JP3496833B1 - Method for producing metallic material in solid-liquid coexistence state - Google Patents

Method for producing metallic material in solid-liquid coexistence state

Info

Publication number
JP3496833B1
JP3496833B1 JP2003027466A JP2003027466A JP3496833B1 JP 3496833 B1 JP3496833 B1 JP 3496833B1 JP 2003027466 A JP2003027466 A JP 2003027466A JP 2003027466 A JP2003027466 A JP 2003027466A JP 3496833 B1 JP3496833 B1 JP 3496833B1
Authority
JP
Japan
Prior art keywords
molten metal
solid
container
metal material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003027466A
Other languages
Japanese (ja)
Other versions
JP2004114152A (en
Inventor
俊杓 洪
宰民 金
▲ミン▼秀 金
正行 板村
Original Assignee
学校法人延世大学校
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人延世大学校 filed Critical 学校法人延世大学校
Application granted granted Critical
Publication of JP3496833B1 publication Critical patent/JP3496833B1/en
Publication of JP2004114152A publication Critical patent/JP2004114152A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/205Barrages controlled by the variations of the water level; automatically functioning barrages
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/40Swinging or turning gates
    • E02B7/44Hinged-leaf gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/02Sediment base gates; Sand sluices; Structures for retaining arresting waterborne material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【要約】 【課題】 より微細な球状化粒子を得ると同時にエネル
ギ効率の改善、製造コストの節減、機械的性質の向上、
鋳造工程の簡便化および製造時間短縮の利点を実現でき
る固液共存状態金属材料の製造方法を提供する。 【解決手段】 電磁気場を印加し容器に溶融金属を注湯
した後、容器への電磁気場の印加を終了する。容器に注
湯した溶融金属を冷却して固液共存状態の金属材料を形
成する。溶融金属を冷却する工程で初期凝固層の形成に
よる潜熱の発生なしに容器の壁面から中心部にわたって
全体的に均一に温度が低下する。溶融金属の注湯後の1
秒以上10秒以下程度の短い時間内に溶融金属を液相線
温度以下に急速に冷却でき、多数の結晶核を全領域にわ
たって均一に生成できる。微細でかつ均一な組織を有す
る金属材料を製造できる。
Abstract: PROBLEM TO BE SOLVED: To obtain finer spheroidized particles and at the same time to improve energy efficiency, reduce production cost, improve mechanical properties,
Provided is a method for producing a metal material in a solid-liquid coexistence state, which can realize advantages of simplifying a casting process and shortening a production time. SOLUTION: After applying an electromagnetic field and pouring molten metal into the container, the application of the electromagnetic field to the container is terminated. The molten metal poured into the container is cooled to form a solid-liquid coexisting metal material. In the step of cooling the molten metal, the temperature is uniformly reduced from the wall surface of the container to the central portion without generating latent heat due to the formation of the initial solidified layer. 1 after pouring of molten metal
The molten metal can be rapidly cooled to the liquidus temperature or less within a short time of about 10 seconds to about 10 seconds, and a large number of crystal nuclei can be uniformly generated over the entire area. A metal material having a fine and uniform structure can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属に電磁気
場を印加してから冷却する固液共存状態金属材料の製造
方法に関する。
The present invention relates to a method for producing a solid-liquid coexisting state metal materials for cooling from application of electromagnetic field in the molten metal.

【0002】[0002]

【従来の技術】固液共存状態金属材料を加工する、いわ
ゆる半凝固あるいは半溶融加工法は、鋳造と鍛造とを混
合した複合加工法であって、半凝固成形法と半溶融成形
法とに大別できる。半凝固成形法は、半凝固状態で製造
された金属スラリを直接成形加工して最終製品に製造す
る加工法である。また、半溶融成形法は、半凝固状態で
ビレットを製造した後、このビレットを半溶融状態に再
加熱して鍛造あるいはダイカストを実施して最終製品と
して製造する加工法である。
2. Description of the Related Art A so-called semi-solidification or semi-melting processing method for processing a solid-liquid coexisting metal material is a composite processing method in which casting and forging are mixed. It can be roughly divided. The semi-solid forming method is a processing method of directly forming a metal slurry produced in a semi-solid state to produce a final product. The semi-melt forming method is a processing method in which a billet is manufactured in a semi-solidified state, and then the billet is reheated to a semi-molten state and forged or die-casted to manufacture a final product.

【0003】半凝固あるいは半溶融成形用の金属スラリ
は、半凝固領域の温度で液相と球状の結晶粒が適切な割
合で混在する状態でチクソトロピー性により小さな力に
よっても変形が可能であり、流動性に優れて液相(thixo
tropic)のように成形加工が容易な状態の金属材料であ
る。ビレットは、再加熱により金属スラリ形態の半溶融
状態を回復できるので、半凝固あるいは半溶融成形用の
金属材料として非常に有用に利用される。
A metal slurry for semi-solidification or semi-melt forming can be deformed by a small force due to its thixotropic property in a state where a liquid phase and spherical crystal grains are mixed in an appropriate ratio at a temperature in a semi-solidification region, Excellent liquidity and liquid phase (thixo
(tropic) is a metal material that can be easily processed. Since the billet can recover the semi-molten state of the metal slurry form by reheating, it is very usefully used as a metal material for semi-solidification or semi-melt forming.

【0004】金属スラリやビレットを利用する半凝固あ
るいは半溶融成形法は、同じ組成の液体金属合金を利用
する場合に比べて色々な長所を有している。例えば、金
属成形分野において金属スラリは、液体金属合金の完全
な溶融に必要な温度より低温で流動性を有するので金型
のダイの露出温度がさらに低いから、このダイの寿命が
延びる。また、金属スラリが押出される時に乱流の発生
がなく、鋳造過程で空気の混入が少なくて最終製品にお
いて気孔の発生を防止できる。したがって、熱処理が可
能で機械的性質を大きく向上させることができる。その
他にも凝固収縮が少なくて作業性および耐食性が改善さ
れて製品の軽量化が可能である。したがって、自動車お
よび航空機産業分野、電気電子情報通信装備の新素材と
して利用できる。
The semi-solidification or semi-melt forming method using a metal slurry or billet has various advantages as compared with the case of using a liquid metal alloy having the same composition. For example, in the field of metal forming, metal slurries have fluidity at temperatures below that required for complete melting of liquid metal alloys, thus lowering the die die exposure temperature, thus extending die life. In addition, turbulent flow does not occur when the metal slurry is extruded, air is less mixed in the casting process, and pores can be prevented from being generated in the final product. Therefore, heat treatment is possible and the mechanical properties can be greatly improved. Besides, solidification shrinkage is small, workability and corrosion resistance are improved, and the weight of the product can be reduced. Therefore, it can be used as a new material for the fields of automobiles and aircrafts, electrical and electronic information communication equipment.

【0005】従来の半凝固合金の製造方法は、主に液相
線以下の温度で溶融金属を攪拌することによって既に生
成された樹枝状結晶組織を破砕して半凝固成形に適する
ように球状の粒子に作る方法である。攪拌方法には機械
的攪拌法と電磁気的攪拌法、ガスバブリング、低周波、
高周波または電磁気波振動を利用するか、電気的衝撃に
よる攪拌法などが利用された。
In the conventional method for producing a semi-solid alloy, the dendrite structure that has already been produced is crushed by stirring the molten metal mainly at a temperature below the liquidus line so that the semi-solid alloy has a spherical shape suitable for semi-solid forming. It is a method to make particles. Mechanical stirring method and electromagnetic stirring method, gas bubbling, low frequency,
A high frequency or electromagnetic wave vibration was used, or a stirring method by electric shock was used.

【0006】そして、液相固相混合物を製造する方法と
しては、大部分の合金が液相に存在する温度まで、この
合金を加熱した後、形成された溶融金属を強く攪拌しな
がら冷却する。溶融金属中の固体比率が40%以上65
%以下に至るまで攪拌し続けながら冷却する。このと
き、樹枝状結晶組織の形成を防止するか、あるいは1次
固体粒子上に既に形成された樹枝状結晶組織を除去する
か減らすことによって固液混合物を製造している(例え
ば、特許文献1参照。)。
As a method for producing a liquid-solid mixture, the alloy is heated to a temperature at which most of the alloy exists in the liquid phase, and then the formed molten metal is cooled with vigorous stirring. Solid content in molten metal is 40% or more 65
Cool while continuing to stir until it reaches less than 100%. At this time, a solid-liquid mixture is produced by preventing the formation of a dendrite structure, or by removing or reducing the dendrite structure already formed on the primary solid particles (for example, Patent Document 1). reference.).

【0007】また、半凝固合金スラリの製造方法として
は、溶融金属が入っている容器内の固化領域の全範囲に
亙って提供される移動型磁場により溶融金属が電磁気的
に混合される。この方法において、磁場は固化領域で形
成された樹枝状結晶組織を所定の剪断速度で剪断させて
いる(例えば、特許文献2参照。)。
Further, as a method for producing a semi-solid alloy slurry, the molten metal is electromagnetically mixed by a moving magnetic field provided over the entire range of the solidification region in the container containing the molten metal. In this method, the magnetic field causes the dendrite structure formed in the solidified region to be sheared at a predetermined shear rate (see, for example, Patent Document 2).

【0008】さらに、半溶融成形材の製造方法として
は、合金中のあらゆる金属成分が液相に存在するように
合金を加熱した後、得られる液体金属を液相線と固相線
との間の温度に冷却する。この後、剪断力を加えて冷却
される溶融金属から形成される樹枝状結晶組織を破砕す
ることによって半溶融成形材を製造している(例えば、
特許文献3参照。)。
Further, as a method for producing a semi-molten molded material, after heating the alloy so that all the metal components in the alloy exist in the liquid phase, the resulting liquid metal is placed between the liquidus line and the solidus line. Cool to temperature. Thereafter, a semi-molten molded material is produced by crushing a dendrite structure formed from molten metal that is cooled by applying a shearing force (for example,
See Patent Document 3. ).

