、ダイカスト、鍛造あるいはプレス加工工程へ移送させて最終製品に成形する。
【0107】
このとき、半凝固状態の金属スラリを製造する時間を顕著に短縮できるが、溶融金属Mのスラリ製造容器2aへの注湯時点から固相率0.1以上0.7以下の金属スラリ形態の金属材料に形成される時点までかかる時間は30秒以上60秒以下にすぎない。これにより製造された金属スラリを使用して製品を成形すれば均一でかつ緻密な球状の結晶構造を得ることができる。
【0108】
次に、上記半凝固金属スラリの製造方法として用いられる半凝固金属スラリの製造装置を図2および図3を参照して説明する。
【0109】
図2および図3に示す半凝固金属スラリ製造装置は、攪拌部1を備えており、この攪拌部1の内側には、空間部13が設けられている。さらに、この攪拌部1には、電磁気場印加用コイル装置11が空間部13を包むように形成されている。また、この攪拌部1の空間部13には、少なくとも一つのスラリ製造容器2aが収容可能に取り付けられている。また、このスラリ製造容器2aは、駆動部3により昇降可能とされており、このスラリ製造容器2aには、注湯部としての注湯容器4により溶融金属Mが注湯される。そして、これら攪拌部1および駆動部3は制御部5により制御されている。
【0110】
また、攪拌部1は、中空なベースプレート14の上部に設けられており、このベースプレート14は、地面から所定の高さとなるように支持部材15により支持されて取り付けられている。また、このベースプレート14の上部には、このベースプレート14の中心に開口された開口部14aを中心として電磁気場印加用コイル装置11が取り付けられている。この電磁気場印加用コイル装置11は、内側に空間部13を有する所定のフレーム12により支持されている。また、この電磁気場印加用コイル装置11は、制御部5と電気的に連結されており、空間部13に向かって所定時間電磁気場を印加して空間部13に収容されるスラリ製造容器2a内の溶融金属Mを電磁気攪拌する。なお、攪拌部1は、図示しない超音波攪拌装置でもよい。
【0111】
次いで、スラリ製造容器2aは、金属材または絶縁性素材により成形されており、このスラリ製造容器2aの大きさは、攪拌部1の空間部13に収容可能な程度であればよい。また、このスラリ製造容器2aは、このスラリ製造容器2a自体の融点が、内部に収容される溶融金属Mの温度よりも高いものを使用することが望ましい。さらに、このスラリ製造容器2aの底部には、このスラリ製造容器2aが移動しないように外周縁に段差部21が形成されている。そして、このスラリ製造容器2aには、図示しない別の熱電対が内蔵されており、この熱電対は制御部5に連結されて、温度情報が制御部5に送出される。
【0112】
ここで、このスラリ製造容器2aは、図2および図3に示すように、単に溶融金属Mを収容できるように形成されることもあるが、図4に示す第2の実施の形態のように、温度調節装置20さらに取り付けることもできる。この温度調節装置20は、冷却装置と加熱装置とを備えており、スラリ製造容器2aの容器本体22に冷却水パイプ23を内設させて冷却装置とし、この容器本体22の外側に電熱コイルによる図示しない電気ヒータなどのヒータ装置を取り付けることに加熱装置を構成させている。なお、冷却装置も冷却水パイプ23を容器本体22の外側にウォータジャケット状に別途取り付けることもできる。これら冷却水パイプ23およびヒータ装置は、単独または複合的にスラリ製造容器2aに装着でき、このスラリ製造容器2a内に収容された溶融金属Mを適正な速度で冷却できる。
【0113】
一方、スラリ製造容器2aを昇降運動させる駆動部3は、空間部13内にスラリ製造容器2aを収容し、また空間部13の外側に離脱させる。さらに、この駆動部3は図示しない駆動モータおよびギア装置または油圧シリンダを備えている。より具体的に、この駆動部3は、制御部5に電気的に連結された動力装置31を備えており、この動力装置31から空間部13の内側に延びて動力装置31により直線往復運動するピストン32が取り付けられている。また、このピストン32の端部には、空間部13の内側に位置する安着台33aが連結されている。この安着台33aには、スラリ製造容器2aが安着されて取り付けられている。
【0114】
さらに、注湯容器4は、スラリ製造容器2aが駆動部3により上昇されて電磁気場が印加されている空間部13に収容された時にスラリ製造容器2aに液相の溶融金属Mを注湯する。また、この注湯容器4としては、制御部5に電気的に連結された通常のレードル(ladle)が使われる。
【0115】
したがって、半凝固金属スラリの製造装置は、図2に示すように、駆動部3を動作させてスラリ製造容器2aを空間部13内に収容させた後、攪拌部1で電磁気場印加用コイル装置11により空間部13内に所定周波数および強度で電磁気場を印加する。このように空間部13にスラリ製造容器2aを収容することは空間部13に電磁気場が印加された後にすることもある。そして、別の電気炉で溶融された溶融金属Mを注湯容器4により移送して電磁気場の影響下にあるスラリ製造容器2aに注湯する。このとき、電磁気場の印加を溶融金属Mの注湯前にすることもあるが、溶融金属Mの注湯と同時、または溶融金属Mが注湯される途中でしてもよい。
【0116】
さらに、スラリ製造容器2aに溶融金属Mが注湯された後、所定時間後に駆動部3にてスラリ製造容器2aを上昇させて、図3に示すように、空間部13の外側にスラリ製造容器2aを移送して離脱させ、図示しないロボットなどの移送装置により新しいスラリ製造容器2aに取り替える。このとき、取り替えられたスラリ製造容器2aは0.1以上0.7以下の固相率に至るまで所定の速度で冷却されて半凝固金属スラリを製造する。このときの冷却速度は、0.2℃/sec以上5℃/sec以下となり、より望ましくは0.2℃/sec以上2℃/sec以下となる。このようなスラリ製造容器2aの冷却は、このスラリ製造容器2aが交替される前、すなわち、駆動部3によりスラリ製造容器2aが空間部13の外側に移送されて離脱される前にでき、冷却が終了した後でスラリ製造容器2aを空間部13の外側に離脱させて新しいスラリ製造容器2aに交替することもできる。
【0117】
一方、電磁気場の印加は冷却が終了するまで持続できる。すなわち、駆動部3によりスラリ製造容器2aが空間部13外側に移送されて離脱されるまで電磁気場を印加し続けてもよい。電磁気場の印加は溶融金属Mの固相率が少なくとも0.001以上0.7以下になるまで持続する。ただし、エネルギ効率次元で電磁気場印加用コイル装置11は溶融金属Mの注湯後、この溶融金属Mの固相率が少なくとも0.001以上0.4以下になるまで持続し、さらに望ましくは、この溶融金属Mの固相率が0.001以上0.1以下になるまで持続する。溶融金属Mがこのような固相率になるまでの時間は、あらかじめ実験により調べることができる。このように電磁気場が印加される途中でも冷却をずっと進行することもできる。
【0118】
さらに、図5に示す第3の実施の形態のように、二つ以上のスラリ製造容器2a,2bを備え、これらスラリ製造容器2a,2bを同時に作業するように形成することもできる。この場合、安着台33a,33bが定着プレート34上に配置されており、これら安着台33a,33bは、スラリ製造容器2a,2bを攪拌部1の上側外部に離脱させるように空間部13の高さに応じて高く形成されている。
【0119】
次いで、図6および図7に示す第4の実施の形態のように、駆動部3にてスラリ製造容器2aを水平移動させる場合には、この駆動部3のピストン32の端部に回転プレート35が装着されている。このとき、ピストン32は、回転プレート35の略中間部に結合されている。また、この回転プレート35の縁部には、少なくとも一つ以上の安着台33a,33bが装着されている。また、スラリ製造容器2a,2bは、これら安着台33a,33bに安着されている。そして、動力装置31は、ピストン32を昇降運動させるだけでなく回動させる。したがって、この動力装置31は、回転プレート35の回転によりスラリ製造容器2a,2bを水平移動させて空間部13の外側に離脱させる。
【0120】
そして、図7(a)に示すように、ピストン32を上昇させて第1のスラリ製造容器2aを空間部13に収容した後、攪拌部1の電磁気場印加用コイル装置11により空間部13に電磁気場を印加する。このとき、電磁気場が印加されている状態で第1のスラリ製造容器2aを空間部13に収容してもよい。
【0121】
この状態で、図7(b)に示すように、注湯容器4により溶融金属Mを第1のスラリ製造容器2aに注湯して所定時間電磁気場を印加したまま維持する。このときにも、溶融金属Mの注湯と同時に電磁気場を印加させるか、この溶融金属Mが注湯されている途中で電磁気場を印加させてもよい。
【0122】
この後、図7(c)に示すように、ピストン32を下降させて第1のスラリ製造容器2aが空間部13の下側に離脱するようにし、図7(d)に示すように、ピストン32を回転させて空いている容器である第2のスラリ製造容器2bと第1のスラリ製造容器2aとの位置を変える。このとき、この第1のスラリ製造容器2aは、この第1のスラリ製造容器2aの内部の溶融金属Mを所定の冷却速度で所定の固相率に至るまで冷却してスラリを製造し、図7(e)に示すように、ピストン32を再び上昇させて第2のスラリ製造容器2bで同じ過程を反復させる。このとき、第1のスラリ製造容器2aは、移送手段としてのロボット6により移送されて別の後続成形工程がなされる。この結果、多量の半凝固金属スラリを連続して製造でき、後続工程との連係性をさらに増やして全体工程の効率性を向上できる。
【0123】
さらに、図8に示す第5の実施の形態のように、別のレール36に沿って駆動部3を水平に移動させることにより、スラリ製造容器2aを水平移動させることもできる。
【0124】
なお、上記各実施の形態において、多様な金属あるいは合金、例えばアルミニウムまたはその合金、マグネシウムまたはその合金、亜鉛またはその合金、銅またはその合金、鉄またはその合金などの半凝固成形法であっても汎用的に適用できる。また、このように製造された金属材料は、平均粒径が10μm以上60μm以下の微細な球状となるとともに、粒径分布も均一になる。
【0125】
【発明の効果】
請求項1記載の固液共存状態金属材料の製造方法によれば、従来に比べ、全体的に均一でかつ微細な球状の組織を得ることができるので合金の機械的性質の向上を実現できる。また、液相線より高い温度での短時間の攪拌だけでも容器壁面での核生成密度を顕著に増加させて粒子の球状化を実現でき、全体的に均一でかつ微細な粒子分布を実現できるので合金の機械的性質の向上を実現できる。
【0126】
請求項2記載の固液共存状態金属材料の製造方法によれば、請求項1記載の固液共存状態金属材料の製造方法の効果に加え、注湯工程にて容器に溶融金属を注湯する前に、印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0127】
請求項3記載の固液共存状態金属材料の製造方法によれば、請求項1または2記載の固液共存状態金属材料の製造方法の効果に加え、印加工程にて空間部に電磁気場を印加した後に、この空間部内に容器を配置しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0128】
請求項4記載の固液共存状態金属材料の製造方法によれば、請求項1記載の固液共存状態金属材料の製造方法の効果に加え、注湯工程にて容器に溶融金属を注湯すると同時に、印加工程にて空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0129】
請求項5記載の固液共存状態金属材料の製造方法によれば、請求項1記載の固液共存状態金属材料の製造方法の効果に加え、注湯工程にて容器に溶融金属を注湯する途中で、印加工程にて空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0130】
請求項6記載の固液共存状態金属材料の製造方法によれば、請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法の効果に加え、容器内の溶融金属の固相率が0.001以上0.7以下となるまで印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができる。
【0131】
請求項7記載の固液共存状態金属材料の製造方法によれば、請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法の効果に加え、容器内の溶融金属の固相率が0.001以上0.4以下となるまで印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0132】
請求項8記載の固液共存状態金属材料の製造方法によれば、請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法の効果に加え、容器内の溶融金属の固相率が0.001以上0.1以下となるまで印加工程にて空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0133】
請求項9記載の固液共存状態金属材料の製造方法によれば、請求項1ないし8いずれか記載の固液共存状態金属材料の製造方法の効果に加え、注湯工程にて容器に溶融金属を注湯した後に、冷却工程にて容器を冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができる。
【0134】
請求項10記載の固液共存状態金属材料の製造方法によれば、請求項9記載の固液共存状態金属材料の製造方法の効果に加え、容器内の溶融金属の固相率が0.1以上0.7以下となるまで冷却工程にて容器を冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0135】
請求項11記載の固液共存状態金属材料の製造方法によれば、請求項9記載の固液共存状態金属材料の製造方法の効果に加え、容器内の溶融金属を冷却工程にて0.2℃/sec以上5.0℃/sec以下の速度で冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0136】
請求項12記載の固液共存状態金属材料の製造方法によれば、請求項9記載の固液共存状態金属材料の製造方法の効果に加え、容器内の溶融金属を冷却工程にて0.2℃/sec以上2.0℃/sec以下の速度で冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0137】
請求項13記載の半凝固金属スラリの製造方法によれば、請求項1ないし12いずれか記載の固液共存状態金属材料が半凝固金属スラリであることにより、請求項1ないし12いずれか記載の固液共存状態金属材料と同様の効果を奏することができる。
【0138】
請求項14記載の固液共存状態金属材料の製造装置によれば、全体工程を単純化して電磁気場攪拌時間を大幅に短縮できるので攪拌に必要なエネルギの消耗が少なく、製品成形時間も短縮して経済的にも相当な利点を有するとともに、後続工程との連係性も優れて収率を大きく増進できる。
【0139】
請求項15記載の固液共存状態金属材料の製造装置によれば、請求項14記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に溶融金属が注湯される前に、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0140】
請求項16記載の固液共存状態金属材料の製造装置によれば、請求項14記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に溶融金属が注湯されると同時に、攪拌部が空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0141】
請求項17記載の固液共存状態金属材料の製造装置によれば、請求項14記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に溶融金属が注湯される途中で、攪拌部が空間部に電磁気場を印加しても、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を容易に得ることができる。
【0142】
請求項18記載の固液共存状態金属材料の製造装置によれば、請求項14ないし17いずれか記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に溶融金属が注湯された後に、駆動部が容器を上昇させてこの容器を空間部外へ移送するので、溶融金属が注湯された容器の移送が容易になる。
【0143】
請求項19記載の固液共存状態金属材料の製造装置によれば、請求項14ないし18いずれか記載の固液共存状態金属材料の製造装置の効果に加え、駆動部が容器を水平移動させるので、この容器内に注湯された溶融金属を溢すことなく、この容器を空間部外へと移送できる。
【0144】
請求項20記載の固液共存状態金属材料の製造装置によれば、請求項14ないし19いずれか記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に溶融金属が注湯された後に、縁部に容器が設置された回転プレートを下降させるとともに回転させて、この容器を空間部外へ移送するので、この容器の空間部外への移送が簡単な構成で確実にできる。
【0145】