【0009】また、半凝固鋳造用金属スラリの製造方法
としては、液相線温度の付近または液相線より50℃ま
で高温で溶融金属を容器に注湯する。この後、溶融金属
が冷却される過程で溶融金属の少なくとも一部が液相線
温度以下になる時点、すなわち最初に液相線温度を通過
する時点で、例えば超音波振動により溶融金属に運動を
加える。さらに、この溶融金属に運動を加えた後、徐々
に冷却することによって粒相結晶形態の金属組織を有す
る半凝固鋳造用金属スラリを製造している(例えば、特
許文献4参照。)。
As a method for producing a metal slurry for semi-solid casting, molten metal is poured into a container at a temperature near the liquidus temperature or up to 50 ° C. higher than the liquidus temperature. After that, when at least a part of the molten metal falls below the liquidus temperature in the process of cooling the molten metal, that is, when the molten metal first passes the liquidus temperature, the molten metal is moved by, for example, ultrasonic vibration. Add. Further, after exercising the molten metal, it is gradually cooled to produce a metal slurry for semi-solid casting having a metal structure of a grain phase crystal form (see, for example, Patent Document 4).

【0010】すなわち、溶融金属に液相線の近くで適当
な運動を加えることによって最初に形成されたそれぞれ
の初期結晶核に形成されると思われる樹枝状結晶組織を
破砕し、粒子が各々初期結晶核間の相互作用なしに独立
的に存在する状態で徐々に冷却して粒相の結晶形態を得
る。この方法でも、超音波振動などの力が冷却初期に形
成される樹枝状結晶組織を破砕するために利用されてい
る。また、注湯温度を液相線温度より高い水準にすれ
ば、粒状の結晶形態を得難く、かつ溶湯を急に冷却し難
い。さらに、表面部と中心部の組織が不均一になる。
That is, by applying an appropriate motion to the molten metal in the vicinity of the liquidus line, the dendritic crystal structure which is thought to be formed in each initial crystal nucleus initially formed is crushed, and each particle is initially crushed. Gradient phase crystal morphology is obtained by gradually cooling in the state of independently existing without interaction between crystal nuclei. Also in this method, a force such as ultrasonic vibration is used to crush the dendrite structure formed in the initial stage of cooling. Further, if the pouring temperature is set to a level higher than the liquidus temperature, it is difficult to obtain a granular crystal form and it is difficult to rapidly cool the molten metal. Furthermore, the texture of the surface portion and the central portion becomes non-uniform.

【0011】さらに、半溶融金属の成形方法としては、
溶融金属を容器に注湯した後、振動バーを溶融金属中に
浸漬させて溶融金属と直接接触させた状態で振動させて
溶融金属に振動を与えている。具体的には、溶融金属を
先に容器に注湯した後、振動バーを溶融金属中に浸漬さ
せて振動力を溶融金属に伝達する。この結果、液相線温
度以上で結晶核を有する液体状態の合金または液相線以
下、成形温度以上の温度範囲で結晶核を有する固液共存
状態の合金を形成する。この後、所定の液相率を示す成
形温度まで溶融金属を容器内で冷却しながら30秒以上
60分以下の間維持することによって合金中に微細な結
晶核を成長させて半溶融金属を得る。ところが、この方
法で得られる結晶核の大きさは約100μmであり、工
程所要時間が相当長く、所定大きさ以上の容器に適用し
難い(例えば、特許文献5参照。)。
Further, as a method of forming the semi-molten metal,
After pouring the molten metal into the container, the vibration bar is immersed in the molten metal and vibrated in a state of being in direct contact with the molten metal to vibrate the molten metal. Specifically, after the molten metal is first poured into the container, the vibration bar is immersed in the molten metal to transmit the vibration force to the molten metal. As a result, a liquid-state alloy having crystal nuclei at a liquidus temperature or higher or a solid-liquid coexisting state having crystal nuclei at a temperature below the liquidus temperature and higher than the molding temperature is formed. After that, while maintaining the molten metal in the container for 30 seconds to 60 minutes while cooling the molten metal to a forming temperature showing a predetermined liquid phase ratio, fine crystal nuclei grow in the alloy to obtain a semi-molten metal. . However, the size of the crystal nuclei obtained by this method is about 100 μm, the process time is considerably long, and it is difficult to apply it to a container having a predetermined size or more (for example, refer to Patent Document 5).

【0012】また、半溶融金属スラリの製造方法として
は、冷却と攪拌とを同時に精密に制御することによって
半溶融金属スラリを製造している。具体的には、溶融金
属を混合容器に注湯した後、混合容器周囲に設置された
固定子アセンブリを作動させて容器内の溶融金属を急速
に攪拌するのに十分な磁気力を発生させる。さらに、混
合容器の周囲に設けられて容器および溶融金属の温度を
精密に調節する作用をするサーマルジャケットを利用し
て溶融金属の温度を急速に落とす。溶融金属の冷却時に
溶融金属は攪拌され続け、固相率が低い時には速い攪拌
を提供し、固相率が増加するにつれて増大した起電力を
提供する方式で調節される(例えば、特許文献6参
照。)。
As a method for producing the semi-molten metal slurry, the semi-molten metal slurry is produced by simultaneously precisely controlling cooling and stirring. Specifically, after pouring the molten metal into the mixing container, a stator assembly installed around the mixing container is operated to generate a magnetic force sufficient to rapidly agitate the molten metal in the container. Further, the temperature of the molten metal is rapidly lowered by utilizing a thermal jacket provided around the mixing vessel and serving to precisely control the temperature of the vessel and the molten metal. When the molten metal is cooled, the molten metal is continuously stirred, and when the solid fraction is low, the molten metal is rapidly stirred, and the electromotive force is increased as the solid fraction is increased (see, for example, Patent Document 6). .).

【0013】[0013]

【特許文献1】米国特許第3948650号明細書(第
3−8欄、図3)
[Patent Document 1] US Pat. No. 3,948,650 (Column 3-8, FIG. 3)

【0014】[0014]

【特許文献2】米国特許第4465118号明細書(第
4−12欄、図1、図2、図5および図6)
[Patent Document 2] US Pat. No. 4,465,118 (column 4-12, FIG. 1, FIG. 2, FIG. 5 and FIG. 6)

【0015】[0015]

【特許文献3】米国特許第4694881号明細書(第
2−6欄)
[Patent Document 3] US Pat. No. 4,694,881 (columns 2-6)

【0016】[0016]

【特許文献4】特開平11−33692号公報(第3−
5頁、図1)
[Patent Document 4] Japanese Patent Application Laid-Open No. 11-33692 (No. 3-
(Page 5, Figure 1)

【0017】[0017]

【特許文献5】特開平10−128516号公報(第4
−7頁、図3)
[Patent Document 5] Japanese Unexamined Patent Publication No. 10-128516 (4th
(P.7, Fig. 3)

【0018】[0018]

【特許文献6】米国特許第6432160号明細書(第
7−15欄、図1Aないし図2Bおよび図4)
[Patent Document 6] US Pat. No. 6,432,160 (col. 7-15, FIGS. 1A to 2B and FIG. 4)

【0019】[0019]

【発明が解決しようとする課題】上述したように、上記
従来の技術では、大部分剪断力を利用して冷却過程で既
に形成された樹枝状結晶形態を粉砕して粒相の金属組織
にする方法を利用している。したがって、溶融金属の少
なくとも一部が液相線以下に下がってこそ振動などの力
を加えるので初期凝固層の形成による潜熱の発生により
冷却速度の減少および製造時間の増加などの各種の問題
を避けにくい。また、溶融金属の容器への注湯温度を調
節しなければ、容器壁面部と中心部との温度差によって
壁面付近での初期凝固層の樹枝状結晶組織の形成を防止
し難いので、容器注湯温度および冷却過程を精密に調節
せねばならない。
As described above, in the above-mentioned conventional technique, the shearing force is mostly used to pulverize the dendrite morphology already formed during the cooling process into a metallic structure of a granular phase. Are using the method. Therefore, when at least a part of the molten metal falls below the liquidus line, a force such as vibration is applied, and various problems such as a decrease in cooling rate and an increase in manufacturing time due to the generation of latent heat due to the formation of the initial solidified layer are avoided. Hateful. If the temperature of the molten metal poured into the container is not adjusted, it is difficult to prevent the formation of the dendrite structure of the initial solidified layer near the wall surface due to the temperature difference between the wall surface of the container and the center. The hot water temperature and cooling process must be precisely controlled.

【0020】本発明は、このような点に鑑みなされたも
ので、より微細な球状化粒子を得ると同時にエネルギ効
率の改善、製造コストの節減、機械的性質の向上、鋳造
工程の簡便化および製造時間短縮の利点を実現できる固
液共存状態金属材料の製造方法を提供することを目的と
する。
The present invention has been made in view of the above points, and at the same time obtains finer spheroidized particles, improves energy efficiency, saves manufacturing cost, improves mechanical properties, simplifies the casting process, and and to provide a manufacturing method of the solid-liquid coexisting state metal materials that can realize the benefits of reduced manufacturing time.

【0021】[0021]

【課題を解決するための手段】本発明の固液共存状態金
属材料の製造方法によれば、容器に注湯された溶融金属
に初期凝固層を形成させない電磁気場を印加する印加工
程と、この印加工程にて前記容器に前記電磁気場が印加
されている状態で溶融金属を前記容器に注湯する注湯工
程と、前記溶融金属が注湯された前記容器に対する電磁
気場の印加を終了する終了工程と、電磁気場の印加が終
了された前記溶融金属を冷却して固液共存状態の金属材
料を形成する冷却工程とを具備したものである。
According to the method for producing a solid-liquid coexisting state metal material of the present invention, molten metal poured into a container is melted.
An applying step of applying an electromagnetic field that does not form an initial solidified layer in the, and a pouring step of pouring molten metal into the container in a state where the electromagnetic field is applied to the container in this applying step, and the melting And a cooling step of cooling the molten metal after the application of the electromagnetic field to form a metal material in a solid-liquid coexisting state. It was done.

【0022】そして、溶融金属が入っている容器の中心
部と壁面部との間および上部と下部との間のそれぞれに
温度差がほとんどないから、容器内の溶融金属の温度が
均一であり、ある特定領域での初期凝固による潜熱が発
生しないため、溶融金属が短時間に急速に冷却できる。
したがって、溶融金属の結晶核生成密度が顕著に増加す
ることにより球状粒子の微細化を実現できる。
Since there is almost no temperature difference between the center and the wall of the container containing the molten metal and between the upper part and the lower part, the temperature of the molten metal in the container is uniform, Since the latent heat due to the initial solidification in a specific region is not generated, the molten metal can be cooled rapidly in a short time.
Therefore, it is possible to reduce the size of the spherical particles by remarkably increasing the crystal nucleus generation density of the molten metal.

【0023】また、容器に注湯された溶融金属中に樹枝
状結晶を形成させない電磁気場を印加する印加工程と、
この印加工程にて前記容器に前記電磁気場が印加されて
いる状態で溶融金属を前記容器に注湯する注湯工程と、
前記溶融金属が注湯された前記容器に対する電磁気場の
印加を終了する終了工程と、電磁気場の印加が終了され
た前記溶融金属を冷却して固液共存状態の金属材料を形
成する冷却工程とを具備したものである。
[0023] Further , the tree branches in the molten metal poured into the container
A step of applying an electromagnetic field that does not form a crystal-like crystal,
In this applying step, the electromagnetic field is applied to the container
A pouring step of pouring molten metal into the container in a state where
Of the electromagnetic field to the container where the molten metal is poured
The end process of ending the application and the end of the application of the electromagnetic field
The molten metal is cooled to form a metal material in the solid-liquid coexisting state.
And a cooling step to be performed.

【0024】さらに、容器に電磁気場を印加する印加工
程と、この印加工程にて前記容器に前記電磁気場が印加
されている状態で溶融金属を前記容器に注湯する注湯工
程と、前記溶融金属の温度が液相線付近に至った時点
で、この溶融金属が注湯された前記容器に対する電磁気
場の印加を終了する終了工程と、電磁気場の印加が終了
された前記溶融金属を冷却して固液共存状態の金属材料
を形成する冷却工程とを具備したものである。
Further, marking for applying an electromagnetic field to the container
In the applying step, the electromagnetic field is applied to the container.
Pouring machine for pouring molten metal into the container while being heated
And when the temperature of the molten metal reaches near the liquidus
In the electromagnetic field for the container where the molten metal is poured,
End process to end the application of the field and end the application of the electromagnetic field
Material in a solid-liquid coexisting state by cooling the molten metal
And a cooling step for forming.

【0025】またさらに、容器に電磁気場を印加する印
加工程と、この印加工程にて前記容器に前記電磁気場が
印加されている状態で溶融金属を前記容器に注湯する注
湯工程と、前記溶融金属に結晶核が生成された時点で、
この溶融金属が注湯された前記容器に対する電磁気場の
印加を終了する終了工程と、電磁気場の印加が終了され
た前記溶融金属を冷却して固液共存状態の金属材料を形
成する冷却工程とを具備したものである。
Furthermore, a mark for applying an electromagnetic field to the container
In the applying step and the applying step, the electromagnetic field is applied to the container.
Pouring molten metal into the container while it is being applied
At the hot water process and at the time when crystal nuclei are generated in the molten metal,
Of the electromagnetic field to the container where the molten metal is poured
The end process of ending the application and the end of the application of the electromagnetic field
The molten metal is cooled to form a metal material in the solid-liquid coexisting state.
And a cooling step to be performed.

【0026】また、終了工程は、溶融金属の固相率が
0.001以上0.1以下となった時点で印加工程によ
る電磁気場の印加を終了することが望ましい。
In the ending step, it is desirable to end the application of the electromagnetic field in the applying step when the solid phase ratio of the molten metal becomes 0.001 or more and 0.1 or less.

【0027】さらに、金属材料は、金属スラリおよびビ
レット状のいずれかである。
Further, the metal material is either a metal slurry or a billet.

【0028】また、注湯工程は、溶融金属の注湯時の温
度が、この溶融金属の液相線温度よりは高く、液相線+
100℃より低いことが望ましい。
In the pouring process, the temperature of the molten metal during pouring is higher than the liquidus temperature of the molten metal, and the liquidus line +
It is desirable that the temperature is lower than 100 ° C.

【0029】さらに、固液共存状態の金属材料を2次成
形する2次成形工程を具備し、この2次成形工程は、ダ
イカスト、溶湯鍛造、鍛造およびプレス加工のいずれか
である。
Further, a secondary forming step of secondary forming a solid-liquid coexisting metal material is provided, and the secondary forming step is any one of die casting, molten metal forging, forging and pressing.

【0030】また、ビレット状の金属材料を2次成形の
ために固液共存状態に再加熱する再加熱工程を具備した
ものである。
Further, a reheating step of reheating the billet-shaped metal material to a solid-liquid coexisting state for secondary molding is provided.

【0031】さらに、冷却工程は、溶融金属の固相率が
0.1以上0.7以下となるまで冷却することが望まし
い。
Further, in the cooling step, it is desirable to cool until the solid phase ratio of the molten metal becomes 0.1 or more and 0.7 or less.

【0032】また、冷却工程は、溶融金属を0.2℃/
sec以上5℃/sec以下の速度で冷却することが望
ましい。
In the cooling step, the molten metal is heated to 0.2 ° C. /
It is desirable to cool at a rate of not less than sec and not more than 5 ° C./sec.

【0033】さらに、冷却工程は、溶融金属を0.2℃
/sec以上2℃/sec以下の速度で冷却することが
さらに望ましい。
Further, in the cooling step, the molten metal is heated to 0.2 ° C.
It is more desirable to cool at a rate of not less than / sec and not more than 2 ° C / sec.

【0034】また、溶融金属は、アルミニウム、アルミ
ニウム合金、マグネシウム、マグネシウム合金、亜鉛、
亜鉛合金、銅、銅合金、鉄および鉄合金のいずれかであ
The molten metal is aluminum, aluminum alloy, magnesium, magnesium alloy, zinc,
It is one of zinc alloy, copper, copper alloy, iron and iron alloy .

【0035】[0035]

【発明の実施の形態】以下、本発明の一実施の形態を図
面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings.

【0036】まず、容器に溶融金属を注湯する注湯工程
の前に容器に電磁気場を印加工程にて印加し、この状態
で容器に溶融金属を注湯する。電磁気場の代わりに超音
波などが利用されることもある。適用できる金属は、固
液共存状態成形用、いわゆる半凝固あるいは半溶融成形
用に利用できるものであればいずれも利用でき、その中
でもアルミニウム、マグネシウム、銅、亜鉛、鉄および
これらの合金よりなる群から選択されることが望まし
い。これら合金は最終成形品で要求される物性によって
色々な任意の金属を含むことができる。
First, before the pouring step of pouring the molten metal into the container, an electromagnetic field is applied to the container in the applying step, and the molten metal is poured into the container in this state. Ultrasonic waves may be used instead of the electromagnetic field. Any applicable metal can be used as long as it can be used for solid-liquid coexisting state molding, so-called semi-solidification or semi-melt molding, and among them, a group consisting of aluminum, magnesium, copper, zinc, iron and alloys thereof. It is desirable to be selected from These alloys may contain various optional metals depending on the physical properties required in the final molded product.

【0037】溶融金属を容器に注湯する時点で、溶融金
属の温度は液相線温度より高く、この溶融金属の液相線
+100℃より低い温度(溶湯過熱度=0℃以上100
℃以下)に維持されることが望ましい。すなわち、溶融
金属が入っている容器全体が均一に冷却されるので、容
器に溶融金属を注湯する前に液相線温度付近まで冷却す
る必要がなく、液相線温度より100℃程度の高温を維
持しても関係ない。
At the time of pouring the molten metal into the vessel, the temperature of the molten metal is higher than the liquidus temperature and lower than the liquidus line of this molten metal + 100 ° C (molten metal superheat degree = 0 ° C or higher and 100 ° C or higher).
It is desirable that the temperature be maintained below (° C). That is, since the entire container containing the molten metal is cooled uniformly, it is not necessary to cool the molten metal to near the liquidus temperature before pouring the molten metal into the container. It doesn't matter if you keep

【0038】一方、溶融金属を容器に注湯した後、溶融
金属の一部が液相線以下になる時点で容器に電磁気場を
印加する従来の方法では、容器の壁面に初期凝固層が形
成されながら凝固潜熱が発生するが、凝固潜熱は比熱の
約400倍であるために容器全体の溶融金属の温度が下
がるまでは長時間がかかる。したがって、このような従
来方法では液相線程度または液相線より約50℃高温ま
で溶融金属の温度を冷却した後、容器に注湯することが
一般的である。
On the other hand, in the conventional method of applying an electromagnetic field to the container when the molten metal is poured into the container and a part of the molten metal becomes below the liquidus line, an initial solidified layer is formed on the wall surface of the container. While the latent heat of solidification is generated while the latent heat of solidification is about 400 times the specific heat, it takes a long time for the temperature of the molten metal in the entire container to drop. Therefore, in such a conventional method, it is general that the temperature of the molten metal is cooled to about the liquidus or about 50 ° C. higher than the liquidus, and then the molten metal is poured into the container.