請求項21記載の固液共存状態金属材料の製造装置によれば、請求項18または19記載の固液共存状態金属材料の製造装置の効果に加え、容器に溶融金属が注湯された後に、駆動部が容器を下降させてから、レールに沿って水平移動させて、この容器を空間部外に移送するので、溶融金属が注湯された容器の空間部外への移送が簡単な構成で確実にできる。
【0146】
請求項22記載の固液共存状態金属材料の製造装置によれば、請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.7以下となるまで、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0147】
請求項23記載の固液共存状態金属材料の製造装置によれば、請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.4以下となるまで、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0148】
請求項24記載の固液共存状態金属材料の製造装置によれば、請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置の効果に加え、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.1以下となるまで、攪拌部が空間部に電磁気場を印加することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0149】
請求項25記載の固液共存状態金属材料の製造装置によれば、請求項14ないし24いずれか記載の固液共存状態金属材料の製造装置の効果に加え、容器に取り付けた温度調節装置にて容器内の溶融金属の温度を調整することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易かつ確実に得ることができる。
【0150】
請求項26記載の固液共存状態金属材料の製造装置によれば、請求項25記載の固液共存状態金属材料の製造装置の効果に加え、容器に取り付けた冷却装置で、この容器内の溶融金属を冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易かつ確実に得ることができる。
【0151】
請求項27記載の固液共存状態金属材料の製造装置によれば、請求項25または26記載の固液共存状態金属材料の製造装置の効果に加え、容器に取り付けた加熱装置で、この容器内の溶融金属を加熱することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易かつ確実に得ることができる。
【0152】
請求項28記載の固液共存状態金属材料の製造装置によれば、請求項27記載の固液共存状態金属材料の製造装置の効果に加え、加熱装置を電気ヒータとすることにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料を簡単な構成でより容易に得ることができる。
【0153】
請求項29記載の固液共存状態金属材料の製造装置によれば、請求項25または26記載の固液共存状態金属材料の製造装置の効果に加え、容器内の溶融金属の固相率が0.1以上0.7以下となるまで温度調節装置が冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0154】
請求項30記載の固液共存状態金属材料の製造装置によれば、請求項25または26記載の固液共存状態金属材料の製造装置の効果に加え、容器内の溶融金属を0.2℃/sec以上5.0℃/sec以下の速度で温度調節装置が冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0155】
請求項31記載の固液共存状態金属材料の製造装置によれば、請求項25または26記載の固液共存状態金属材料の製造装置の効果に加え、容器内の溶融金属を0.2℃/sec以上2.0℃/sec以下の速度で温度調節装置が冷却することにより、全体的に均一でかつ微細な球状の組織の固液共存状態金属材料をより容易に得ることができるので、より望ましい。
【0156】
請求項32記載の半凝固金属スラリの製造装置によれば、請求項14ないし31いずれか記載の固液共存状態金属材料が半凝固金属スラリであることにより、請求項14ないし31いずれか記載の固液共存状態金属材料と同様の効果を奏することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の固液共存状態金属材料の製造装置での時間に対する溶融金属の注湯温度を示す二次グラフである。
【図2】同上固液共存状態金属材料の製造装置を示す概略説明図である。
【図3】同上固液共存状態金属材料の製造装置を示す概略説明図である。
【図4】本発明の固液共存状態金属材料の製造装置の第2の実施の形態の容器を示す説明断面図である。
【図5】本発明の固液共存状態金属材料の製造装置の第3の実施の形態を示す概略説明図である。
【図6】本発明の固液共存状態金属材料の製造装置の第4の実施の形態を示す概略説明図である。
【図7】同上固液共存状態金属材料の製造装置の製造工程を示す概略説明図である。
(a) 駆動部を上昇させて容器を空間部に収容させる状態を示す説明図
(b) 溶融金属を容器に注湯して電磁気場を印加する状態を示す説明図
(c) 駆動部を下降させて容器を空間部の下側に移送させる状態を示す説明図
(d) 駆動部を回転させて容器を交換する状態を示す説明図
(e) 駆動部を上昇させて別の容器を空間部に収容させるとともに、容器を移送する状態を示す説明図
【図8】本発明の固液共存状態金属材料の製造装置の第5の実施の形態を示す概略説明図である。
【符号の説明】
1  攪拌部
2a  容器としてのスラリ製造容器
3  駆動部
4  注湯部としての注湯容器
13  空間部
20  温度調節装置
23  冷却装置としての冷却水パイプ
35  回転プレート
36  レール
M  溶融金属
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a solid-liquid coexisting metal material by applying an electromagnetic field to a molten metal to form a solid-liquid coexisting metal material, a manufacturing apparatus thereof, a method of manufacturing a semi-solid metal slurry, and a manufacturing apparatus thereof.
[0002]
[Prior art]
A metal material in a solid-liquid coexistence state, that is, a semi-solid or semi-molten metal slurry, usually refers to an intermediate product of a composite processing method such as a semi-solid molding method (Reocasting) and a semi-solid molding method (Thixocasting). In a state where the liquid phase and the spherical crystal grains are mixed at an appropriate ratio, it can be deformed by a small force due to thixotropic property, and has excellent fluidity and can be easily formed like a liquid phase. It is a metallic material in a state.
[0003]
Here, the semi-solid molding method is a processing method for producing a billet or a final molded product by casting or forging a slurry having a predetermined viscosity without being completely solidified. Further, the semi-solid molding method is a processing method in which a billet produced by a semi-solid molding method is reheated to a slurry in a semi-molten state, and then this slurry is cast or forged to produce a final product.
[0004]
Such a semi-solid or semi-solid molding method has various advantages as compared with a general molding method using a molten metal such as casting or melt forging. For example, the slurries used in these semi-solid or semi-solid molding processes have a lower fluidity than the molten metal, so that the temperature of the die exposed to the slurry can be further reduced than in the case of the molten metal. The lifespan is extended.
[0005]
Also, when the slurry is extruded along the cylinder, turbulence is less generated, so that air is not mixed in during the casting process, thereby reducing the generation of pores in the final product. In addition, the solidification shrinkage is small, the workability is improved, the mechanical properties and corrosion resistance of the product are improved, and the product can be reduced in weight. As a result, it can be used as a new material in the automotive and aircraft industries, electrical and electronic information communication equipment, and the like.
[0006]
Thus, in all of these semi-solid or semi-solid molding methods, a metal slurry in a semi-solid state is used. However, as described above, the semi-solid molding method uses a slurry obtained by cooling a molten metal by a predetermined method. In the semi-solid molding method, a slurry obtained by reheating a solid billet is used. Here, the semi-solid metal slurry is a region in which the liquid phase and the solid phase coexist between the liquidus and solidus of the metal, that is, the crystal grain boundaries inside the metal at the temperature of the semi-solidification region of the metal. A semi-solid material that is produced by a semi-solid molding method, that is, a semi-solid obtained by cooling from a molten metal, that is, a metal material that is partially dissolved and partially remains as a solid phase component. Slurry of state.
[0007]
On the other hand, in the conventional semi-solid molding method, spherical particles adapted to semi-solid molding by cooling the molten metal mainly by stirring at a temperature below the liquidus line and crushing the dendritic crystal structure already generated. How to make it. As the stirring method, a mechanical stirring method, an electromagnetic stirring method, gas bubbling, low frequency, high frequency or electromagnetic wave vibration, or a stirring method using an electric shock were used.
[0008]
As a method of producing a liquid-solid mixture, the molten metal is cooled while being vigorously stirred during solidification. Further, a production apparatus for producing the liquid-solid mixture mixes the solid-liquid mixture into a container by pouring the mixture with a stirring rod, which stirs the solid-liquid mixture having a predetermined viscosity. Crushing the dendritic structures in the mixture or dispersing the crushed dendritic structures.
[0009]
However, in the method for producing the liquid-solid mixture, the dendritic crystal morphology already formed in the cooling process is pulverized, and the pulverized dendritic crystal is used as a crystal nucleus to obtain a spherical crystal. There are many problems such as a reduction in cooling rate and an increase in production time due to generation of latent heat due to the formation of a layer, and a non-uniform crystal state due to non-uniform temperature in a stirred vessel. Also, in the case of a manufacturing apparatus for manufacturing the liquid-solid mixture, the temperature distribution in the container is not uniform due to the limitation of mechanical stirring, and the working time and subsequent processes are required to operate in the chamber. Has a very difficult limit (for example, see Patent Document 1).