【0039】さらに、電磁気場が容器に印加された状態
で溶融金属を容器に注湯することによって、溶融金属が
注湯された容器の壁面部と中心部、上部と下部間に温度
差がほとんどない。したがって、従来の技術で発生する
容器壁面付近での初期凝固が起きず、容器内の溶融金属
全体が均一に液相線温度直下に急速に冷却されて多数の
結晶核を同時に発生させることができる。また、このよ
うに容器全体にわたって温度差が発生しない理由は、容
器に溶融金属を注湯する時点に既に容器に電磁気場が印
加されているために、活発な初期攪拌作用により内部の
溶融金属と表面の溶融金属とがよく攪拌されて溶融金属
内での熱伝逹が速く行われて容器内壁での初期凝固層の
形成が抑制されるからである。また、よく攪拌されてい
る溶融金属と低温の容器内壁との対流熱伝逹が増加して
溶融金属全体の温度を急速に冷却工程で冷却することが
できる。すなわち、容器に注湯された溶融金属は注湯と
同時に電磁気場の攪拌により分散粒子となり、この分散
粒子が結晶核として容器内に均一に分布され、これによ
り容器全体にわたって温度差が発生しなくなる。一方、
従来の技術によれば、注湯された溶融金属が低温の容器
内壁と接触して急速な対流熱伝逹により初期凝固層での
樹枝状結晶が成長する。
Further, by pouring the molten metal into the container in a state where an electromagnetic field is applied to the container, there is almost no temperature difference between the wall surface and the center of the container where the molten metal is poured, and between the upper part and the lower part. Absent. Therefore, the initial solidification in the vicinity of the wall surface of the container, which occurs in the conventional technique, does not occur, and the entire molten metal in the container can be uniformly and rapidly cooled immediately below the liquidus temperature to generate a large number of crystal nuclei at the same time. . In addition, the reason why the temperature difference does not occur over the entire container in this way is that the electromagnetic field is already applied to the container at the time of pouring the molten metal into the container, and therefore the internal molten metal is generated by the active initial stirring action. This is because the molten metal on the surface is well agitated, the heat transfer is rapidly performed in the molten metal, and the formation of the initial solidified layer on the inner wall of the container is suppressed. Further, the convective heat transfer between the well-stirred molten metal and the inner wall of the low temperature container is increased, so that the temperature of the entire molten metal can be rapidly cooled in the cooling step. That is, the molten metal poured into the container becomes dispersed particles by stirring the electromagnetic field at the same time as the molten metal is poured, and the dispersed particles are uniformly distributed in the container as crystal nuclei, so that no temperature difference occurs throughout the container. . on the other hand,
According to the prior art, the molten metal poured into contact with the inner wall of the low-temperature container, and rapid convective heat transfer causes the dendrites to grow in the initial solidified layer.

【0040】そして、原理は凝固潜熱と関連して説明で
きる。すなわち、容器の壁面での溶融金属の初期凝固が
発生せず凝固潜熱が発生しないために、溶融金属の冷却
は単に溶融金属の比熱(凝固潜熱の約1/400に過ぎ
ない)に該当する程度の熱量の放出だけで可能である。
したがって、従来の技術で容器の壁面部でしばしば発生
する初期凝固層である樹枝状結晶が形成されずに、容器
内の溶融金属が容器の壁面から中心部にわたって全体的
に均一でかつ急速に温度が下がる様子を示す。このとき
の温度を下げるのに必要な時間は溶融金属の注湯後約1
秒以上10秒以下の短い時間にすぎない。これにより、
多数の結晶核が容器内の溶融金属全体にわたって均一に
生成され、結晶核生成密度の増加により結晶核間の距離
は非常に短くなって樹枝状結晶が形成されずに独立的に
成長して球状粒子を形成する。
Then, the principle can be explained in relation to the latent heat of solidification. That is, since the initial solidification of the molten metal on the wall surface of the container does not occur and the latent heat of solidification does not occur, the cooling of the molten metal corresponds to the specific heat of the molten metal (only about 1/400 of the latent heat of solidification). It is possible only by releasing the heat of.
Therefore, the conventional technique does not form dendrites, which are the initial solidification layer that often occurs on the wall surface of the container, and the molten metal in the container is uniformly and rapidly heated from the wall surface to the center of the container. Shows a drop. The time required to lower the temperature at this time is about 1 after pouring the molten metal.
It's just a short time of more than 10 seconds and less than 10 seconds. This allows
A large number of crystal nuclei are uniformly generated throughout the molten metal in the container, and the distance between the crystal nuclei becomes very short due to the increase in the crystal nucleation density, so that dendrites do not form and grow independently and become spherical. Form particles.

【0041】印加工程による電磁気場の印加は、容器内
の溶融金属の温度が液相線付近に至った時に終了工程に
て終了する。電磁気場印加の終了時、容器内の溶融金属
の固相率は0.001以上0.1以下であることが望ま
しい。さらに、固相率が所定レベル、すなわち約0.1
になれば結晶核生成が終了する。この時点で容器に対す
る電磁気場の印加を終了する。固相率が0.1以上にな
った状態でも電磁気場を印加し続けるのはエネルギ効率
面で望ましくなく、凝固組織が粗大化され、かつ工程時
間が延びるために望ましくない。
The application of the electromagnetic field in the applying step ends in the ending step when the temperature of the molten metal in the container reaches the vicinity of the liquidus line. At the end of application of the electromagnetic field, the solid phase ratio of the molten metal in the container is preferably 0.001 or more and 0.1 or less. Furthermore, the solid fraction is at a predetermined level, that is, about 0.1.
When, the crystal nucleation is completed. At this point, the application of electromagnetic field to the container is terminated. It is not desirable in terms of energy efficiency to continue applying the electromagnetic field even in the state where the solid phase ratio is 0.1 or more, and it is not desirable because the solidified structure is coarsened and the process time is extended.

【0042】容器に対する電磁気場の印加を終了した
後、所定固相率、望ましくは0.1以上0.7以下の固
相率に至るまで溶融金属を冷却工程にて冷却する。
After the application of the electromagnetic field to the container is finished, the molten metal is cooled in the cooling step until the solid phase ratio reaches a predetermined solid phase ratio, preferably 0.1 to 0.7.

【0043】この冷却工程での溶融金属の冷却速度は
0.2℃/sec以上5.0℃/sec以下であること
が望ましく、結晶核の分布度および粒子の微細度面で冷
却速度は0.2℃/sec以上2.0℃/sec以下で
あることがさらに望ましい。
The cooling rate of the molten metal in this cooling step is preferably 0.2 ° C./sec or more and 5.0 ° C./sec or less, and the cooling rate is 0 in terms of the distribution of crystal nuclei and the fineness of particles. More preferably, it is not less than 0.2 ° C./sec and not more than 2.0 ° C./sec.

【0044】上記一実施の形態によれば、溶融金属の容
器への注湯時点から固相率0.1以上0.7以下の金属
スラリ形態の金属材料に形成される時点までの所要時間
が30秒以上60秒以下にすぎない。金属スラリは急冷
を経てビレットとして製造できる。
According to the above-mentioned one embodiment, the time required from the time of pouring the molten metal into the container to the time of forming the metal material in the form of a metal slurry having a solid fraction of 0.1 or more and 0.7 or less. It is no less than 30 seconds and no more than 60 seconds. The metal slurry can be manufactured as a billet through rapid cooling.

【0045】また、金属スラリまたはビレット状の金属
材料は、再びダイカスト、溶湯鍛造、鍛造、プレス加工
などの2次成形段階を2次成形工程で経ることができ
る。ビレット状に製造された金属材料は適当な長さに切
断されてスラグにすることができ、2次成形のためにス
ラグは、再加熱工程による再加熱を通じて半溶融状態に
回復される。
Further, the metal slurry or billet-shaped metal material can be subjected to a secondary molding step such as die casting, molten metal forging, forging, and pressing in the secondary molding step. The billet-shaped metallic material can be cut into an appropriate length to form a slag, and the slag is restored to a semi-molten state through reheating by a reheating process for secondary molding.

【0046】さらに、製造された半凝固あるいは半溶融
成形用金属材料に含まれていた金属粒子は、平均粒径が
10μm以上60μm以下の微細な球状であり、粒径分
布も均一である。
Further, the metal particles contained in the manufactured metal material for semi-solidification or semi-melt molding are fine spherical particles having an average particle size of 10 μm or more and 60 μm or less, and the particle size distribution is uniform.

【0047】[0047]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0048】<実施例1> まず、この実施例1では溶融金属の合金素材としてアル
ミニウム合金であるA356合金を使用した。500g
のA356合金を電気炉(10kW)で黒鉛るつぼを利用
して約750℃で1時間加熱して溶融した後、この溶融
された溶融金属をデジタル温度測定器に付着されたシー
ルド型熱電対(K−type)で温度を測定して溶融金属
の温度が溶融金属の液相線温度(A356合金の場合に
約615℃)より約100℃高温以下になるように維持
した。
Example 1 First, in Example 1, an aluminum alloy A356 alloy was used as an alloy material for the molten metal. 500g
The A356 alloy is heated in an electric furnace (10 kW) in a graphite crucible at about 750 ° C. for 1 hour to be melted, and the molten metal is shielded by a shield type thermocouple (K The temperature of the molten metal was maintained at about 100 ° C. or lower than the liquidus temperature of the molten metal (about 615 ° C. in the case of A356 alloy) by measuring the temperature.

【0049】この実施例1による作業工程図を図1に示
す。
FIG. 1 shows a work process diagram according to the first embodiment.

【0050】容器に電磁気場を印加するにおいて、電磁
気場攪拌装置(EMS:自体製作した装置)の電圧、周波
数および強度を各々250V、60Hz、500ガウス
に固定させた。溶融金属を容器に注湯する前にEMSに
電源を供給してEMSを作動させた状態で、溶融金属の
温度が650℃(図1でTp:pouring temperature)に
至った時に溶融金属を容器に注湯した。
In applying an electromagnetic field to the container, the voltage, frequency and intensity of the electromagnetic field stirring device (EMS: device itself manufactured) were fixed at 250 V, 60 Hz and 500 gauss, respectively. Before the molten metal is poured into the container, the molten metal is supplied to the container when the temperature of the molten metal reaches 650 ° C (Tp: pouring temperature in Fig. 1) while the power is supplied to the EMS and the EMS is operated. I poured water.

【0051】この容器にあらかじめ電磁気場攪拌運動を
加えた状態で溶融金属を容器に注湯した後、この溶融金
属の温度が液相線付近に至った時(図1中のa点)に、E
MSの作動を中止させた。すなわち、図1中の区間pで
のみEMSを作動させた。EMSの作動を止めた後、固
相率が0.6になる温度(図1中のb点、この時の温度
は約586℃)まで1℃/secの冷却速度で溶融金属
を冷却して金属スラリを得た。溶融金属を容器に注湯し
た時点から0.6の固相率に至るまで約40秒の時間が
かかった。
After the molten metal was poured into the container in a state where the electromagnetic field stirring motion was previously applied to the container, when the temperature of the molten metal reached near the liquidus line (point a in FIG. 1), E
The MS was turned off. That is, the EMS was operated only in the section p in FIG. After stopping the operation of the EMS, the molten metal is cooled at a cooling rate of 1 ° C./sec until the solid phase ratio reaches 0.6 (point b in FIG. 1, the temperature at this time is about 586 ° C.). A metal slurry was obtained. It took about 40 seconds from the time when the molten metal was poured into the container to the solid phase ratio of 0.6.

【0052】以後、2次成形過程を経るが、すなわち図
1中のb点以後、ダイカスト、溶湯鍛造、鍛造あるいは
プレス加工などの2次成形段階を経る。
Thereafter, a secondary forming process is performed, that is, after the point b in FIG. 1, a secondary forming step such as die casting, molten metal forging, forging or pressing is performed.

【0053】実施例1の方法によって製造された金属材
料の金属組織を観察するために次のような方法で試片を
得た。まず、金属スラリを急冷してビレットを製造し
た。帯のこ(bandsaw)を利用してビレットを切断して切
断片を得た後、ポリシングしてケラー(Keller)溶液(2
0mlのHO+20mlのHCl+20mlのHNO
+5mlのHF)を利用してエッチングした後、イメ
ージ分析用試片として使用し、イメージ分析器(Image A
nalyzer:LEIC ADMR)を利用して金属組織を観
察した。この結果を図2に示す。この図2に示すよう
に、この実施例1によれば、表面部と中心部とにわたっ
て均一でかつ微細な球状の粒子組織を有する金属材料を
得ることができる。
Specimens were obtained by the following method in order to observe the metal structure of the metal material manufactured by the method of Example 1. First, a billet was manufactured by rapidly cooling a metal slurry. The billet is cut using a band saw to obtain a cut piece, which is then polished to obtain a Keller solution (2
0 ml H 2 O + 20 ml HCl + 20 ml HNO
After etching using 3 + 5 ml of HF), it was used as a test piece for image analysis, and
The metallographic structure was observed using a nalyzer: LEIC ADMR). The result is shown in FIG. As shown in FIG. 2, according to Example 1, it is possible to obtain a metal material having a uniform and fine spherical particle structure over the surface portion and the central portion.

【0054】<実施例2−5> 実施例1と同じ方法で実施するが、容器に注湯する際の
溶液金属の温度をそれぞれ720℃(実施例2)、700
℃(実施例3)、650℃(実施例4)および620℃(実
施例5)とし、溶融金属の固相率が0.05(液相線温度
直上)に至った時にEMSの作動を止めて固相率0.6
まで冷却した後、急冷してビレットを製造した。工程が
終了するまでかかる時間は総1分以内であった。このよ
うにして得たビレットに対して実施例1と同じ方法で試
片を製造した後、金属組織を観察した。実施例2ないし
5のそれぞれで得た試片に対するイメージ分析写真を図
3ないし図6に示す。
<Example 2-5> The same method as in Example 1 was carried out, but the temperature of the solution metal when pouring the molten metal into the container was 720 ° C (Example 2) and 700, respectively.
C. (Example 3), 650.degree. C. (Example 4) and 620.degree. C. (Example 5), and when the solid fraction of the molten metal reaches 0.05 (immediately above the liquidus temperature), the operation of the EMS is stopped. Solid phase ratio 0.6
Then, it was rapidly cooled to produce a billet. It took less than 1 minute to complete the process. After producing a sample for the billet thus obtained in the same manner as in Example 1, the metal structure was observed. Image analysis photographs of the specimens obtained in Examples 2 to 5 are shown in FIGS. 3 to 6.

【0055】これら図3ないし図6に示すように、72
0℃以下620℃以上の温度範囲内で溶融金属の容器注
湯温度を変化させた場合にも微細でかつ均一な合金(球
状粒子の平均粒径は30μm以上60μm以下)が製造
された。したがって、これら実施例2ないし5によれ
ば、1分未満の短い時間でも球状化組織を得ることがで
きる。これは、核生成密度の顕著な増加により初期結晶
間の間隔が顕著に縮まって従来の方法より速い冷却でも
組織の形状を一定に維持できるからである。
As shown in FIGS. 3 to 6, 72
Even when the molten metal pouring temperature was changed within the temperature range of 0 ° C. or higher and 620 ° C. or higher, a fine and uniform alloy (spherical particles having an average particle size of 30 μm or more and 60 μm or less) was produced. Therefore, according to these Examples 2 to 5, the spheroidized structure can be obtained even in a short time of less than 1 minute. This is because the spacing between the initial crystals is significantly shortened due to the significant increase in the nucleation density, and the shape of the structure can be maintained constant even with faster cooling than the conventional method.

【0056】<実施例6−9> 実施例1と同じ方法で実施するが、電磁気場の印加を終
了した後に溶融金属を冷却する際の冷却速度をそれぞれ
0.2℃/sec(実施例6)、0.4℃/sec(実施
例7)、0.6℃/sec(実施例8)および2.0℃/
sec(実施例9)として金属スラリを得た後、急冷して
ビレットを製造した。これらビレットに対して実施例1
と同じ方法で試片を製造した後で金属組織を観察した。
この結果を図7ないし図10に示す。
Example 6-9 The same method as in Example 1 was carried out, but the cooling rate at the time of cooling the molten metal after the application of the electromagnetic field was completed was 0.2 ° C./sec (Example 6). ), 0.4 ° C./sec (Example 7), 0.6 ° C./sec (Example 8) and 2.0 ° C. /
After obtaining a metal slurry as sec (Example 9), it was rapidly cooled to produce a billet. Example 1 for these billets
The metallographic structure was observed after the specimen was manufactured by the same method.
The results are shown in FIGS. 7 to 10.

【0057】これら図7ないし図10に示すように、溶
融金属の冷却過程でその冷却速度を多様に変化させても
得られる金属組織は球状を示す。また、金属組織の粒子
が平均粒径10ないし60μmで微細でかつ球状粒子の
分布も均一である。
As shown in FIGS. 7 to 10, the metal structure obtained by varying the cooling rate in the cooling process of the molten metal is spherical. Further, the particles of the metal structure are fine with an average particle size of 10 to 60 μm, and the distribution of spherical particles is uniform.

【0058】<実施例10−13> 実施例1と同じ方法で実施するが、電磁気場の印加を終
了した後で溶融金属を冷却するに当って、冷却終了時点
の温度を変化させた。この冷却終了時の溶融金属の温度
をそれぞれ610℃(実施例10:固相率が約0.2)、
600℃(実施例11)、590℃(実施例12)、586
℃(実施例13:固相率が約0.6)になる時点とした。
実施例1と同じ方法で試片を製造して試片に対する金属
組織を観察した。この結果を図11ないし図14に示
す。
<Examples 10 to 13> The same method as in Example 1 was carried out, but the temperature at the end of cooling was changed in cooling the molten metal after the application of the electromagnetic field was completed. The temperature of the molten metal at the end of this cooling was 610 ° C. (Example 10: solid fraction is about 0.2),
600 ° C (Example 11), 590 ° C (Example 12), 586
This was the time when the temperature reached ℃ (Example 13: the solid fraction was about 0.6).
A test piece was manufactured by the same method as in Example 1, and the metal structure of the test piece was observed. The results are shown in FIGS. 11 to 14.

【0059】これら図11ないし図14にて示す金属組
織の写真から分かるように、電磁気場攪拌を終了した
後、溶融金属の冷却段階で冷却終了時点を多様に変化さ
せても得られる合金の金属組織は微細でかつ球状粒子の
分布が均一である。すなわち、これら実施例10ないし
実施例13によって、容器にあらかじめ電磁気場攪拌を
加えた状態で溶融金属を容器に注湯して液相線付近で電
磁気場攪拌を終了した場合に、冷却終了時点を変化させ
ても得られる合金の金属組織には差がほとんどない。
As can be seen from the photographs of the metal structures shown in FIGS. 11 to 14, the metal of the alloy obtained by variously changing the cooling end time in the cooling step of the molten metal after the electromagnetic field stirring is completed. The structure is fine and the distribution of spherical particles is uniform. That is, according to these tenth to thirteenth examples, when the molten metal was poured into the container in a state where the electromagnetic field stirring was added to the container in advance and the electromagnetic field stirring was completed near the liquidus, Even if changed, there is almost no difference in the metallographic structure of the obtained alloy.