[0010]
The apparatus for producing a semi-solid alloy slurry is provided with a cooling manifold and a mold sequentially inside an electromagnetic field applying means with a coil. The upper side of the mold is formed so that molten metal is continuously poured, and cooling water is supplied to the cooling manifold to cool the mold. Furthermore, according to the method for producing a semi-solid alloy slurry by the semi-solid alloy slurry production apparatus, first, a molten metal is poured from the upper side of a mold, and the molten metal is passed through the mold by a cooling manifold. A solid-phased region is formed. Here, a magnetic field is applied by an electromagnetic field applying means, and while the dendritic tissue is crushed, cooling proceeds, and an ingot is formed from below (for example, see Patent Document 2).
[0011]
However, even in such a method and apparatus for producing a semi-solid alloy slurry, the basic technical idea is to crush the dendritic tissue by applying vibration after solidification has occurred. Has many problems in the process and organizational structure. Also, in the case of the above-mentioned semi-solid alloy slurry manufacturing apparatus, the molten metal continuously forms an ingot while proceeding from the upper part to the lower part. Process control is difficult. Further, since the container is already water-cooled before the application of the electromagnetic field, the temperature difference between the vicinity of the container wall and the center is large.
[0012]
Further, as a method of manufacturing a semi-solid molded material, after heating the alloy so that all metal components in the alloy exist in a liquid state, the obtained liquid metal is heated to a temperature between a liquidus line and a solidus line. Cooling. Thereafter, a semi-solid material is manufactured by breaking a dendritic structure formed from a molten metal cooled by applying a shearing force (for example, see Patent Document 3).
[0013]
In addition, as a method of producing a metal slurry for semi-solid casting, molten metal is poured into a container at a temperature near the liquidus temperature or a temperature higher than the liquidus temperature up to 50 ° C. Thereafter, at the time when at least a part of the molten metal becomes lower than the liquidus temperature in the process of cooling the molten metal, that is, when the molten metal first passes through the liquidus temperature, the molten metal moves to the molten metal by ultrasonic vibration, for example. Add. Furthermore, a metal slurry for semi-solid casting having a metal structure in the form of a grain phase crystal is manufactured by gradually cooling the molten metal after applying a motion to the molten metal (for example, see Patent Document 4).
[0014]
However, in the above-mentioned method for producing a metal slurry for semi-solid casting, a force such as ultrasonic vibration is used to crush a dendritic crystal structure formed at an early stage of cooling. Further, if the pouring temperature is higher than the liquidus temperature, it is difficult to obtain a crystal form of a granular phase, and at the same time, it is difficult to rapidly cool the molten metal. Further, the texture of the surface portion and the central portion becomes uneven.
[0015]
Furthermore, as a method of forming a semi-molten metal, after pouring the molten metal into a container, a vibrating bar is immersed in the molten metal and vibrated in a state of being in direct contact with the molten metal to vibrate the molten metal. I have. Specifically, by transmitting the vibration force of the vibration bar to the molten metal, an alloy having a crystal nucleus at a liquidus temperature or lower and in a solid-liquid coexisting state is formed. Thereafter, the molten nucleus is maintained in the container for 30 seconds or more and 60 minutes or less while being cooled to a molding temperature showing a predetermined liquidus ratio, thereby growing crystal nuclei to obtain a semi-molten metal. However, the size of the crystal nucleus obtained by this method is about 100 μM, the process time is considerably long, and it is difficult to apply the method to a container having a predetermined size or more (for example, see Patent Document 5).
[0016]
In addition, as a method for producing a semi-molten metal slurry, a semi-molten metal slurry is produced by precisely controlling cooling and stirring simultaneously. Specifically, after pouring the molten metal into the mixing vessel, a stator assembly provided around the mixing vessel is operated to generate a magnetomotive force sufficient to rapidly stir the molten metal in the vessel. In addition, the temperature of the molten metal is rapidly reduced using a thermal jacket provided around the mixing vessel and acting to precisely control the temperature of the vessel and the molten metal. As the molten metal cools, the molten metal continues to be agitated, adjusted to provide fast agitation when the solids fraction is low, and to provide an increased electromotive force as the solids fraction increases (eg, US Pat. 6).
[0017]
[Patent Document 1]
U.S. Pat. No. 3,948,650 (columns 3-8 and FIG. 3)
[0018]
[Patent Document 2]
U.S. Pat. No. 4,465,118 (columns 4-12, FIGS. 1, 2, 5, and 6)
[0019]
[Patent Document 3]
U.S. Pat. No. 4,694,881 (columns 2-6)
[0020]
[Patent Document 4]
JP-A-11-33692 (page 3-5 and FIG. 1)
[0021]
[Patent Document 5]
JP-A-10-128516 (page 4-7 and FIG. 3)
[0022]
[Patent Document 6]
U.S. Pat. No. 6,432,160 (columns 7-15, FIGS. 1A-2B and 4)
[0023]
[Problems to be solved by the invention]
As described above, the conventional method for manufacturing a semi-solid metal slurry and the apparatus for manufacturing the same use a shearing force to pulverize dendritic crystal forms already formed in a cooling process to obtain a metal structure of a granular phase. ing. Therefore, it is difficult to avoid various problems such as a decrease in cooling rate and an increase in production time due to the generation of latent heat due to the formation of an initial solidified layer because a force such as vibration is applied only when at least a part of the molten metal falls below the liquidus line. . In addition, the obtained metal structure is difficult to obtain a uniform and fine structure as a whole due to non-uniform temperature in the container. The non-uniformity of the tissue is further increased due to the temperature difference between.
[0024]
SUMMARY OF THE INVENTION The present invention has been made in view of the foregoing points, and provides energy efficiency improvement, reduction of production cost, improvement of mechanical properties, simplification of the casting process and production while obtaining finer and more uniform spherical particles. A method for producing a solid-liquid coexisting metal material that can realize the advantage of shortening time and can produce a high-quality solid-liquid coexisting metal material in a short time and has excellent coordination with subsequent processes, a manufacturing apparatus thereof, and semi-solidification. An object of the present invention is to provide a method of manufacturing a metal slurry and an apparatus for manufacturing the same.
[0025]
[Means for Solving the Problems]
In the method for producing a metal material in a solid-liquid coexistence state according to claim 1, an applying step of applying an electromagnetic field to a predetermined space where the container is placed, and an electromagnetic field is applied to the space in the applying step. Pouring the molten metal into the container disposed in the space, and transferring the container into which the molten metal has been poured in the pouring step to outside the space. And transferring the molten metal to a solid-liquid coexisting state metal material.
[0026]
Further, as compared with the conventional case, a uniform and fine spherical structure can be obtained as a whole, so that the mechanical properties of the alloy can be improved. In addition, the nucleation density on the vessel wall can be significantly increased by only short-time stirring at a temperature higher than the liquidus line to realize spheroidization of the particles, thereby achieving a uniform and fine particle distribution as a whole. Therefore, the mechanical properties of the alloy can be improved.
[0027]
The method for producing a metal material in a solid-liquid coexistence state according to claim 2 is the method for producing a metal material in a solid-liquid coexistence state according to claim 1, wherein the applying step is performed before pouring the molten metal into the container in the pouring step. Then, an electromagnetic field is applied to the space.
[0028]
Then, before pouring the molten metal into the container in the pouring step, an electromagnetic field is applied to the space in the applying step, whereby the solid-liquid coexisting metal having a uniform and fine spherical structure as a whole is obtained. The material can be obtained easily.
[0029]
According to a third aspect of the present invention, in the method for manufacturing a solid-liquid coexisting metallic material according to the first or second aspect, the applying step includes applying an electromagnetic field to the space, and then applying the electromagnetic field to the space. A container is arranged in the unit.
[0030]
Then, even after the electromagnetic field is applied to the space in the application step, even if a container is arranged in the space, a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole can be easily obtained. Can be.
[0031]
According to a fourth aspect of the present invention, there is provided a method of manufacturing a solid-liquid coexisting metal material according to the first aspect, wherein the applying step comprises simultaneously pouring the molten metal into the container in the pouring step. , An electromagnetic field is applied to the space.
[0032]
Even when the molten metal is poured into the container in the pouring step and an electromagnetic field is applied to the space at the same time as the applying step, the solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole is obtained. Can be easily obtained.
[0033]
According to a fifth aspect of the present invention, there is provided the method for producing a solid-liquid coexisting metal material according to the first aspect, wherein the applying step includes the step of pouring the molten metal into the container in the pouring step. In this, an electromagnetic field is applied to the space.
[0034]
Then, even if an electromagnetic field is applied to the space in the application step while the molten metal is being poured into the container in the pouring step, the solid-liquid coexisting metal having a uniform and fine spherical structure as a whole is obtained. The material can be obtained easily.
[0035]
The method for producing a metal material in a solid-liquid coexistence state according to claim 6 is the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 5, wherein the applying step comprises: The electromagnetic field is applied to the space until the value becomes 0.001 or more and 0.7 or less.
[0036]
Then, by applying an electromagnetic field to the space in the application step until the solid phase ratio of the molten metal in the container becomes 0.001 or more and 0.7 or less, a uniform and fine spherical structure is obtained as a whole. The solid-liquid coexisting metal material can be obtained more easily.
[0037]
The method for producing a metal material in a solid-liquid coexistence state according to claim 7 is the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 5, wherein the applying step comprises: The electromagnetic field is applied to the space until the value becomes 0.001 or more and 0.4 or less.
[0038]
Then, by applying an electromagnetic field to the space in the application step until the solid phase ratio of the molten metal in the container becomes 0.001 or more and 0.4 or less, a uniform and fine spherical structure is obtained as a whole. It is more desirable because the solid-liquid coexisting metallic material can be obtained more easily.
[0039]
The method for producing a metal material in a solid-liquid coexistence state according to claim 8 is the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 5, wherein the applying step comprises: The electromagnetic field is applied to the space until the value becomes 0.001 or more and 0.1 or less.
[0040]
Then, by applying an electromagnetic field to the space in the application step until the solid phase ratio of the molten metal in the container becomes 0.001 or more and 0.1 or less, a uniform and fine spherical structure is obtained as a whole. It is more desirable because the solid-liquid coexisting metallic material can be obtained more easily.
[0041]
The method for producing a metal material in a solid-liquid coexistence state according to claim 9 is the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 8, after the molten metal is poured into the container in the pouring step. And a cooling step of cooling the container.
[0042]
Then, after pouring the molten metal into the container in the pouring step, the container is cooled in the cooling step, so that the solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily formed. Obtainable.
[0043]
In the method for producing a metal material in a solid-liquid coexistence state according to claim 10, in the method for producing a metal material in a solid-liquid coexistence state according to claim 9, the cooling step may be such that the solid phase ratio of the molten metal in the container is 0.1 or more. The container is cooled until it becomes 0.7 or less.
[0044]
By cooling the container in the cooling step until the solid phase ratio of the molten metal in the container becomes 0.1 or more and 0.7 or less, the solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0045]
In the method for producing a metal material in a solid-liquid coexistence state according to claim 11, in the method for producing a metal material in a solid-liquid coexistence state according to claim 9, the cooling step comprises: The cooling is performed at a rate of 0.0 ° C./sec or less.
[0046]
Then, the molten metal in the container is cooled at a rate of 0.2 ° C./sec or more and 5.0 ° C./sec or less in a cooling step, so that a solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0047]
The method for producing a metal material in a solid-liquid coexistence state according to claim 12 is the method for producing a metal material in solid-liquid coexistence state according to claim 9, wherein the cooling step comprises: The cooling is performed at a rate of 0.0 ° C./sec or less.
[0048]
Then, the molten metal in the container is cooled at a rate of 0.2 ° C./sec or more and 2.0 ° C./sec or less in a cooling step, so that a solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0049]
According to a thirteenth aspect of the present invention, in the method for producing a semi-solid metal slurry, the solid-liquid coexisting metal material according to any one of the first to twelfth aspects is a semi-solid metal slurry.