【0060】<実施例14> 実施例1と同じ方法で実施するが、注湯温度を650℃
として電磁気場の印加を終了した後、固相率0.6に至
るまで1.5℃/secの冷却速度で溶融金属を冷却し
た。溶融金属の注湯後に固相率0.6に至るまでかかる
時間は35秒であった。実施例1と同じ方法で試片を製
造して試片の表面部および中心部に対する金属組織を観
察した。この結果を図15および図16に示す。
Example 14 The same method as in Example 1 is carried out, but the pouring temperature is 650 ° C.
After the application of the electromagnetic field was completed, the molten metal was cooled at a cooling rate of 1.5 ° C./sec until the solid fraction reached 0.6. The time required to reach the solid phase ratio of 0.6 after pouring the molten metal was 35 seconds. A test piece was manufactured by the same method as in Example 1, and the metallographic structures on the surface portion and the central portion of the test piece were observed. The results are shown in FIGS. 15 and 16.

【0061】<実施例15> 実施例1と同じ方法で実施するが、溶融金属の容器への
注湯温度を700℃として電磁気場の印加を終了した
後、固相率0.6に至るまで1.5℃/secの冷却速
度で溶融金属を冷却した。溶融金属の注湯後に固相率
0.6に至るまでかかる時間は40秒であった。実施例
1に記載された方法と同じ方法で試片を製造して試片の
表面部および中心部に対する金属組織を観察した。この
結果を図17および図18に示す。
Example 15 The same method as in Example 1 was carried out, but after the molten metal was poured into the container at a temperature of 700 ° C. and the application of the electromagnetic field was completed, the solid phase ratio reached 0.6. The molten metal was cooled at a cooling rate of 1.5 ° C / sec. The time required to reach the solid phase ratio of 0.6 after pouring the molten metal was 40 seconds. A sample was manufactured by the same method as that described in Example 1, and the metallographic structures of the surface and the center of the sample were observed. The results are shown in FIGS. 17 and 18.

【0062】<比較例1> 比較のために、実施例14と同じ方法で実施するが、溶
融金属を容器に注湯した後、液相線温度直下でEMSを
約10秒作動させ、0.8℃/secの速度で溶融金属
の固相率が約0.6に至るまで冷却した。溶融金属の注
湯後に固相率0.6に至るまでかかる時間は75秒であ
った。実施例1と同じ方法によって試片を製造して金属
組織を観察し、この結果を図19および図20に示す。
Comparative Example 1 For comparison, the same method as in Example 14 was carried out, but after pouring the molten metal into the container, the EMS was operated immediately below the liquidus temperature for about 10 seconds, It was cooled at a rate of 8 ° C./sec until the solid phase ratio of the molten metal reached about 0.6. The time required to reach a solid fraction of 0.6 after pouring the molten metal was 75 seconds. A test piece was manufactured by the same method as in Example 1 and the metallographic structure was observed. The results are shown in FIGS. 19 and 20.

【0063】<比較例2> 比較のために、実施例15と同じ方法で実施するが、溶
融金属を容器に注湯した後、液相線温度直下でEMSを
約10秒作動させ、1.0℃/secの速度で溶融金属
の固相率が約0.6に至るまで冷却した。溶融金属の注
湯後に固相率0.6に至るまでかかる時間は85秒であ
った。実施例1と同じ方法によって試片を製造して金属
組織を観察し、この結果を図21および図22に示す。
Comparative Example 2 For comparison, the same method as in Example 15 was carried out, but after pouring the molten metal into the container, the EMS was operated immediately below the liquidus temperature for about 10 seconds to: 1. It was cooled at a rate of 0 ° C./sec until the solid phase ratio of the molten metal reached about 0.6. The time required to reach a solid fraction of 0.6 after pouring the molten metal was 85 seconds. A sample was manufactured by the same method as in Example 1 and the metallographic structure was observed. The results are shown in FIGS. 21 and 22.

【0064】実施例14および15の結果と比較例1お
よび2の結果とを比較すれば、これら実施例14および
15で得た金属材料は、表面部および中心部の金属粒子
組織が均一に球状を示し、金属粒子の平均粒径も表面部
および中心部にわたって均一でかつ微細な一方、比較例
1および2で従来の方法によって溶融金属を容器に注湯
した後、その温度が液相線以下になった時、電磁気場攪
拌力を印加した場合には中心部は球状粒子組織を示し、
表面部は樹枝状構造を示すことによって金属材料の表面
部と中心部間の金属組織が均一でない。さらに、半凝固
あるいは半溶融成形用金属材料の製造時間が大きく短縮
した。これは、容器内の溶融金属の初期結晶核生成密度
の増加によって短時間の結晶核成長でも所定の固相率に
到達できるからである。
Comparing the results of Examples 14 and 15 with the results of Comparative Examples 1 and 2, the metal materials obtained in these Examples 14 and 15 show that the metal particle structures of the surface portion and the central portion are uniformly spherical. The average particle size of the metal particles is uniform and fine over the surface portion and the central portion, while the molten metal was poured into the container by the conventional method in Comparative Examples 1 and 2, and the temperature was below the liquidus line. When the magnetic field stirring force is applied, the central part shows a spherical grain structure,
Since the surface portion exhibits a dendritic structure, the metal structure between the surface portion and the central portion of the metal material is not uniform. Furthermore, the manufacturing time of the metal material for semi-solidification or semi-melting molding was greatly shortened. This is because an increase in the initial crystal nucleus generation density of the molten metal in the container can reach a predetermined solid phase ratio even in a short period of crystal nucleus growth.

【0065】上述した実施例および比較例で分かるよう
に、溶融金属の容器注湯温度を液相線より約100℃の
高温まで高めることができ、短時間の電磁気場攪拌を通
じて微細合金を製造でき、金属スラリまたはビレット状
の半凝固あるいは半溶融成形用の金属材料の製造にかか
る時間を大幅に短縮でき、得られる合金の金属組織は微
細化した球状粒子の形態を示す。
As can be seen from the above-mentioned Examples and Comparative Examples, the molten metal container pouring temperature can be raised up to a temperature as high as about 100 ° C. above the liquidus line, and a fine alloy can be produced by a short electromagnetic field stirring. In addition, the time required for producing a metal material for semi-solidifying or semi-melt forming in the form of metal slurry or billet can be significantly shortened, and the metallurgical structure of the obtained alloy shows the morphology of fine spherical particles.

【0066】上記各実施例では商用のA356合金を半
凝固あるいは半溶融成形用の金属材料に製造する場合に
ついて説明したが、上記A356合金の製造に限定され
るものではなく、その他の多様な金属あるいは合金、例
えば、アルミニウムまたはその合金、マグネシウムまた
はその合金、亜鉛またはその合金、銅またはその合金、
または鉄またはその合金などの製造にも汎用的に適用で
きる。
In each of the above-mentioned embodiments, the case where the commercial A356 alloy is manufactured into the metal material for semi-solidifying or semi-melt forming is described, but the present invention is not limited to the above-mentioned manufacturing of the A356 alloy, and various other metals. Or alloys such as aluminum or its alloys, magnesium or its alloys, zinc or its alloys, copper or its alloys,
Alternatively, it can be generally applied to the production of iron or its alloys.

【0067】[0067]

【発明の効果】本発明の固液共存状態金属材料の製造方
法によれば、初期凝固層の形成による凝固潜熱の発生な
しに容器内の溶融金属の周辺部と中心部、上部と下部と
にわたる全領域を液相線温度付近に冷却することによっ
て核生成密度を顕著に増加させて粒子の球状化を実現で
き、全体的に均一でかつ微細な球状粒子の分布を実現で
きて合金の機械的性質の向上を具現できる。
EFFECTS OF THE INVENTION According to the method for producing a solid-liquid coexisting state metal material of the present invention, the peripheral portion and the central portion, and the upper and lower portions of the molten metal in the container are spread without the generation of latent heat of solidification due to the formation of the initial solidification layer. By cooling the entire region to near the liquidus temperature, the nucleation density can be markedly increased and spheroidizing of the particles can be realized, and a uniform and fine spherical particle distribution can be realized and the mechanical properties of the alloy can be improved. It is possible to realize the improvement of properties.

【0068】また、製造工程が単純で工程の制御が容易
であり、かつ電磁気場の攪拌時間を大幅に短縮できるの
で攪拌に必要なエネルギの消耗が少なく、製品の成形時
間も短縮して経済的にも相当な利点がある。
Further, since the manufacturing process is simple and the control of the process is easy, and the stirring time of the electromagnetic field can be greatly shortened, the energy required for stirring is less consumed and the molding time of the product is shortened, which is economical. There are also considerable advantages.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による固液共存状態金属材料
の製造方法を示す工程図である。
FIG. 1 is a process drawing showing a method for producing a solid-liquid coexisting state metal material according to an embodiment of the present invention.

【図2】同上固液共存状態金属材料の製造方法によって
製造された金属材料の組織を示す写真である。
FIG. 2 is a photograph showing the structure of a metal material produced by the method for producing a solid-liquid coexisting state metal material according to the above.

【図3】同上固液共存状態金属材料の製造方法で溶融金
属の容器注湯温度を変化させて製造された金属材料の組
織を示す写真である。
FIG. 3 is a photograph showing the structure of a metal material produced by changing the molten metal container pouring temperature in the method for producing a solid-liquid coexisting state metal material.

【図4】同上固液共存状態金属材料の製造方法で溶融金
属の容器注湯温度を変化させて製造された金属材料の組
織を示す写真である。
FIG. 4 is a photograph showing the structure of a metal material produced by changing the molten metal container pouring temperature in the method for producing a solid-liquid coexisting state metal material.

【図5】同上固液共存状態金属材料の製造方法で溶融金
属の容器注湯温度を変化させて製造された金属材料の組
織を示す写真である。
FIG. 5 is a photograph showing the structure of a metal material produced by changing the molten metal container pouring temperature in the method for producing a solid-liquid coexisting state metal material.

【図6】同上固液共存状態金属材料の製造方法で溶融金
属の容器注湯温度を変化させて製造された金属材料の組
織を示す写真である。
FIG. 6 is a photograph showing the structure of a metal material produced by changing the temperature of molten metal poured in a container by the method for producing a solid-liquid coexisting state metal material.

【図7】同上固液共存状態金属材料の製造方法で溶融金
属の冷却速度を変化させて製造された金属材料の組織を
示す写真である。
FIG. 7 is a photograph showing the structure of a metal material produced by changing the cooling rate of the molten metal in the same method for producing a solid-liquid coexisting state metal material.

【図8】同上固液共存状態金属材料の製造方法で溶融金
属の冷却速度を変化させて製造された金属材料の組織を
示す写真である。
FIG. 8 is a photograph showing the structure of a metal material produced by changing the cooling rate of molten metal in the method for producing a solid-liquid coexisting state metal material.

【図9】同上固液共存状態金属材料の製造方法で溶融金
属の冷却速度を変化させて製造された金属材料の組織を
示す写真である。
FIG. 9 is a photograph showing the structure of a metal material produced by changing the cooling rate of molten metal in the same method for producing a solid-liquid coexisting state metal material.

【図10】同上固液共存状態金属材料の製造方法で溶融
金属の冷却速度を変化させて製造された金属材料の組織
を示す写真である。
FIG. 10 is a photograph showing the structure of a metal material produced by changing the cooling rate of the molten metal in the same method for producing a solid-liquid coexisting state metal material.

【図11】同上固液共存状態金属材料の製造方法で溶融
金属の冷却終了時点を変化させて製造された金属材料の
組織を示す写真である。
FIG. 11 is a photograph showing the structure of a metal material produced by changing the completion time of cooling of molten metal in the same method for producing a solid-liquid coexisting state metal material.

【図12】同上固液共存状態金属材料の製造方法で溶融
金属の冷却終了時点を変化させて製造された金属材料の
組織を示す写真である。
FIG. 12 is a photograph showing the structure of a metal material produced by changing the completion time of cooling of molten metal in the same method for producing a solid-liquid coexisting state metal material.

【図13】同上固液共存状態金属材料の製造方法で溶融
金属の冷却終了時点を変化させて製造された金属材料の
組織を示す写真である。
FIG. 13 is a photograph showing the structure of a metal material produced by changing the cooling completion time of the molten metal in the same method for producing a solid-liquid coexisting state metal material.

【図14】同上固液共存状態金属材料の製造方法で溶融
金属の冷却終了時点を変化させて製造された金属材料の
組織を示す写真である。
FIG. 14 is a photograph showing a structure of a metal material produced by changing the time when the cooling of the molten metal is completed in the same method for producing a solid-liquid coexisting state metal material.

【図15】本発明の他の一実施例によって製造された金
属材料の表面部の組織を示す写真である。
FIG. 15 is a photograph showing a texture of a surface portion of a metal material manufactured according to another embodiment of the present invention.

【図16】同上金属材料の中心部の組織を示す写真であ
る。
FIG. 16 is a photograph showing the structure of the central part of the above metal material.

【図17】本発明のまた他の一実施例によって製造され
た金属材料の表面部の組織を示す写真である。
FIG. 17 is a photograph showing a texture of a surface portion of a metal material manufactured according to another embodiment of the present invention.

【図18】同上金属材料の中心部の組織を示す写真であ
る。
FIG. 18 is a photograph showing the structure of the central part of the same metal material.

【図19】従来の半凝固成形法によって製造された金属
材料の表面部の組織を示す写真である。
FIG. 19 is a photograph showing a structure of a surface portion of a metal material manufactured by a conventional semi-solidification molding method.

【図20】同上金属材料の中心部の組織を示す写真であ
る。
FIG. 20 is a photograph showing the structure of the central part of the above metal material.

【図21】従来の他の半凝固成形法によって製造された
金属材料の表面部の組織を示す写真である。
FIG. 21 is a photograph showing a structure of a surface portion of a metal material manufactured by another conventional semi-solidification molding method.

【図22】同上金属材料の中心部の組織を示す写真であ
る。
FIG. 22 is a photograph showing the structure of the central part of the above metal material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 板村 正行 山口県宇部市大字西岐波316−78番地 (56)参考文献 特開 平5−237611(JP,A) 特開 平4−279250(JP,A) 特開 平8−187547(JP,A) 特表2000−514717(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 27/02 B22D 1/00 B22D 11/00 B22D 27/04 B22D 27/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayuki Itamura 316-78 Nishikinami, Ube City, Yamaguchi Prefecture (56) Reference JP-A-5-237611 (JP, A) JP-A-4-279250 (JP , A) JP-A-8-187547 (JP, A) JP 2000-514717 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 27/02 B22D 1/00 B22D 11 / 00 B22D 27/04 B22D 27/20