[0050]
The solid-liquid coexisting metal material according to any one of the first to twelfth aspects is a semi-solid metal slurry, and thus has the same effect as the solid-liquid coexisting metal material according to the first to twelfth aspects.
[0051]
The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 14 includes a predetermined space portion, a stirrer for applying an electromagnetic field to this space, a container housed in the space of the stirrer, It is provided with a drive unit for accommodating a container in the space, and a pouring unit for pouring molten metal into the container.
[0052]
And since the whole process can be simplified and the electromagnetic field stirring time can be greatly reduced, the energy consumption required for the stirring is reduced, and the product molding time is shortened, which has considerable economical advantages. The coordination is also excellent and the yield can be greatly improved.
[0053]
In the apparatus for producing a metal material in a solid-liquid coexistence state according to a fifteenth aspect, in the apparatus for producing a metal material in a solid-liquid coexistence state according to the fourteenth aspect, the stirring section is configured to pour the molten metal into the container at the pouring section. Before, an electromagnetic field is applied to the space.
[0054]
Before the molten metal is poured into the container at the pouring section, the stirring section applies an electromagnetic field to the space to form a solid-liquid coexisting metal having a uniform and fine spherical structure as a whole. The material can be obtained easily.
[0055]
In the apparatus for producing a metal material in a solid-liquid coexistence state according to claim 16, in the apparatus for producing a metal material in a solid-liquid coexistence state according to claim 14, a molten metal is poured into a container by a pouring section in a stirring section. At the same time, an electromagnetic field is applied to the space.
[0056]
At the same time as the molten metal is poured into the container at the pouring section, even when the stirring section applies an electromagnetic field to the space, the solid-liquid coexisting metal having a uniform and fine spherical structure as a whole is obtained. The material can be obtained easily.
[0057]
In the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 17, in the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 14, a molten metal is poured into a container by a pouring section in a stirring section. On the way, an electromagnetic field is applied to the space.
[0058]
Even when the molten metal is poured into the container at the pouring section, even if the stirring section applies an electromagnetic field to the space, the solid-liquid coexisting metal having a uniform and fine spherical structure as a whole is obtained. The material can be obtained easily.
[0059]
An apparatus for producing a metal material in a solid-liquid coexistence state according to claim 18 is the apparatus for producing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 17, wherein the driving unit is configured to supply molten metal to the container at the pouring unit. After pouring, the container is raised to transfer the container out of the space.
[0060]
Then, after the molten metal is poured into the container at the pouring section, the drive section raises the container and transfers the container out of the space, so that the container into which the molten metal has been poured can be easily transferred. Become.
[0061]
In the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 19, in the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 18, the drive unit horizontally moves the container.
[0062]
And since a drive part moves a container horizontally, it can transfer this container out of a space part, without overflowing the molten metal poured into this container.
[0063]
An apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 20, wherein the driving unit is a rotary plate in which a container is installed at an edge portion in the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 19. After the molten metal is poured into the container at the pouring section, the rotating plate is lowered and rotated to transfer the container out of the space.
[0064]
Then, after the molten metal is poured into the container at the pouring section, the rotating plate provided with the container at the edge is lowered and rotated to transfer the container out of the space. Transfer to the outside of the space can be ensured with a simple configuration.
[0065]
An apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 21 is the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 18 or 19, further comprising a rail that supports a driving unit so as to be movable horizontally. The part lowers the container after the molten metal is poured into the container, and then moves horizontally along the rail to transfer the container out of the space.
[0066]
Then, after the molten metal was poured into the container, the driving unit lowered the container, and then moved horizontally along the rail to transfer the container out of the space, so that the molten metal was poured. The transfer of the container to the outside of the space can be reliably performed with a simple configuration.
[0067]
In the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 22, in the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 21, the agitating unit is poured into the container by the pouring unit. An electromagnetic field is applied to the space until the solid phase ratio of the molten metal becomes 0.001 or more and 0.7 or less.
[0068]
The stirring unit applies an electromagnetic field to the space until the solid phase ratio of the molten metal poured into the container at the pouring unit becomes 0.001 or more and 0.7 or less. Further, a metal material having a fine and spherical structure in a solid-liquid coexistence state can be more easily obtained, so that it is more desirable.
[0069]
In the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 23, in the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 21, the agitating section is poured into the container by the pouring section. The electromagnetic field is applied to the space until the solid phase ratio of the molten metal becomes 0.001 or more and 0.4 or less.
[0070]
The stirring unit applies an electromagnetic field to the space until the solid phase ratio of the molten metal poured into the container at the pouring unit becomes 0.001 or more and 0.4 or less. Further, a metal material having a fine and spherical structure in a solid-liquid coexistence state can be more easily obtained, so that it is more desirable.
[0071]
In the apparatus for producing a metal material in a solid-liquid coexistence state according to claim 24, in the apparatus for producing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 21, the agitating section is poured into the container by the pouring section. The electromagnetic field is applied to the space until the solid phase ratio of the molten metal becomes 0.001 or more and 0.1 or less.
[0072]
The stirring unit applies an electromagnetic field to the space until the solid phase ratio of the molten metal poured into the container at the pouring unit becomes 0.001 or more and 0.1 or less. Further, a metal material having a fine and spherical structure in a solid-liquid coexistence state can be more easily obtained, so that it is more desirable.
[0073]
An apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25 is the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 24, wherein the apparatus is attached to a container and adjusts the temperature of the molten metal in the container. It is equipped with a temperature controller for adjusting.
[0074]
By adjusting the temperature of the molten metal in the container with a temperature controller attached to the container, it is possible to more easily and reliably obtain a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole. Can be.
[0075]
An apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 26 is the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25, wherein the temperature control device is attached to the container and cools the molten metal in the container. The cooling device is provided.
[0076]
Then, by cooling the molten metal in the container with a cooling device attached to the container, it is possible to more easily and reliably obtain a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole. .
[0077]
An apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 27 is the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25 or 26, wherein the temperature control device is attached to a container, and the molten metal in the container is Is provided with a heating device for heating.
[0078]
Then, by heating the molten metal in this container with a heating device attached to the container, it is possible to more easily and reliably obtain a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole. .
[0079]
An apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 28 is the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 27, wherein the heating device is an electric heater.
[0080]
By using an electric heater as the heating device, it is possible to more easily obtain a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole with a simple configuration.
[0081]
The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 29 is the apparatus for producing a metal material in a solid-liquid coexistence state according to claim 25 or 26, wherein the temperature control device has a solid phase ratio of molten metal in the container of 0. It cools until it becomes not less than 1 and not more than 0.7.
[0082]
Then, the temperature controller cools the molten metal in the container until the solid phase ratio of the molten metal becomes 0.1 or more and 0.7 or less, so that a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole is obtained. Is more preferable because it can be obtained more easily.
[0083]
The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 30 is the apparatus for producing a metal material in a solid-liquid coexistence state according to claim 25 or 26, wherein the temperature control device sets the molten metal in the container to 0.2 ° C / The cooling is performed at a rate of not less than sec and not more than 5.0 ° C./sec.
[0084]
The molten metal in the container is cooled at a rate of 0.2 ° C./sec or more and 5.0 ° C./sec or less by the temperature control device, so that a solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0085]
The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 31 is the apparatus for producing a metal material in a solid-liquid coexistence state according to claim 25 or 26, wherein the temperature control device sets the molten metal in the container to 0.2 ° C. / The cooling is performed at a rate of not less than sec and not more than 2.0 ° C./sec.
[0086]
The molten metal in the container is cooled at a rate of 0.2 ° C./sec or more and 2.0 ° C./sec or less by a temperature control device, so that a solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0087]
According to a thirty-second aspect of the present invention, the solid-liquid coexisting metal material according to any one of the fourteenth to thirty-first aspects is a semi-solid metal slurry.
[0088]
The solid-liquid coexisting metal material according to any one of claims 14 to 31 is a semi-solid metal slurry, and thus has the same effect as the solid-liquid coexisting metal material according to any one of claims 14 to 31.
[0089]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for producing a metal material in a solid-liquid coexistence state according to a first embodiment of the present invention will be described with reference to the drawings.
[0090]
First, the metal material in the solid-liquid coexistence state is a semi-solid metal slurry, and this semi-solid metal slurry is stirred in an electromagnetic field before pouring the molten metal M into the slurry production vessel 2a in the pouring step. That is, before pouring the molten metal M into the slurry production container 2a in the pouring process, at the same time as pouring the molten metal M into the slurry production container 2a in the pouring process, or in the pouring process. During the pouring of the molten metal M into the melt, the generation of the initial dendritic structure is cut off by stirring with an electromagnetic field in the application step. At this time, ultrasonic waves or the like can be used instead of the electromagnetic field for the stirring.
[0091]
In other words, the stirring by the electromagnetic field in the applying step is performed by disposing the empty slurry production container 2a in which the molten metal M is not poured into the predetermined space portion 13 as an arrangement step. In a vacant state, an electromagnetic field is applied to the space 13 as an application step, and the molten metal M is poured. At this time, the application of the electromagnetic field is performed with a strength capable of stirring the molten metal M.
[0092]
Thereafter, as shown in FIG. 1, the molten metal M is poured at a pouring temperature T as a pouring step. P To pour into the slurry production container 2a. At this time, an electromagnetic field is applied to the slurry production container 2a to stir the molten metal M. The arranging step of arranging the slurry manufacturing container 2a in the space 13 can be performed even after the electromagnetic field is applied to the space 13. At this time, the molten metal M can be stirred in the electromagnetic field simultaneously with the pouring of the molten metal M, and can be stirred in the electromagnetic field even while the molten metal M is being poured.
[0093]
As described above, by applying the electromagnetic field before the pouring of the molten metal M into the slurry production container 2a is completed, it becomes difficult for the molten metal M to form an initial solidified layer on the inner wall of the low temperature slurry production container 2a. . Then, fine crystal nuclei are simultaneously generated in the entire slurry production container 2a, and the entire molten metal M in the slurry production container 2a is rapidly cooled uniformly to a liquidus temperature or lower, thereby simultaneously generating a large number of crystal nuclei. .
[0094]
This is because the molten metal M inside and the molten metal M on the surface are well stirred by vigorous initial stirring action by applying an electromagnetic field before or simultaneously with pouring the molten metal M into the slurry production container 2a. This is because heat transfer in the molten metal M is fast, and the formation of an initial solidified layer on the inner wall of the slurry production container 2a is suppressed.
[0095]
In addition, the convective heat transfer between the well-stirred molten metal M and the inner wall of the low-temperature slurry production vessel 2a increases to rapidly cool the temperature of the entire molten metal M. That is, the poured molten metal M is dispersed into the dispersed particles by the stirring of the electromagnetic field at the same time as the molten metal is poured, and the dispersed particles are uniformly distributed as crystal nuclei in the slurry production container 2a. No temperature difference occurs. On the other hand, according to the above-described conventional technique, the molten metal M poured into the molten metal M comes into contact with the inner wall of the low-temperature slurry production vessel 2a and grows into a dendritic crystal in the initially solidified layer by rapid convection heat transfer. I do.
[0096]
Such a principle can be explained in relation to the latent heat of solidification. That is, since the initial solidification of the molten metal M does not occur on the wall surface of the slurry production vessel 2a, no latent heat of solidification is generated, whereby the cooling of the molten metal M is performed only by the specific heat of the molten metal M (about 1/400 of the latent heat of solidification). It is possible only by releasing the amount of heat corresponding to (not). Therefore, the dendritic crystal, which is an initial solidified layer, which often occurs on the wall surface of the slurry manufacturing container 2a in the related art, is not formed, and the molten metal M in the slurry manufacturing container 2a moves from the wall surface of the slurry manufacturing container 2a to the central portion. Shows that the temperature decreases uniformly and rapidly over the entirety. The time required to lower the temperature at this time is only a short time of about 1 second to 10 seconds after the molten metal M is poured. As a result, a large number of crystal nuclei are uniformly generated over the entire molten metal M in the slurry production vessel 2a, and the distance between the crystal nuclei becomes extremely short due to an increase in the crystal nucleus generation density, so that dendritic crystals are not formed. Grow independently to form spherical particles.
[0097]
This is the same when the electromagnetic field is applied while the molten metal M is being poured. That is, the initial solidified layer is less likely to be formed on the inner wall surface of the slurry production container 2a by the electromagnetic field agitation during the pouring process.
[0098]
At this time, the pouring temperature T of the molten metal M P Is preferably maintained at a temperature equal to or higher than the liquidus temperature and equal to or lower than the liquidus temperature + 100 ° C. (superheat degree of the molten metal = 0 to 100 ° C.). As described above, since the entire inside of the slurry production container 2a containing the molten metal M is uniformly cooled, the molten metal M is cooled to around the liquidus temperature before pouring the molten metal M into the slurry production container 2a. This is because there is no need to maintain a temperature higher than the liquidus temperature by about 100 ° C.
[0099]
On the other hand, according to the conventional method in which the molten metal M is poured into the slurry production vessel 2a and then an electromagnetic field is applied to the slurry production vessel 2a when a part of the molten metal M becomes below the liquidus line, Latent heat of solidification is generated while an initial solidified layer is formed on the wall surface of the vessel 2a, but since the latent heat of solidification is about 400 times the specific heat, it takes a long time for the temperature of the molten metal M in the entire slurry production vessel 2a to drop. . Therefore, in such a conventional method, it is common that the temperature of the molten metal M is cooled down to about the liquidus or about 50 ° C. higher than the liquidus, and then poured into the slurry production vessel 2a. .
[0100]
Further, as shown in FIG. 1, even when the molten metal M in the slurry production vessel 2a is at least partially, the temperature of the molten metal M is reduced to the liquidus temperature T as shown in FIG. 1 When the temperature drops below, that is, when the solid phase ratio of the molten metal M is about 0.001 and even a predetermined crystal nucleus is generated, it does not matter much if the process is terminated at any time. That is, the molten metal M is poured into the slurry production container 2a and an electromagnetic field is applied until the molten metal M is cooled, before the subsequent die casting step or a forming step such as a hot forging step (not shown). The stirring by the electromagnetic field may be stopped. This is because the crystal nuclei are already uniformly distributed over the entire slurry production vessel 2a, so that the stirring of the electromagnetic field at the stage of crystal grain growth centering on the crystal nuclei affects the characteristics of the produced metal slurry. Because it has no effect. Therefore, the stirring by the electromagnetic field is continued until at least the solid phase ratio of the molten metal M reaches 0.001 or more and 0.7 or less.
[0101]
However, since the duration of stirring by the electromagnetic field can be considered in terms of energy efficiency, it can be maintained at least until the solid phase ratio of the molten metal M in the slurry production vessel 2a becomes 0.001 or more and 0.4 or less, which is more desirable. Is maintained until the solid fraction of the molten metal M becomes 0.001 or more and 0.1 or less.
[0102]
As described above, after stirring by the electromagnetic field, the slurry manufacturing container 2a is transferred to the outside of the space 13 to which the electromagnetic field is applied, and is linked to a subsequent process. That is, the molding is performed by moving to a die casting process, a hot forging process, or a billet manufacturing process, which is a subsequent process. Such transfer of the slurry production container 2a can proceed independently of the end of the electromagnetic field. First, after the application of the electromagnetic field is completed, the slurry production container 2a can be transferred, and the electromagnetic field is applied to the space 13. In this state, the slurry manufacturing container 2a can be transferred to the outside of the space 13 and separated therefrom.
[0103]
On the other hand, before the pouring of the molten metal M into the slurry production container 2a is completed, an electromagnetic field is applied to form crystal nuclei having a uniform distribution, and then the slurry is produced by cooling the slurry production container 2a as a cooling step. Can accelerate the growth of crystal nuclei. Therefore, such a cooling step can be started when the molten metal M is poured into the slurry production container 2a.
[0104]
Also, an electromagnetic field may be continuously applied during the cooling step. Therefore, the cooling step may be performed when the slurry manufacturing container 2a is in the space 13 to which the electromagnetic field is applied, that is, before the slurry manufacturing container 2a is separated from the space 13. As a result, after the metal slurry in a semi-solid state is manufactured in the slurry manufacturing container 2a located in the space 13, the metal slurry can be immediately used in the subsequent forming process.
[0105]
On the other hand, such a cooling step can be continued until before the forming step which is a subsequent step, but at the time t when the molten metal M reaches a solid fraction of 0.1 or more and 0.7 or less. 2 The cooling process can be maintained until. At this time, the cooling rate of the molten metal M is about 0.2 ° C./sec or more and about 5.0 ° C./sec or less, which depends on the distribution of crystal nuclei and the fineness of the particles. It can be set to 2.0 ° C./sec or less.
[0106]
As a result, a semi-solidified metal slurry having a predetermined solid fraction can be produced, which is immediately transferred to a billet production step in a transfer step, and a quenching is performed to produce a semi-solid molding billet, or die casting or forging. Alternatively, it is transferred to a press working step and formed into a final product.
[0107]
At this time, the time for producing the metal slurry in a semi-solid state can be remarkably shortened. However, from the time when the molten metal M is poured into the slurry production container 2a, the metal slurry having a solid fraction of 0.1 or more and 0.7 or less is formed. The time taken to form the metal material is no less than 30 seconds and no more than 60 seconds. If a product is formed using the metal slurry thus manufactured, a uniform and dense spherical crystal structure can be obtained.
[0108]
Next, an apparatus for producing a semi-solid metal slurry used as a method for producing the semi-solid metal slurry will be described with reference to FIGS.
[0109]
The apparatus for producing a semi-solid metal slurry shown in FIGS. 2 and 3 includes a stirring unit 1, and a space 13 is provided inside the stirring unit 1. Further, an electromagnetic field applying coil device 11 is formed in the stirring unit 1 so as to surround the space 13. Further, at least one slurry production container 2a is attached to the space 13 of the stirring unit 1 so as to be able to be accommodated therein. The slurry production container 2a can be moved up and down by a drive unit 3, and molten metal M is poured into the slurry production container 2a by a pouring container 4 serving as a pouring unit. The stirring unit 1 and the driving unit 3 are controlled by the control unit 5.
[0110]
The stirring unit 1 is provided above a hollow base plate 14, and the base plate 14 is supported and attached by a support member 15 so as to be at a predetermined height from the ground. The coil device 11 for applying an electromagnetic field is attached to an upper portion of the base plate 14 around an opening 14 a opened at the center of the base plate 14. The electromagnetic field applying coil device 11 is supported by a predetermined frame 12 having a space 13 inside. The coil device 11 for applying an electromagnetic field is electrically connected to the control unit 5, and applies an electromagnetic field toward the space 13 for a predetermined time so that the inside of the slurry production container 2 a accommodated in the space 13 is formed. Is stirred electromagnetically. The stirring unit 1 may be an ultrasonic stirring device (not shown).
[0111]
Next, the slurry production container 2a is formed of a metal material or an insulating material, and the size of the slurry production container 2a may be such that it can be accommodated in the space 13 of the stirring unit 1. In addition, it is desirable that the slurry manufacturing container 2a be used such that the melting point of the slurry manufacturing container 2a itself is higher than the temperature of the molten metal M contained therein. Further, a step 21 is formed on the outer peripheral edge of the bottom of the slurry production container 2a so that the slurry production container 2a does not move. Further, another thermocouple (not shown) is built in the slurry manufacturing container 2a, and the thermocouple is connected to the control unit 5, and the temperature information is sent to the control unit 5.
[0112]
Here, as shown in FIGS. 2 and 3, the slurry production container 2a may be formed so as to simply accommodate the molten metal M, but as in the second embodiment shown in FIG. The temperature control device 20 can be further attached. The temperature control device 20 includes a cooling device and a heating device. A cooling water pipe 23 is provided in the container main body 22 of the slurry production container 2a to form a cooling device. An electric heating coil is provided outside the container main body 22. The heating device is configured by attaching a heater device such as an electric heater (not shown). In addition, the cooling device can also separately attach the cooling water pipe 23 to the outside of the container body 22 in a water jacket shape. The cooling water pipe 23 and the heater device can be attached to the slurry manufacturing container 2a singly or in combination, and can cool the molten metal M contained in the slurry manufacturing container 2a at an appropriate speed.
[0113]
On the other hand, the driving unit 3 that moves the slurry manufacturing container 2 a up and down moves the slurry manufacturing container 2 a into the space 13 and separates the slurry manufacturing container 2 a to the outside of the space 13. Further, the drive unit 3 includes a drive motor and a gear device or a hydraulic cylinder (not shown). More specifically, the drive unit 3 includes a power unit 31 electrically connected to the control unit 5, extends from the power unit 31 to the inside of the space 13, and linearly reciprocates by the power unit 31. A piston 32 is mounted. A seat 33 a located inside the space 13 is connected to an end of the piston 32. The slurry production container 2a is seated and attached to the seat 33a.
[0114]
Further, the pouring container 4 pours the molten metal M in the liquid phase into the slurry manufacturing container 2a when the slurry manufacturing container 2a is moved up by the driving unit 3 and accommodated in the space 13 to which the electromagnetic field is applied. . As the pouring container 4, a normal ladle electrically connected to the control unit 5 is used.
[0115]
Therefore, as shown in FIG. 2, the apparatus for producing a semi-solid metal slurry operates the driving unit 3 to accommodate the slurry production container 2 a in the space 13, and then uses the coil unit for applying an electromagnetic field in the stirring unit 1. 11 applies an electromagnetic field to the space 13 at a predetermined frequency and intensity. The storage of the slurry production container 2a in the space 13 may be performed after an electromagnetic field is applied to the space 13. Then, the molten metal M melted in another electric furnace is transferred by the pouring vessel 4 and poured into the slurry producing vessel 2a under the influence of the electromagnetic field. At this time, the application of the electromagnetic field may be performed before pouring the molten metal M, but may be performed simultaneously with the pouring of the molten metal M or during the pouring of the molten metal M.
[0116]
Further, after the molten metal M has been poured into the slurry production container 2a, the slurry production container 2a is raised by the driving unit 3 after a predetermined time, and the slurry production container is placed outside the space 13 as shown in FIG. 2a is transferred and removed, and is replaced with a new slurry production container 2a by a transfer device such as a robot (not shown). At this time, the replaced slurry production container 2a is cooled at a predetermined speed until the solid content ratio becomes 0.1 or more and 0.7 or less to produce a semi-solid metal slurry. The cooling rate at this time is 0.2 ° C./sec or more and 5 ° C./sec or less, and more preferably 0.2 ° C./sec or more and 2 ° C./sec or less. The cooling of the slurry manufacturing container 2a can be performed before the slurry manufacturing container 2a is replaced, that is, before the slurry manufacturing container 2a is transferred to the outside of the space 13 by the driving unit 3 and separated therefrom. After the completion of the above, the slurry production container 2a can be detached outside the space portion 13 and replaced with a new slurry production container 2a.
[0117]
On the other hand, the application of the electromagnetic field can be continued until the cooling is completed. That is, the electromagnetic field may be continuously applied until the driving unit 3 transfers the slurry manufacturing container 2a to the outside of the space 13 and separates it. The application of the electromagnetic field is continued until the solid phase ratio of the molten metal M becomes at least 0.001 or more and 0.7 or less. However, in the energy efficiency dimension, the electromagnetic field applying coil device 11 continues until the solid phase ratio of the molten metal M becomes at least 0.001 or more and 0.4 or less after pouring of the molten metal M, and more preferably, This is maintained until the solid phase ratio of the molten metal M becomes 0.001 or more and 0.1 or less. The time required for the molten metal M to reach such a solid fraction can be determined in advance by an experiment. In this way, the cooling can be progressed all the time even during the application of the electromagnetic field.
[0118]
Further, as in the third embodiment shown in FIG. 5, two or more slurry production containers 2a and 2b can be provided, and these slurry production containers 2a and 2b can be formed so as to work simultaneously. In this case, the seats 33a and 33b are arranged on the fixing plate 34, and the seats 33a and 33b are separated from the space 13 so as to separate the slurry production containers 2a and 2b to the upper outside of the stirring unit 1. Are formed higher in accordance with the height of the object.
[0119]
Next, as in the fourth embodiment shown in FIGS. 6 and 7, when the slurry manufacturing container 2a is horizontally moved by the driving unit 3, the rotating plate 35 is attached to the end of the piston 32 of the driving unit 3. Is installed. At this time, the piston 32 is connected to a substantially intermediate portion of the rotating plate 35. At least one or more seats 33a, 33b are mounted on the edge of the rotating plate 35. Further, the slurry production containers 2a and 2b are seated on these seats 33a and 33b. Then, the power unit 31 not only moves the piston 32 up and down but also rotates it. Therefore, the power unit 31 moves the slurry manufacturing containers 2 a and 2 b horizontally by the rotation of the rotary plate 35 and separates the slurry manufacturing containers 2 a and 2 b outside the space 13.
[0120]
Then, as shown in FIG. 7 (a), after the piston 32 is raised and the first slurry production container 2a is accommodated in the space 13, the electromagnetic field applying coil device 11 of the stirring unit 1 moves the piston into the space 13. Apply an electromagnetic field. At this time, the first slurry production container 2a may be accommodated in the space 13 while the electromagnetic field is being applied.
[0121]
In this state, as shown in FIG. 7B, the molten metal M is poured into the first slurry production vessel 2a by the pouring vessel 4, and the electromagnetic field is maintained for a predetermined time. At this time, the electromagnetic field may be applied simultaneously with the pouring of the molten metal M, or the electromagnetic field may be applied while the molten metal M is being poured.
[0122]
Thereafter, as shown in FIG. 7C, the piston 32 is lowered so that the first slurry production container 2a is separated from the lower side of the space 13, and as shown in FIG. The position of the second slurry production container 2b and the first slurry production container 2a, which are empty containers, are changed by rotating 32. At this time, the first slurry production vessel 2a produces a slurry by cooling the molten metal M inside the first slurry production vessel 2a at a predetermined cooling rate until a predetermined solid phase ratio is reached. As shown in FIG. 7 (e), the piston 32 is raised again, and the same process is repeated in the second slurry production container 2b. At this time, the first slurry production container 2a is transferred by the robot 6 as a transfer means, and another subsequent forming step is performed. As a result, a large amount of semi-solid metal slurry can be continuously manufactured, and the associativity with the subsequent process can be further increased to improve the efficiency of the entire process.
[0123]
Further, as in the fifth embodiment shown in FIG. 8, the slurry production container 2a can be moved horizontally by moving the drive unit 3 horizontally along another rail 36.
[0124]
In each of the above-described embodiments, various metals or alloys, such as aluminum or its alloy, magnesium or its alloy, zinc or its alloy, copper or its alloy, and iron or its alloy, may be used for semi-solid molding. Can be applied universally. In addition, the metal material manufactured as described above has a fine spherical shape having an average particle size of 10 μm or more and 60 μm or less, and has a uniform particle size distribution.
[0125]
【The invention's effect】
According to the method for producing a metal material in a solid-liquid coexistence state according to the first aspect, a uniform and fine spherical structure can be obtained as a whole, as compared with the conventional method, so that the mechanical properties of the alloy can be improved. In addition, the nucleation density on the vessel wall can be significantly increased by only short-time stirring at a temperature higher than the liquidus line to realize spheroidization of the particles, thereby achieving a uniform and fine particle distribution as a whole. Therefore, the mechanical properties of the alloy can be improved.
[0126]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 2, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to claim 1, a molten metal is poured into a container in a pouring step. By applying an electromagnetic field to the space in the application step beforehand, it is possible to easily obtain a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole.
[0127]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 3, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to claim 1 or 2, an electromagnetic field is applied to the space in the application step. After that, even if a container is arranged in this space, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be easily obtained.
[0128]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 4, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to claim 1, when a molten metal is poured into a container in a pouring step. At the same time, even when an electromagnetic field is applied to the space in the application step, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be easily obtained.
[0129]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 5, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to claim 1, molten metal is poured into a container in a pouring step. Even if an electromagnetic field is applied to the space in the application step in the middle, a solid-liquid coexisting metal material having an overall uniform and fine spherical structure can be easily obtained.
[0130]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 6, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 5, the solid phase ratio of the molten metal in the container By applying an electromagnetic field to the space in the applying step until the value becomes 0.001 or more and 0.7 or less, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained. be able to.
[0131]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 7, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 5, the solid phase ratio of the molten metal in the container is By applying an electromagnetic field to the space in the applying step until the value becomes 0.001 or more and 0.4 or less, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained. More desirable.
[0132]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 8, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 5, the solid phase ratio of the molten metal in the container is By applying an electromagnetic field to the space in the application step until the value becomes 0.001 or more and 0.1 or less, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained. More desirable.
[0133]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 9, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to any one of claims 1 to 8, the molten metal is added to the container in the pouring step. After pouring, the container is cooled in a cooling step, whereby a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained.
[0134]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 10, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to claim 9, the solid phase ratio of the molten metal in the container is 0.1. By cooling the container in the cooling step until it becomes not less than 0.7 or less, a metal material in a solid-liquid coexistence state having a uniform and fine spherical structure as a whole can be more easily obtained, which is more preferable.
[0135]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 11, in addition to the effect of the method for producing a metal material in a solid-liquid coexistence state according to claim 9, the molten metal in the container is cooled by 0.2 in the cooling step. Cooling at a rate of not less than ° C / sec and not more than 5.0 ° C / sec is more preferable because a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained.
[0136]
According to the method for producing a metal material in a solid-liquid coexistence state according to claim 12, in addition to the effect of the method for producing a metal material in solid-liquid coexistence state according to claim 9, the molten metal in the container is cooled by 0.2 in the cooling step. Cooling at a rate of not less than 2 ° C./sec and not more than 2.0 ° C./sec is more preferable because a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained.
[0137]
According to the method for producing a semi-solid metal slurry according to the thirteenth aspect, the solid-liquid coexisting metal material according to any one of the first to twelfth aspects is a semi-solid metal slurry. The same effect as that of the solid-liquid coexisting metallic material can be obtained.
[0138]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 14, since the entire process can be simplified and the electromagnetic field stirring time can be greatly reduced, energy consumption required for stirring is reduced and the product molding time is also reduced. In addition to having a considerable economical advantage, it is also excellent in coordination with the subsequent steps and can greatly increase the yield.
[0139]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 15, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 14, molten metal is poured into the container at the pouring section. By applying the electromagnetic field to the space before the stirring section, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be easily obtained.
[0140]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 16, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 14, molten metal is poured into the container at the pouring section. At the same time, even if the stirring section applies an electromagnetic field to the space, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be easily obtained.
[0141]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 17, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 14, molten metal is poured into the container at the pouring section. Even if the stirring section applies an electromagnetic field to the space during the stirring, a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole can be easily obtained.
[0142]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 18, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 17, the molten metal is added to the container at the pouring section. After the molten metal is poured, the drive unit raises the container and transfers the container out of the space, so that the container into which the molten metal has been poured can be easily transferred.
[0143]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 19, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any of claims 14 to 18, the driving unit horizontally moves the container. The container can be transferred to the outside of the space without overflowing the molten metal poured into the container.
[0144]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 20, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any of claims 14 to 19, the molten metal is added to the container at the pouring section. After the molten metal is poured, the rotating plate on which the container is installed is lowered and rotated to transfer the container out of the space, so that the container can be easily transferred out of the space with a simple configuration. I can do it for sure.
[0145]
According to the apparatus for manufacturing a solid-liquid coexisting state metal material according to claim 21, in addition to the effect of the apparatus for manufacturing a solid-liquid coexisting state metal material according to claim 18 or 19, after the molten metal is poured into the container, After the drive unit lowers the container, it moves horizontally along the rails and transfers this container to the outside of the space, so that the container into which the molten metal has been poured can be easily transferred to the outside of the space. I can do it for sure.
[0146]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 22, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any of claims 14 to 21, pouring into a container at a pouring section is performed. The stirring section applies an electromagnetic field to the space until the solid phase ratio of the molten metal becomes 0.001 or more and 0.7 or less, so that a solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0147]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 23, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 21, pouring into a container at a pouring section is performed. The stirring section applies an electromagnetic field to the space until the solid phase ratio of the molten metal becomes 0.001 or more and 0.4 or less, so that the solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0148]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 24, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 21, pouring into a container at a pouring section is performed. The stirring unit applies an electromagnetic field to the space until the solid phase ratio of the molten metal becomes 0.001 or more and 0.1 or less, so that the solid-liquid coexistence state of a uniform and fine spherical structure as a whole is obtained. It is more desirable because a metal material can be obtained more easily.
[0149]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to any one of claims 14 to 24, a temperature control device attached to a container is used. By adjusting the temperature of the molten metal in the container, it is possible to more easily and reliably obtain a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole.
[0150]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 26, in addition to the effect of the apparatus for manufacturing a metal material in solid-liquid coexistence state according to claim 25, melting in the container by a cooling device attached to the container By cooling the metal, it is possible to more easily and reliably obtain a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole.
[0151]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 27, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25 or 26, a heating device attached to the container can be used to form the inside of the container. By heating the molten metal, a solid-liquid coexisting metal material having a uniform and fine spherical structure as a whole can be obtained more easily and reliably.
[0152]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 28, in addition to the effect of the apparatus for manufacturing a metal material in solid-liquid coexistence state according to claim 27, by using an electric heater for the heating device, A solid-liquid coexisting metallic material having a uniform and fine spherical structure can be more easily obtained with a simple configuration.
[0153]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 29, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25 or 26, the solid phase ratio of the molten metal in the container is zero. It is more desirable that the temperature control device be cooled until it becomes not less than 1 and not more than 0.7, so that a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained.
[0154]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 30, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25 or 26, the molten metal in the container is heated at 0.2 ° C. / By cooling the temperature control device at a speed of not less than sec and not more than 5.0 ° C./sec, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained. desirable.
[0155]
According to the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 31, in addition to the effect of the apparatus for manufacturing a metal material in a solid-liquid coexistence state according to claim 25 or 26, the molten metal in the container is heated at 0.2 ° C. / By cooling the temperature controller at a rate of not less than sec and not more than 2.0 ° C./sec, a solid-liquid coexisting metallic material having a uniform and fine spherical structure as a whole can be more easily obtained. desirable.
[0156]
According to the apparatus for manufacturing a semi-solid metal slurry according to claim 32, the metal material in a solid-liquid coexistence state according to any one of claims 14 to 31 is a semi-solid metal slurry, and thus the metal slurry according to any one of claims 14 to 31 is provided. The same effect as that of the solid-liquid coexisting metallic material can be obtained.
[Brief description of the drawings]
FIG. 1 is a secondary graph showing a molten metal pouring temperature with respect to time in an apparatus for producing a metal material in a solid-liquid coexistence state according to a first embodiment of the present invention.
FIG. 2 is a schematic explanatory view showing an apparatus for producing a metal material in a solid-liquid coexisting state according to the first embodiment.
FIG. 3 is a schematic explanatory view showing an apparatus for producing a metal material in a solid-liquid coexisting state according to the first embodiment.
FIG. 4 is an explanatory sectional view showing a container according to a second embodiment of the apparatus for producing a metal material in a solid-liquid coexistence state according to the present invention.
FIG. 5 is a schematic explanatory view showing a third embodiment of the apparatus for producing a metal material in a solid-liquid coexisting state according to the present invention.
FIG. 6 is a schematic explanatory view showing a fourth embodiment of the apparatus for producing a metal material in a solid-liquid coexistence state according to the present invention.
FIG. 7 is a schematic explanatory view showing a manufacturing process of the manufacturing apparatus for the metal material in the solid-liquid coexisting state.
(A) Explanatory drawing which shows the state which raises a drive part and accommodates a container in a space part.
(B) Explanatory drawing showing a state where molten metal is poured into a container and an electromagnetic field is applied
(C) Explanatory drawing showing a state in which the drive unit is lowered to transfer the container to the lower side of the space.
(D) Explanatory drawing showing a state in which the drive unit is rotated to replace the container.
(E) Explanatory drawing which shows the state which raises a drive part and accommodates another container in a space part, and transfers a container.
FIG. 8 is a schematic explanatory view showing a fifth embodiment of the apparatus for producing a metal material in a solid-liquid coexistence state according to the present invention.
[Explanation of symbols]
1 stirrer
2a Slurry manufacturing container as container
3 Drive
4 Pouring vessel as pouring section
13 Space
20 Temperature control device
23 Cooling water pipe as cooling device
35 rotating plate
36 rails
M molten metal

Claims (32)

容器が載置される所定の空間部に電磁気場を印加する印加工程と、
この印加工程にて前記空間部に電磁気場が印加されている状態で、前記空間部に配置された前記容器に溶融金属を注湯する注湯工程と、
この注湯工程にて前記溶融金属が注湯された前記容器を前記空間部外へ移送して、前記溶融金属を固液共存状態金属材料とする移送工程と
を具備したことを特徴とする固液共存状態金属材料の製造方法。
An application step of applying an electromagnetic field to a predetermined space where the container is placed,
A pouring step of pouring a molten metal into the container disposed in the space, while an electromagnetic field is being applied to the space in the applying step,
Transferring the container into which the molten metal has been poured in the pouring step to the outside of the space to convert the molten metal into a solid-liquid coexisting state metal material. A method for producing a metallic material in a liquid coexistence state.
印加工程は、注湯工程にて容器に溶融金属を注湯する前に、空間部に電磁気場を印加する
ことを特徴とする請求項1記載の固液共存状態金属材料の製造方法。
2. The method according to claim 1, wherein the applying step applies an electromagnetic field to the space before pouring the molten metal into the container in the pouring step.
印加工程は、空間部に電磁気場を印加した後に、この空間部内に容器が配置される
ことを特徴とする請求項1または2記載の固液共存状態金属材料の製造方法。
3. The method for producing a metal material in a solid-liquid coexistence state according to claim 1, wherein, in the applying step, a container is arranged in the space after applying an electromagnetic field to the space.
印加工程は、注湯工程にて容器に溶融金属を注湯すると同時に、空間部に電磁気場を印加する
ことを特徴とする請求項1記載の固液共存状態金属材料の製造方法。
2. The method for producing a metal material in a solid-liquid coexistence state according to claim 1, wherein in the applying step, the molten metal is poured into the container in the pouring step, and at the same time, an electromagnetic field is applied to the space.
印加工程は、注湯工程にて容器に溶融金属を注湯する途中で、空間部に電磁気場を印加する
ことを特徴とする請求項1記載の固液共存状態金属材料の製造方法。
2. The method for producing a metal material in a solid-liquid coexistence state according to claim 1, wherein the applying step applies an electromagnetic field to the space portion during the pouring of the molten metal into the container in the pouring step.
印加工程は、容器内の溶融金属の固相率が0.001以上0.7以下となるまで、空間部に電磁気場を印加する
ことを特徴とする請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法。
The solid-liquid according to any one of claims 1 to 5, wherein the applying step applies an electromagnetic field to the space until the solid fraction of the molten metal in the container becomes 0.001 or more and 0.7 or less. A method for producing a coexisting metallic material.
印加工程は、容器内の溶融金属の固相率が0.001以上0.4以下となるまで、空間部に電磁気場を印加する
ことを特徴とする請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法。
The solid-liquid according to any one of claims 1 to 5, wherein the applying step applies an electromagnetic field to the space until the solid fraction of the molten metal in the container becomes 0.001 or more and 0.4 or less. A method for producing a coexisting metallic material.
印加工程は、容器内の溶融金属の固相率が0.001以上0.1以下となるまで、空間部に電磁気場を印加する
ことを特徴とする請求項1ないし5いずれか記載の固液共存状態金属材料の製造方法。
The solid-liquid according to any one of claims 1 to 5, wherein the applying step applies an electromagnetic field to the space until the solid fraction of the molten metal in the container becomes 0.001 or more and 0.1 or less. A method for producing a coexisting metallic material.
注湯工程にて容器に溶融金属を注湯した後に、この容器を冷却する冷却工程を具備した
ことを特徴とする請求項1ないし8いずれか記載の固液共存状態金属材料の製造方法。
The method for producing a solid-liquid coexisting metal material according to any one of claims 1 to 8, further comprising a cooling step of cooling the container after pouring the molten metal into the container in the pouring step.
冷却工程は、容器内の溶融金属の固相率が0.1以上0.7以下となるまで、前記容器を冷却する
ことを特徴とする請求項9記載の固液共存状態金属材料の製造方法。
The method for producing a metal material in a solid-liquid coexistence state according to claim 9, wherein the cooling step cools the container until the solid phase ratio of the molten metal in the container becomes 0.1 or more and 0.7 or less. .
冷却工程は、容器内の溶融金属を0.2℃/sec以上5.0℃/sec以下の速度で冷却する
ことを特徴とする請求項9記載の固液共存状態金属材料の製造方法。
The method for producing a metal material in a solid-liquid coexistence state according to claim 9, wherein the cooling step cools the molten metal in the container at a rate of 0.2 ° C / sec or more and 5.0 ° C / sec or less.
冷却工程は、容器内の溶融金属を0.2℃/sec以上2.0℃/sec以下の速度で冷却する
ことを特徴とする請求項9記載の固液共存状態金属材料の製造方法。
The method for producing a solid-liquid coexisting metallic material according to claim 9, wherein the cooling step cools the molten metal in the container at a rate of 0.2C / sec or more and 2.0C / sec or less.
請求項1ないし12いずれか記載の固液共存状態金属材料は、半凝固金属スラリである
ことを特徴とする半凝固金属スラリの製造方法。
13. A method for producing a semi-solid metal slurry, wherein the solid-liquid coexisting metal material according to any one of claims 1 to 12 is a semi-solid metal slurry.
所定の空間部を備え、この空間部に電磁気場を印加する攪拌部と、
この攪拌部の空間部内に収容される容器と、
この容器を前記空間部内に収容させる駆動部と、
前記容器に溶融金属を注湯する注湯部と
を具備したことを特徴とした固液共存状態金属材料の製造装置。
A stirrer having a predetermined space, and applying an electromagnetic field to the space,
A container housed in the space of the stirring section,
A driving unit that accommodates the container in the space,
An apparatus for producing a metal material in a solid-liquid coexistence state, comprising: a pouring section for pouring a molten metal into the container.
攪拌部は、注湯部にて容器に溶融金属が注湯される前に、空間部に電磁気場を印加する
ことを特徴とした請求項14記載の固液共存状態金属材料の製造装置。
The apparatus according to claim 14, wherein the stirring unit applies an electromagnetic field to the space before the molten metal is poured into the container in the pouring unit.
攪拌部は、注湯部にて容器に溶融金属が注湯されると同時に、空間部に電磁気場を印加する
ことを特徴とした請求項14記載の固液共存状態金属材料の製造装置。
The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 14, wherein the stirring section applies an electromagnetic field to the space at the same time as the molten metal is poured into the container in the pouring section.
攪拌部は、注湯部にて容器に溶融金属が注湯される途中で、空間部に電磁気場を印加する
ことを特徴とした請求項14記載の固液共存状態金属材料の製造装置。
The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 14, wherein the stirring section applies an electromagnetic field to the space while the molten metal is being poured into the container in the pouring section.
駆動部は、注湯部にて容器に溶融金属が注湯された後に、前記容器を上昇させてこの容器を空間部外へ移送する
ことを特徴とした請求項14ないし17いずれか記載の固液共存状態金属材料の製造装置。
18. The solidifying device according to claim 14, wherein after the molten metal is poured into the container by the pouring unit, the driving unit raises the container and transfers the container out of the space. Production equipment for metallic materials in the liquid coexistence state.
駆動部は、容器を水平移動させる
ことを特徴とした請求項14ないし18いずれか記載の固液共存状態金属材料の製造装置。
19. The apparatus according to claim 14, wherein the driving unit horizontally moves the container.
駆動部は、縁部に容器が設置される回転プレートを具備し、注湯部にて前記容器に溶融金属が注湯された後に前記回転プレートを下降させるとともに回転させて前記容器を前記空間部外へ移送する
ことを特徴とした請求項14ないし19いずれか記載の固液共存状態金属材料の製造装置。
The driving unit includes a rotating plate on which a container is installed at an edge, and lowers and rotates the rotating plate after the molten metal is poured into the container at the pouring unit to rotate the container to the space. 20. The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 14, wherein the metal material is transferred outside.
駆動部を水平移動可能に支持するレールを具備し、
前記駆動部は、容器に溶融金属が注湯された後に前記容器を下降させてから、前記レールに沿って水平移動して前記容器を空間部外に移送する
ことを特徴とした請求項18または19記載の固液共存状態金属材料の製造装置。
Equipped with a rail that supports the drive unit so that it can move horizontally,
19. The method according to claim 18, wherein the driving unit lowers the container after the molten metal is poured into the container, and then horizontally moves along the rail to transfer the container out of the space. 20. The apparatus for producing a metal material in the solid-liquid coexistence state according to 19.
攪拌部は、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.7以下となるまで、空間部に電磁気場を印加する
ことを特徴とした請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置。
The stirrer applies an electromagnetic field to the space until the solid phase ratio of the molten metal poured into the container at the pouring unit becomes 0.001 or more and 0.7 or less. 21. The apparatus for producing a metal material in a solid-liquid coexistence state according to any one of 21.
攪拌部は、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.4以下となるまで、空間部に電磁気場を印加する
ことを特徴とした請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置。
The stirring unit applies an electromagnetic field to the space until the solid phase ratio of the molten metal poured into the container at the pouring unit becomes 0.001 or more and 0.4 or less. 21. The apparatus for producing a metal material in a solid-liquid coexistence state according to any one of 21.
攪拌部は、注湯部にて容器に注湯した溶融金属の固相率が0.001以上0.1以下となるまで、空間部に電磁気場を印加する
ことを特徴とした請求項14ないし21いずれか記載の固液共存状態金属材料の製造装置。
The stirrer applies the electromagnetic field to the space until the solid phase ratio of the molten metal poured into the container at the pouring unit becomes 0.001 or more and 0.1 or less. 21. The apparatus for producing a metal material in a solid-liquid coexistence state according to any one of 21.
容器に取り付けられ、この容器内の溶融金属の温度を調整する温度調節装置を具備した
ことを特徴とした請求項14ないし24いずれか記載の固液共存状態金属材料の製造装置。
25. The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 14, further comprising a temperature controller attached to the container and adjusting a temperature of the molten metal in the container.
温度調節装置は、容器に取り付けられ、この容器内の溶融金属を冷却する冷却装置を備えた
ことを特徴とした請求項25記載の固液共存状態金属材料の製造装置。
26. The apparatus for producing a metal material in a solid-liquid coexisting state according to claim 25, wherein the temperature control device is provided with a cooling device attached to the container and cooling the molten metal in the container.
温度調節装置は、容器に取り付けられ、この容器内の溶融金属を加熱する加熱装置を備えた
ことを特徴とした請求項25または26記載の固液共存状態金属材料の製造装置。
27. The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 25, wherein the temperature control device is provided with a heating device attached to the container and heating the molten metal in the container.
加熱装置は、電気ヒータである
ことを特徴とした請求項27記載の固液共存状態金属材料の製造装置。
28. The apparatus according to claim 27, wherein the heating device is an electric heater.
温度調節装置は、容器内の溶融金属の固相率が0.1以上0.7以下となるまで冷却する
ことを特徴とした請求項25または26記載の固液共存状態金属材料の製造装置。
27. The apparatus for producing a metal material in a solid-liquid coexistence state according to claim 25, wherein the temperature controller cools the molten metal in the vessel until the solid phase ratio of the molten metal becomes 0.1 or more and 0.7 or less.
温度調節装置は、容器内の溶融金属を0.2℃/sec以上5.0℃/sec以下の速度で冷却する
ことを特徴とした請求項25または26記載の固液共存状態金属材料の製造装置。
27. The solid-liquid coexisting metal material according to claim 25, wherein the temperature controller cools the molten metal in the container at a rate of 0.2 ° C./sec or more and 5.0 ° C./sec or less. apparatus.
温度調節装置は、容器内の溶融金属を0.2℃/sec以上2.0℃/sec以下の速度で冷却する
ことを特徴とした請求項25または26記載の固液共存状態金属材料の製造装置。
The solid-liquid coexisting metal material according to claim 25 or 26, wherein the temperature controller cools the molten metal in the container at a rate of 0.2 ° C / sec or more and 2.0 ° C / sec or less. apparatus.
請求項14ないし31いずれか記載の固液共存状態金属材料は、半凝固金属スラリである
ことを特徴とする半凝固金属スラリの製造装置。
The apparatus for producing a semi-solid metal slurry, wherein the solid-liquid coexisting metal material according to any one of claims 14 to 31 is a semi-solid metal slurry.
JP2003102319A 2002-09-25 2003-04-04 Method and apparatus for producing metallic material in solid-liquid coexistence state, method and apparatus for producing semi-solid metal slurry Expired - Lifetime JP3549054B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20020058163 2002-09-25
KR20020063162 2002-10-16
KR20030003250 2003-01-17
KR10-2003-0013517A KR100445643B1 (en) 2002-09-25 2003-03-04 Apparatus for producing a semi-solid metallic slurry

Publications (2)

Publication Number Publication Date
JP2004114153A true JP2004114153A (en) 2004-04-15
JP3549054B2 JP3549054B2 (en) 2004-08-04

Family

ID=31999425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102319A Expired - Lifetime JP3549054B2 (en) 2002-09-25 2003-04-04 Method and apparatus for producing metallic material in solid-liquid coexistence state, method and apparatus for producing semi-solid metal slurry

Country Status (4)

Country Link
US (1) US20040055735A1 (en)
EP (1) EP1445044A3 (en)
JP (1) JP3549054B2 (en)
CN (1) CN1280044C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064109A (en) * 2008-09-11 2010-03-25 Tmis:Kk Electromagnetic stirring type casting method and its apparatus
JP2016097404A (en) * 2014-11-18 2016-05-30 有限会社ティミス Vibration input mechanism of in-cup semi-solidified slurry in automatic casting device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255151B2 (en) * 2004-11-10 2007-08-14 Husky Injection Molding Systems Ltd. Near liquidus injection molding process
DE102005021891B4 (en) * 2005-05-04 2011-12-22 Evgenij Sterling Method of making pigs and pigs
US20080295989A1 (en) * 2007-05-30 2008-12-04 Husky Injection Molding Systems Ltd. Near-Liquidus Rheomolding of Injectable Alloy
CN103056318B (en) 2008-03-05 2017-06-09 南线有限责任公司 As the niobium of the protective wall in motlten metal
JP5299258B2 (en) * 2009-12-21 2013-09-25 トヨタ自動車株式会社 Die casting apparatus and die casting method
US8652397B2 (en) 2010-04-09 2014-02-18 Southwire Company Ultrasonic device with integrated gas delivery system
DK2556176T3 (en) 2010-04-09 2020-05-04 Southwire Co Llc Ultrasonic degassing of molten metals
CN102651429A (en) * 2011-02-24 2012-08-29 常州泰和光电科技有限公司 Manufacturing equipment of liquid metal sheet
CN102288028A (en) * 2011-08-03 2011-12-21 马忠臣 Medium frequency induction heating smelting device based on combination of electromagnetic stirring and mechanical vibration
CN103128248B (en) * 2013-02-01 2015-06-03 武达兼 Semisolid centrifugal separating casting ball grinding process, process device and ball casting machine
BR112016011262B1 (en) 2013-11-18 2021-05-18 Southwire Company, Llc ultrasonic device and method for reducing an amount of a dissolved gas and/or an impurity in a molten metal bath
CN104107885A (en) * 2013-12-25 2014-10-22 南昌大学 Semi-solid slurry cleaning and producing device
CN107848024B (en) 2015-02-09 2021-02-09 汉斯科技有限责任公司 Ultrasonic grain refinement
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
CN108348993B (en) 2015-09-10 2022-02-01 南线有限责任公司 Molten metal processing apparatus, method, system and casting machine for forming metal product
CN107214309A (en) * 2017-05-17 2017-09-29 东北大学秦皇岛分校 It is a kind of to improve the method for silumin structure property
CN108588591B (en) * 2018-05-17 2020-10-30 沈阳工业大学 Method for preparing short carbon fiber reinforced metal matrix composite material by mechanical combination and electromagnetic stirring
CN109513886A (en) 2018-12-14 2019-03-26 珠海市润星泰电器有限公司 A kind of pulping device of semi solid slurry
CN111394601B (en) * 2020-03-25 2021-05-25 广东领胜新材料科技有限公司 Casting method of large-size lead-free-cutting aluminum alloy cast rod
CN114273625B (en) * 2021-12-27 2022-12-02 北京科技大学 Small-size hot work die steel casting forming device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268958A (en) * 1963-12-19 1966-08-30 Midvale Heppenstall Company Slow pouring and casting system for ferrous and other metals
US3948650A (en) * 1972-05-31 1976-04-06 Massachusetts Institute Of Technology Composition and methods for preparing liquid-solid alloys for casting and casting methods employing the liquid-solid alloys
US4229210A (en) * 1977-12-12 1980-10-21 Olin Corporation Method for the preparation of thixotropic slurries
US4434837A (en) * 1979-02-26 1984-03-06 International Telephone And Telegraph Corporation Process and apparatus for making thixotropic metal slurries
US4465118A (en) * 1981-07-02 1984-08-14 International Telephone And Telegraph Corporation Process and apparatus having improved efficiency for producing a semi-solid slurry
US4457354A (en) * 1981-08-03 1984-07-03 International Telephone And Telegraph Corporation Mold for use in metal or metal alloy casting systems
US4694881A (en) * 1981-12-01 1987-09-22 The Dow Chemical Company Method for making thixotropic materials
US4832112A (en) * 1985-10-03 1989-05-23 Howmet Corporation Method of forming a fine-grained equiaxed casting
US5541299A (en) * 1990-03-15 1996-07-30 Bayer Aktiengesellschaft Process for the preparation of dyestuffs
US5205981A (en) * 1990-12-28 1993-04-27 Rheo-Technology, Ltd. Method and apparatus for the production of semi-solidified metal composition
JP3049648B2 (en) * 1993-12-13 2000-06-05 日立金属株式会社 Pressure molding method and pressure molding machine
FR2715088B1 (en) * 1994-01-17 1996-02-09 Pechiney Aluminium Process for shaping metallic materials in the semi-solid state.
DE69610132T2 (en) * 1995-03-22 2001-01-11 Hitachi Metals Ltd Die casting process
US6068043A (en) * 1995-12-26 2000-05-30 Hot Metal Technologies, Inc. Method and apparatus for nucleated forming of semi-solid metallic alloys from molten metals
US20020011321A1 (en) * 1996-07-24 2002-01-31 Shunzo Aoyama Method of producing semi-solid metal slurries
JPH1133692A (en) * 1997-07-24 1999-02-09 Ahresty Corp Manufacture of metallic slurry for semi-solidified casting
JPH1119759A (en) * 1997-06-30 1999-01-26 Hitachi Metals Ltd Casting method for die casting and apparatus thereof
US6079477A (en) * 1998-01-26 2000-06-27 Amcan Castings Limited Semi-solid metal forming process
US20010037868A1 (en) * 1999-01-12 2001-11-08 Merton C. Flemings Hot chamber die casting of semisolids
US6428636B2 (en) * 1999-07-26 2002-08-06 Alcan International, Ltd. Semi-solid concentration processing of metallic alloys
US6399017B1 (en) * 2000-06-01 2002-06-04 Aemp Corporation Method and apparatus for containing and ejecting a thixotropic metal slurry
US6432160B1 (en) * 2000-06-01 2002-08-13 Aemp Corporation Method and apparatus for making a thixotropic metal slurry
US6443216B1 (en) * 2000-06-01 2002-09-03 Aemp Corporation Thermal jacket for a vessel
US6505670B2 (en) * 2000-07-11 2003-01-14 Honda Giken Kogyo Kabushiki Kaisha Method for injection molding metallic materials
US6645323B2 (en) * 2000-09-21 2003-11-11 Massachusetts Institute Of Technology Metal alloy compositions and process
US6742567B2 (en) * 2001-08-17 2004-06-01 Brunswick Corporation Apparatus for and method of producing slurry material without stirring for application in semi-solid forming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064109A (en) * 2008-09-11 2010-03-25 Tmis:Kk Electromagnetic stirring type casting method and its apparatus
JP2016097404A (en) * 2014-11-18 2016-05-30 有限会社ティミス Vibration input mechanism of in-cup semi-solidified slurry in automatic casting device

Also Published As

Publication number Publication date
CN1280044C (en) 2006-10-18
CN1485169A (en) 2004-03-31
JP3549054B2 (en) 2004-08-04
US20040055735A1 (en) 2004-03-25
EP1445044A2 (en) 2004-08-11
EP1445044A3 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP3549054B2 (en) Method and apparatus for producing metallic material in solid-liquid coexistence state, method and apparatus for producing semi-solid metal slurry
JP3549055B2 (en) Die casting method for metal material molding in solid-liquid coexistence state, apparatus therefor, die casting method for semi-solid molding and apparatus therefor
JP3630327B2 (en) Solid-liquid coexistence state metal slurry production equipment
JP4154385B2 (en) Solid-liquid coexistence state metal material manufacturing equipment
JP3520994B1 (en) Solid-liquid coexisting metal slurry manufacturing equipment
KR200320004Y1 (en) Apparatus for producing a semi-solid metallic slurry
JP3511378B1 (en) Method and apparatus for manufacturing metal forming billet in solid-liquid coexistence state, method and apparatus for manufacturing semi-solid forming billet
JP3520992B1 (en) Solid-liquid coexisting billet manufacturing equipment for metal forming
KR20130041473A (en) Manufacturing method of high pressure rheocasting and apparatus thereof
JP2004114156A (en) Method for producing metallic material in solid-liquid coexisting state
JP3520993B1 (en) Solid-liquid coexisting metal material forming equipment
JP3632179B1 (en) Solid-liquid coexisting state metal material production equipment
JP3685459B1 (en) Solid-liquid coexistence state metal slurry manufacturing method and manufacturing apparatus thereof
KR20180000476A (en) Apparatus for manufacturing semi-solidified metal slurry

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent or registration of utility model

Ref document number: 3549054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term