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容器に注湯された溶融金属に初期凝固層
を形成させない電磁気場を印加する印加工程と、 この印加工程にて前記容器に前記電磁気場が印加されて
いる状態で溶融金属を前記容器に注湯する注湯工程と、 前記溶融金属が注湯された前記容器に対する電磁気場の
印加を終了する終了工程と、 電磁気場の印加が終了された前記溶融金属を冷却して固
液共存状態の金属材料を形成する冷却工程とを具備した
ことを特徴とした固液共存状態金属材料の製造方法。
1. An initial solidification layer is formed on a molten metal poured into a container.
And applying step of applying an electromagnetic field which does not form a pouring step of pouring the molten metal in a state in which the electromagnetic field in the vessel at the application step is applied to the container, the molten metal pouring And a cooling step of cooling the molten metal after the application of the electromagnetic field to form a metal material in a solid-liquid coexisting state. And a method for producing a solid-liquid coexisting state metal material.
【請求項2】 容器に注湯された溶融金属中に樹枝状結
晶を形成させない電磁気場を印加する印加工程と、 この印加工程にて前記容器に前記電磁気場が印加されて
いる状態で溶融金属を前記容器に注湯する注湯工程と、 前記溶融金属が注湯された前記容器に対する電磁気場の
印加を終了する終了工程と、 電磁気場の印加が終了された前記溶融金属を冷却して固
液共存状態の金属材料を形成する冷却工程とを具備した
ことを特徴とした固液共存状態金属材料の製造方法。
2. Dendritic formation in the molten metal poured into a container
An applying step of applying an electromagnetic field that does not form crystals , a pouring step of pouring molten metal into the container while the electromagnetic field is being applied to the container in this applying step, and the molten metal pouring And a cooling step of cooling the molten metal after the application of the electromagnetic field to form a metal material in a solid-liquid coexisting state. A method for producing a characteristic solid-liquid coexisting metal material.
【請求項3】 容器に電磁気場を印加する印加工程と、 この印加工程にて前記容器に前記電磁気場が印加されて
いる状態で溶融金属を前記容器に注湯する注湯工程と、 前記溶融金属の温度が液相線付近に至った時点で、この
溶融金属が注湯された前記容器に対する電磁気場の印加
を終了する終了工程と、 電磁気場の印加が終了された前記溶融金属を冷却して固
液共存状態の金属材料を形成する冷却工程とを具備した
ことを特徴とした固液共存状態金属材料の製造方法。
3. An applying step of applying an electromagnetic field to the container, a pouring step of pouring molten metal into the container while the electromagnetic field is being applied to the container in the applying step, and the melting step. When the temperature of the metal reaches the vicinity of the liquidus line, the ending step of ending the application of the electromagnetic field to the container in which the molten metal is poured, and the melting step after the application of the electromagnetic field is completed. A method for producing a solid-liquid coexisting state metal material, comprising a cooling step of cooling a metal to form a solid-liquid coexisting state metal material.
【請求項4】 容器に電磁気場を印加する印加工程と、 この印加工程にて前記容器に前記電磁気場が印加されて
いる状態で溶融金属を前記容器に注湯する注湯工程と、 前記溶融金属に結晶核が生成された時点で、この溶融金
属が注湯された前記容器に対する電磁気場の印加を終了
する終了工程と、 電磁気場の印加が終了された前記溶融金属を冷却して固
液共存状態の金属材料を形成する冷却工程とを具備した
ことを特徴とした固液共存状態金属材料の製造方法。
4. An applying step of applying an electromagnetic field to the container, a pouring step of pouring molten metal into the container in a state where the electromagnetic field is applied to the container in the applying step, and the melting step. When crystal nuclei are generated in the metal, an end step of ending the application of the electromagnetic field to the container in which the molten metal is poured, and a step of cooling the molten metal after the application of the electromagnetic field to solid-liquid A method for producing a solid-liquid coexisting state metal material, comprising a cooling step of forming a coexisting state metal material.
【請求項5】 終了工程は、溶融金属の固相率が0.0
01以上0.1以下となった時点で印加工程による電磁
気場の印加を終了することを特徴とした請求項1ないし
4いずれか記載の固液共存状態金属材料の製造方法。
5. The solid phase ratio of the molten metal is 0.0 in the finishing step.
01 0.1 claims 1 to, characterized in that to terminate the application of the electromagnetic field by applying step when it becomes less
4. The method for producing a solid-liquid coexisting state metal material as described in 4 above.
【請求項6】 金属材料は、金属スラリおよびビレット
状のいずれかであることを特徴とした請求項1ないし5
いずれか記載の固液共存状態金属材料の製造方法。
6. A metallic material claims 1 to characterized in that either metal slurry and billets shape 5
The method for producing a solid-liquid coexisting state metal material according to any one of the above.
【請求項7】 注湯工程は、溶融金属の注湯時の温度
が、この溶融金属の液相線温度より高く、液相線+10
0℃より低いことを特徴とする請求項1ないしいずれ
か記載の固液共存状態金属材料の製造方法。
7. In the pouring step, the temperature at the time of pouring the molten metal is higher than the liquidus temperature of the molten metal, and the liquidus +10.
The method for producing a solid-liquid coexisting state metal material according to any one of claims 1 to 6, wherein the temperature is lower than 0 ° C.
【請求項8】 固液共存状態の金属材料を2次成形する
2次成形工程を具備することを特徴とした請求項1ない
いずれか記載の固液共存状態金属材料の製造方法。
8. The solid-liquid coexistence that the state of the metal material comprising a secondary molding for secondary molding step is <br/> claims 1 was characterized by 7, wherein any one of the solid-liquid coexisting state metal material Production method.
【請求項9】 2次成形工程は、ダイカスト、溶湯鍛
造、鍛造およびプレス加工のいずれかであることを特徴
とする請求項記載の固液共存状態金属材料の製造方
法。
9. The method for producing a solid-liquid coexisting state metal material according to claim 8 , wherein the secondary forming step is any one of die casting, molten metal forging, forging and pressing.
【請求項10】 ビレット状の金属材料を2次成形のた
めに固液共存状態に再加熱する再加熱工程を具備したこ
とを特徴とする請求項または記載の固液共存状態金
属材料の製造方法。
10. A billet-shaped claim 8 or 9, wherein the provided with the reheating step of reheating the metal material to solid-liquid coexistence state for the secondary molding of the solid-liquid coexisting state metal material Production method.
【請求項11】 冷却工程は、溶融金属の固相率が0.
1以上0.7以下となるまで冷却することを特徴とする
請求項1ないし10いずれか記載の固液共存状態金属材
料の製造方法。
11. The solid phase ratio of the molten metal in the cooling step is 0.
The method for producing a solid-liquid coexisting state metal material according to any one of claims 1 to 10, wherein cooling is performed until it becomes 1 or more and 0.7 or less.
【請求項12】 冷却工程は、溶融金属を0.2℃/s
ec以上5℃/sec以下の速度で冷却することを特徴
とする請求項1ないし11いずれか記載の固液共存状態
金属材料の製造方法。
12. The molten metal is cooled at 0.2 ° C./s in the cooling step.
The process according to claim 1 to 11 solid-liquid coexisting state metal material according to any one, characterized in that cooling with ec above 5 ° C. / sec or less speed.
【請求項13】 冷却工程は、溶融金属を0.2℃/s
ec以上2℃/sec以下の速度で冷却することを特徴
とする請求項1ないし11いずれか記載の固液共存状態
金属材料の製造方法。
13. The molten metal is melted at 0.2 ° C./s in the cooling step.
The method for producing a solid-liquid coexisting state metal material according to any one of claims 1 to 11 , wherein cooling is performed at a rate of ec or more and 2 ° C / sec or less.
【請求項14】 溶融金属は、アルミニウム、アルミニ
ウム合金、マグネシウム、マグネシウム合金、亜鉛、亜
鉛合金、銅、銅合金、鉄および鉄合金のいずれかである
ことを特徴とする請求項1ないし13いずれか記載の固
液共存状態金属材料の製造方法。
14. The molten metal of aluminum, aluminum alloys, magnesium, magnesium alloys, zinc, zinc alloy, copper, copper alloy, 13 any claims 1, characterized in that either the iron and iron alloys A method for producing a solid-liquid coexisting state metal material as described above.
JP2003027466A 2002-09-25 2003-02-04 Method for producing metallic material in solid-liquid coexistence state Expired - Fee Related JP3496833B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20020058163 2002-09-25
KR2002-58163 2002-09-25
KR2002-63162 2002-10-16
KR20020063162 2002-10-16
KR2003-3250 2003-01-17
KR20030003250 2003-01-17

Publications (2)

Publication Number Publication Date
JP3496833B1 true JP3496833B1 (en) 2004-02-16
JP2004114152A JP2004114152A (en) 2004-04-15

Family

ID=31950466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027466A Expired - Fee Related JP3496833B1 (en) 2002-09-25 2003-02-04 Method for producing metallic material in solid-liquid coexistence state

Country Status (2)

Country Link
JP (1) JP3496833B1 (en)
KR (7) KR200320003Y1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349835A (en) * 2020-05-12 2020-06-30 西南石油大学 Alloy, preparation method and application thereof, and forming die and device for preparing alloy

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554093B1 (en) * 2004-02-04 2006-02-22 주식회사 나노캐스트코리아 Forming apparatus for rheoforming method
SE528376C2 (en) * 2004-12-10 2006-10-31 Magnus Wessen Method and apparatus for producing a liquid-solid metal composition
DE102005021891B4 (en) * 2005-05-04 2011-12-22 Evgenij Sterling Method of making pigs and pigs
KR101137258B1 (en) * 2009-12-07 2012-04-23 주식회사 큐빅스 Semi-solid controll type extroder
KR101272491B1 (en) * 2011-05-27 2013-06-07 경상대학교산학협력단 Cooling rate control die-casting device and method
KR200491638Y1 (en) * 2018-05-10 2020-05-13 두산중공업 주식회사 Drawing machine
US11819912B2 (en) 2019-03-19 2023-11-21 Semyungtech High-quality semi-solid slurry manufacturing apparatus and method using optimized process parameters, and component molding apparatus including semi-solid slurry manufacturing apparatus
KR102042733B1 (en) * 2019-03-21 2019-11-08 주식회사 세명테크 Part forming system using Semi-solidification slurry produced through optimized process variables
KR102042715B1 (en) * 2019-03-19 2019-11-08 주식회사 세명테크 Method of producing high quality semi-solidification slurry through optimized process variables
KR102042720B1 (en) * 2019-03-21 2019-11-08 주식회사 세명테크 Manufacturing apparatus of High quality semi-solidification slurry through optimized process variables
KR102203071B1 (en) * 2019-08-28 2021-01-14 (주)에스엠하이텍 Hybrid vehicle batter cover manufaturing device using die casting
WO2022211538A1 (en) * 2021-04-01 2022-10-06 주식회사 퓨쳐캐스트 Semi-solid die casting apparatus having electromagnetic stirring module
CN116562153B (en) * 2023-05-12 2024-01-16 兰州大学 Calculation method for thermal stratification characteristics of liquid metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349835A (en) * 2020-05-12 2020-06-30 西南石油大学 Alloy, preparation method and application thereof, and forming die and device for preparing alloy
CN111349835B (en) * 2020-05-12 2021-09-28 西南石油大学 Alloy, preparation method and application thereof

Also Published As

Publication number Publication date
KR200319469Y1 (en) 2003-07-12
KR200320004Y1 (en) 2003-07-16
KR100434999B1 (en) 2004-06-16
JP2004114152A (en) 2004-04-15
KR20040027263A (en) 2004-04-01
KR200320003Y1 (en) 2003-07-16
KR20040027266A (en) 2004-04-01
KR100432983B1 (en) 2004-05-27
KR100445643B1 (en) 2004-08-30
KR100435000B1 (en) 2004-06-16
KR20040027265A (en) 2004-04-01
KR20040027264A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
JP3496833B1 (en) Method for producing metallic material in solid-liquid coexistence state
JP3630327B2 (en) Solid-liquid coexistence state metal slurry production equipment
JP3549054B2 (en) Method and apparatus for producing metallic material in solid-liquid coexistence state, method and apparatus for producing semi-solid metal slurry
JP3520994B1 (en) Solid-liquid coexisting metal slurry manufacturing equipment
JPH0366985B2 (en)
JP3511378B1 (en) Method and apparatus for manufacturing metal forming billet in solid-liquid coexistence state, method and apparatus for manufacturing semi-solid forming billet
JP3520991B1 (en) Method for producing metallic material in solid-liquid coexistence state
Qin et al. Effect of holding temperature on semisolid microstructure of Mg2Si/Al composite
JP3520992B1 (en) Solid-liquid coexisting billet manufacturing equipment for metal forming
JP3246363B2 (en) Forming method of semi-molten metal
JP3978492B2 (en) Method for producing semi-solid metal and metal material having fine spheroidized structure
JPH09137239A (en) Method for molding half-molten metal
JP3246273B2 (en) Forming method of semi-molten metal
JP3520993B1 (en) Solid-liquid coexisting metal material forming equipment
JP3491468B2 (en) Method for forming semi-solid metal
Guo et al. Low superheat pouring with a shear field in rheocasting of aluminum alloys
EP1322439B1 (en) Metal alloy compositions and process
JP3473214B2 (en) Forming method of semi-molten metal
JP3216684B2 (en) Forming method of semi-molten metal
EP1900455A1 (en) Semi-solid casting method and charge
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JPH0987773A (en) Method for molding half-molten metal
Zhao et al. Preparation of semisolid AlSi7Mg alloy slurry through weak traveling-wave electromagnetic stirring
JP3899539B2 (en) Aluminum alloy casting
JP2005279712A (en) Method for producing semi-solidified metal and forming method therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3496833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees