JP2005279712A - Method for producing semi-solidified metal and forming method therefor - Google Patents

Method for producing semi-solidified metal and forming method therefor Download PDF

Info

Publication number
JP2005279712A
JP2005279712A JP2004097680A JP2004097680A JP2005279712A JP 2005279712 A JP2005279712 A JP 2005279712A JP 2004097680 A JP2004097680 A JP 2004097680A JP 2004097680 A JP2004097680 A JP 2004097680A JP 2005279712 A JP2005279712 A JP 2005279712A
Authority
JP
Japan
Prior art keywords
temperature
molten metal
semi
metal
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097680A
Other languages
Japanese (ja)
Other versions
JP4179206B2 (en
Inventor
Mitsuru Adachi
充 安達
Satoshi Sato
智 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2004097680A priority Critical patent/JP4179206B2/en
Publication of JP2005279712A publication Critical patent/JP2005279712A/en
Application granted granted Critical
Publication of JP4179206B2 publication Critical patent/JP4179206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming method, by which a semi-solidified metal finely and uniformly crystallized with the primary crystal Si in the hyper-eutectic Al-Si base alloy, is produced at low cost in a short time and thereafter, press-formation is applied to this metal. <P>SOLUTION: When the semi-solidified metal is produced by using the molten Al-Si base hyper-eutectic aluminum alloy containing 0.005-0.03% P at 50-150°C excess heating degree to the melting point, while moving during pouring the molten metal near the inner wall of a ladle for supplying the molten metal or near the inner wall of a holding vessel so that the temperature of the molten metal held in the ladle or in the holding vessel becomes uniformity, or while moving this molten metal since the molten metal is poured till it reaches the forming temperature, this molten metal is cooled at 3°C/sec-20°C/sec cooling velocity in the temperature range from the molten metal pouring temperature poured into the ladle or into the holding vessel to a prescribed temperature between the temperature not lower than Al-Si binary-system eutectic temperature and the temperature not higher than the melting point, and thereafter, the semi-solidified metal having the temperature not lower than the binary-system eutectic temperature and a prescribed liquid-phase ratio, is discharged from the holding vessel or the ladle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半凝固金属の製造方法および成形方法に関わり、特に微細な初晶Siを有し、且つ、均一な分布を有するAl−Si系過共晶アルミニウム合金の半凝固金属を、保持容器あるいは給湯用ラドル内でAl−Si系過共晶アルミニウム合金溶湯から直接製造し、所定の液相率となる温度で保持容器あるいは給湯用ラドルから排出し、しかる後、加圧成形する半凝固金属の製造法およびその成形方法に関するものである。   The present invention relates to a method for producing and forming a semi-solid metal, and in particular, to hold a semi-solid metal of an Al-Si hypereutectic aluminum alloy having fine primary crystal Si and having a uniform distribution. Alternatively, a semi-solid metal that is manufactured directly from a molten Al-Si hypereutectic aluminum alloy in a hot water supply ladle, discharged from a holding container or a hot water supply ladle at a temperature that gives a predetermined liquid phase ratio, and then press-formed. The present invention relates to a manufacturing method and a molding method thereof.

重力鋳造法、高圧鋳造法、ダイカスト法などを用いて耐熱、耐磨耗性を有するアルミ合金製の成形品が鋳造されている。しかしながら、Siの微細化剤が所定量添加された溶湯を金型に充填して鋳造するが、初晶Siの微細化の程度やその分布は必ずしも満足できるレベルになっていなかった。即ち、初晶Siの分布が均一でなく、成形品内部の凝固速度の違いなどにより初晶Si濃度の異なる偏析が発生していた。   A molded product made of an aluminum alloy having heat resistance and wear resistance is cast using a gravity casting method, a high pressure casting method, a die casting method or the like. However, although a molten metal to which a predetermined amount of a Si micronizing agent is added is filled in a mold and cast, the degree of primary Si micronization and its distribution are not always at a satisfactory level. That is, the distribution of primary Si was not uniform, and segregation with different primary Si concentrations occurred due to differences in the solidification rate inside the molded product.

これらの課題を解決するために、液体と固体が共存する状態で成形する半凝固成形・半溶融成形法を用いた成形が注目されている。以下にこれらに関する先行技術文献について説明する。
特開2000−54047号公報 特開平10−152731号公報 特開2003−126950号公報 特許第3496833号公報 特開平9−327755号公報
In order to solve these problems, molding using a semi-solid molding / semi-melt molding method in which molding is performed in a state where a liquid and a solid coexist has attracted attention. Prior art documents relating to these will be described below.
JP 2000-54047 A Japanese Patent Laid-Open No. 10-152731 JP 2003-126950 A Japanese Patent No. 3396833 Japanese Patent Laid-Open No. 9-327755

特許文献1には、過共晶Al−Si系合金における問題点である「初晶Siが粗大化しやすい」ことの解決策として、Siの少ない亜共晶Al−Si系合金において初晶Siを晶出させた合金材料およびその製造方法が開示されている。具体的にはSiが6.5〜11.0重量%、Pが0.001〜0.01重量%を有するAl合金の一次鋳造材を固液共存状態まで加熱することで共晶Siを一旦融解して、その後凝固させて共晶Siよりもサイズが大きい6〜9μmのSi粒を金属組織中に晶出させることにより、過共晶Al−Si系合金のように耐磨耗性を与えることが提案されている。しかし、この方法では、過共晶合金のような十分に高い耐磨耗性は得られないため、使用・用途には制限があった。また、一旦、一次鋳造材を作る必要があり、コスト的にも問題があった。   In Patent Document 1, as a solution to “problem of primary crystal Si being coarsened”, which is a problem in hypereutectic Al—Si based alloys, primary crystal Si is used in hypoeutectic Al—Si based alloys with less Si. A crystallized alloy material and a method for producing the same are disclosed. Specifically, eutectic Si is temporarily formed by heating a primary casting of an Al alloy having 6.5 to 11.0% by weight of Si and 0.001 to 0.01% by weight of P to a solid-liquid coexistence state. It melts and then solidifies to crystallize 6-9 μm Si grains, which are larger in size than eutectic Si, in the metal structure, thereby providing wear resistance like a hypereutectic Al-Si alloy. It has been proposed. However, this method has a limitation in use and application because it cannot provide a sufficiently high wear resistance like a hypereutectic alloy. In addition, it is necessary to make a primary casting material once, and there is a problem in terms of cost.

特許文献2には過共晶Al−Si系合金溶湯を保持容器に注湯して所定の速度で冷却することで、微細な初晶Siを合金溶湯中に晶出させ、その後この合金を加圧成形する半凝固金属の成形法が開示されている。具体的には、熱伝導率が1kcal/mhr℃以上の保持容器の中にPを0.005〜0.03重量%有する過共晶Al−Si系合金を注湯し、注湯温度よりAl−Si二元系共晶温度まで0.15〜2.0℃/秒の平均冷却速度で冷却することにより半凝固金属を製造し、この合金を加圧成形することが提案されている。
しかし、過共晶Al−Si系合金においては表皮生成型の凝固をするため、液相率を下げてきた場合、容器内面や溶湯の表面に凝固層ができやすく、容器からの排出が難しくなる。このため、保持容器に局部保温をしたりあるいは誘導装置を用いて加熱したりして溶湯温度の均一化をはかる必要があり、装置が複雑になるとともに成形作業も煩雑となる。
また、微細化剤として合金に含まれるPの効果は、溶湯の温度が低い場合、核となるAlPが凝集・粗大化してその効果を失い、微細な初晶Siが得られにくくなる。一方、溶湯温度を高くすると注湯時に工業的には煩雑さを伴う冷却治具表面に接触させて注湯しなければ冷却に時間がかかりやすく、初晶Siの粗大化と冷却冶具表面に凝固層の発生をもたらして長時間の運転が困難となる。
In Patent Document 2, a hypereutectic Al-Si alloy melt is poured into a holding vessel and cooled at a predetermined rate to crystallize fine primary Si in the alloy melt, and then this alloy is added. A method of forming a semi-solid metal to be pressed is disclosed. Specifically, a hypereutectic Al—Si alloy having 0.005 to 0.03% by weight of P in a holding container having a thermal conductivity of 1 kcal / mhr ° C. or more is poured, and Al is poured from the pouring temperature. It has been proposed to produce a semi-solid metal by cooling to an -Si binary eutectic temperature at an average cooling rate of 0.15 to 2.0 [deg.] C./sec and press-molding this alloy.
However, in hypereutectic Al-Si alloys, skin formation is solidified, so if the liquid phase ratio is lowered, a solidified layer is likely to form on the inner surface of the container or the surface of the molten metal, making it difficult to discharge from the container. . For this reason, it is necessary to keep the holding container locally warmed or heated using an induction device to make the molten metal temperature uniform, which complicates the apparatus and complicates the molding operation.
Further, the effect of P contained in the alloy as a refining agent is that when the temperature of the molten metal is low, the core AlP is agglomerated and coarsened and loses its effect, making it difficult to obtain fine primary crystal Si. On the other hand, when the molten metal temperature is raised, it takes time to cool down if it is not in contact with the surface of the cooling jig, which is industrially complicated at the time of pouring, and it takes time to cool down. It causes generation of a layer and makes it difficult to operate for a long time.

特許文献3には微細かつ球状の初晶を有する温度分布の良い半凝固金属を得るために、断熱容器に注湯中または注湯後に溶湯を攪拌することや半凝固金属を加圧成形することが開示されている。具体的には、融点に対する過熱度を50℃未満と小さくしたアルミニウム合金溶湯を、断熱容器に注ぎつつ攪拌することで所定の液相率を有する球状の初晶を発生させ、容器内での保持時間を30秒〜30分とすることで目標の液相率の半凝固金属を生成し、これを容器から排出して加圧成形することが提案されている。
しかし、過共晶Al−Si系合金においては過熱度が融点に対して50℃未満と小さいためにAlPの凝集により初晶Siが粗大化するという問題がある。
In Patent Document 3, in order to obtain a semi-solid metal having a fine and spherical primary crystal and a good temperature distribution, the molten metal is stirred in the heat insulating container during or after pouring or the semi-solid metal is pressure-molded. Is disclosed. Specifically, a molten aluminum alloy having a superheat degree with respect to the melting point of less than 50 ° C. is poured into a heat insulating container and stirred to generate a spherical primary crystal having a predetermined liquid phase ratio, which is retained in the container. It has been proposed that a semi-solid metal having a target liquid phase ratio is generated by setting the time to 30 seconds to 30 minutes, and this is discharged from a container and subjected to pressure molding.
However, in a hypereutectic Al—Si alloy, the degree of superheat is less than 50 ° C. with respect to the melting point, so that there is a problem that primary Si is coarsened due to the aggregation of AlP.

特許文献4には電気磁場を印加した状態の容器に溶湯を注湯し、液相線付近に至った時点で印加を終了し、引き続き溶融金属を冷却する半凝固金属の製造法が開示されている。具体的には、印加した状態において注湯することで溶湯を攪拌して容器内の溶湯温度を均一化して樹枝状結晶からなる凝固層の発生を抑え、印加を終了した後も冷却することを特徴にしており、特に固相率最大0.1%で磁場の印加を終了させて、その後は冷却速度0.2〜5℃/秒で冷却して固液共存状態の金属を製造することを提案している。注湯時の凝固層発生を防止するために、容器と溶湯への磁場の印加により凝固潜熱が発生しないために、溶湯温度を液相線直下の温度まで急速に冷却することで多数の核が発生し、微細な組織が短時間に得られるという技術である。
しかし、Pを含む過共晶Al−Si系合金においては、樹枝状結晶は本来的に発生しない。また、容器内全体の溶湯が一様に凝固するマッシー型凝固を特徴とする亜共晶合金と異なり、温度が低下した部分には凝固層が明瞭に発生する表皮生成型凝固を呈する。更に、保持容器あるいは給湯用ラドルに注湯した時に既に初晶の核としてAlPが多数存在しており、保持容器内壁あるいは給湯用ラドル内壁に溶湯が接触し、熱を奪われながら注湯された金属は初晶Siを晶出しながら凝固層として保持容器あるいは給湯用ラドルの中心部に向かって徐々に成長する特性がある。
このため、均一な温度の半凝固金属を得るためには、注湯時に限定することなく、注湯後も好ましくは成形する直前まで、保持容器や給湯用ラドル内面近傍の凝固層の成長を抑制しながら速やかに冷却するために溶湯の攪拌が不可欠となる。
Patent Document 4 discloses a method for producing a semi-solid metal, in which a molten metal is poured into a container to which an electric magnetic field is applied, the application is terminated when it reaches the vicinity of the liquidus, and the molten metal is subsequently cooled. Yes. Specifically, the molten metal is stirred by pouring in the applied state to uniformize the molten metal temperature in the container to suppress the generation of a solidified layer composed of dendritic crystals and to cool even after the application is completed. In particular, the application of the magnetic field is terminated at a solid phase ratio of maximum 0.1%, and thereafter the metal is cooled at a cooling rate of 0.2 to 5 ° C./second to produce a solid-liquid coexisting metal. is suggesting. In order to prevent the formation of a solidified layer during pouring, there is no latent heat of solidification due to the application of a magnetic field to the vessel and the molten metal.Therefore, many nuclei are formed by rapidly cooling the molten metal temperature to a temperature just below the liquidus line. It is a technique that occurs and a fine structure can be obtained in a short time.
However, in hypereutectic Al-Si alloys containing P, dendritic crystals are not naturally generated. In addition, unlike hypoeutectic alloys characterized by massey-type solidification in which the molten metal in the entire container is uniformly solidified, skin-forming solidification in which a solidified layer is clearly generated is exhibited in the portion where the temperature is lowered. In addition, when the molten metal was poured into the holding container or hot water supply ladle, a large number of AlP already existed as the primary crystal nuclei, and the molten metal was in contact with the inner wall of the holding container or the hot water ladle and was poured while being deprived of heat. The metal has the characteristic of gradually growing toward the center of the holding container or hot water supply ladle as a solidified layer while crystallizing primary Si.
Therefore, in order to obtain a semi-solid metal at a uniform temperature, the growth of the solidified layer in the vicinity of the inner surface of the holding container and the hot water supply ladle is not limited to the time of pouring, and preferably after molding, just before molding. However, stirring of the molten metal is indispensable for prompt cooling.

特許文献5には、給湯用ラドルに冷却治具を挿入して結晶核を発生させることを特徴とする半凝固金属の製造法が開示されている。具体的には冷却機能を有する複数の治具を給湯ラドル中の溶湯に浸漬させて攪拌することで結晶の核を発生させ、球状初晶が晶出した所定の液相率を有する半凝固金属を生成させる技術が提案されている。しかし、過共晶Al−Si系合金におけるSiの微細化効果は冷却治具による核の発生よりも、主として溶湯中に含まれるAlPの核を起点として初晶のSiが形成される。また、初晶Si微細化のためには、給湯中及び給湯後成形温度まで所定の冷却速度で冷却することや凝固層の発生防止のために給湯用ラドル内壁近傍を攪拌することが必要となる。   Patent Document 5 discloses a method for producing a semi-solid metal, wherein a crystal nucleus is generated by inserting a cooling jig into a hot water supply ladle. Specifically, a semi-solid metal having a predetermined liquid phase ratio in which a spherical primary crystal is crystallized by generating a nucleus of a crystal by immersing and stirring a plurality of jigs having a cooling function in a molten metal in a hot water supply ladle A technique for generating the above has been proposed. However, the Si refinement effect in the hypereutectic Al—Si-based alloy is that primary crystal Si is formed mainly from the nuclei of AlP contained in the molten metal rather than the generation of nuclei by the cooling jig. Further, in order to refine the primary crystal Si, it is necessary to cool at a predetermined cooling rate to the molding temperature during hot water supply and after hot water supply, and to stir the vicinity of the inner wall of the hot water supply ladle to prevent the formation of a solidified layer. .

本発明は、上述の事情に鑑みてなされたものであり、過共晶Al−Si系合金の初晶Siを微細に、かつ、均一に晶出した半凝固金属を低コストで、短時間に製造し、しかる後、加圧成形する成形方法を提供することを目的とする。具体的には、成形した成形品中には50μm以下の初晶Siが均一に分散し、Siが観察されないSiフリーゾーンが発生しない成形品を得ることを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and a semi-solid metal crystallized uniformly and uniformly from a primary eutectic Si of a hypereutectic Al-Si alloy at low cost and in a short time. An object of the present invention is to provide a molding method that is manufactured and then pressure-molded. Specifically, an object is to obtain a molded product in which primary Si of 50 μm or less is uniformly dispersed in the molded product and no Si free zone where Si is not observed is generated.

上記の課題を解決するために、本発明に係る第1の発明では、融点に対して過熱度が50℃〜150℃で、Pを0.005%〜0.03%含むAl−Si系過共晶アルミニウム合金溶湯を用いて半凝固金属を製造するにあたり、給湯用ラドル内あるいは保持容器内で保持される溶湯の温度が均一になるように、給湯用ラドル内壁近傍あるいは保持容器の内壁近傍の溶湯を注湯中は動かしながら、あるいは注湯中から成形温度まで該溶湯を動かしながら、給湯用ラドルあるいは保持容器に注がれる溶湯の注湯温度からAl−Si2元系共晶温度以上で融点以下の所定の温度までの温度領域において3℃/s〜20℃/秒の冷却速度で冷却して、その後二元共晶温度以上で所定の液相率を有する半凝固金属を保持容器あるいは給湯用ラドルから排出することとした。   In order to solve the above-described problems, in the first invention according to the present invention, an Al—Si based superoxide having a superheating degree of 50 ° C. to 150 ° C. and 0.005% to 0.03% of P with respect to the melting point. When producing a semi-solid metal using a eutectic aluminum alloy molten metal, in the vicinity of the inner wall of the hot water supply ladle or the inner wall of the holding container so that the temperature of the molten metal held in the hot water supply ladle or the holding container is uniform. While melting the molten metal during pouring, or while moving the molten metal from pouring to the molding temperature, the melting point is higher than the Al-Si binary eutectic temperature from the pouring temperature of the molten metal poured into the hot water supply ladle or holding container. Cooling at a cooling rate of 3 ° C./s to 20 ° C./second in a temperature range up to a predetermined temperature below, and then a semi-solid metal having a predetermined liquid phase ratio above the binary eutectic temperature is held in a holding container or hot water supply Drain from ladle It decided to.

第1の発明を主体とする第2の発明では、熱伝導率が3kcal/mhr℃以上の給湯用ラドルあるいは保持容器の内面近傍を冷却機能を有しない治具により攪拌もしくは揺動することにより溶湯を動かすか、あるいは誘導装置により給湯用ラドルあるいは保持容器に磁場を印加して溶湯を動かすこととした。   In the second invention mainly composed of the first invention, the molten metal is stirred or rocked by a jig having no cooling function in the vicinity of the inner surface of the hot water supply ladle or holding container having a thermal conductivity of 3 kcal / mhr ° C. or more. Or the molten metal was moved by applying a magnetic field to the hot water supply ladle or holding container by means of an induction device.

第1の発明を主体とする第3の発明では、熱伝導率が3kcal/mhr℃未満の保持容器あるいは給湯用ラドル内に溶湯を注ぎ、溶湯の温度を冷却機能を有する治具により攪拌もしくは揺動しながら所定の液相率となる温度まで冷却することとした。 In the third invention mainly composed of the first invention, the molten metal is poured into a holding container or a hot water supply ladle having a thermal conductivity of less than 3 kcal / mhr ° C., and the temperature of the molten metal is stirred or shaken by a jig having a cooling function. It was decided to cool to a temperature at which a predetermined liquid phase ratio was obtained while moving.

第1の発明を主体とする第4の発明では、第1〜第3の発明により製造された半凝固金属を用いて重力鋳造、低圧鋳造、層流充填高圧鋳造、高速ダイカスト鋳造法、竪型プレス法のいずれかの方法により成形することとした。 In the fourth invention mainly composed of the first invention, gravity casting, low pressure casting, laminar flow filling high pressure casting, high speed die casting casting, vertical mold using the semi-solid metal manufactured by the first to third inventions. Molding was performed by any of the pressing methods.

融点に対する過熱度を50℃〜150℃とし、Pを含むAl−Si系過共晶アルミニウム合金溶湯を用いて半凝固金属を製造するにあたり、給湯用ラドル内あるいは保持容器内で保持される溶湯の温度が均一になるように、給湯用ラドルあるいは保持容器内壁面近傍の溶湯を給湯中は動かしながら、あるいは給湯中から成形温度までの冷却中は溶湯を動かしながら、給湯用ラドルあるいは保持容器に注がれる溶湯の給湯温度からAl−Si2元系共晶温度以上で融点以下の所定の温度間での冷却領域においては3℃/秒〜20℃/秒の冷却速度で冷却するために、初晶Siが微細に、且つ、均一に晶出した過共晶Al−Si系合金半凝固金属を低コストで効率的に製造できるようになった。更に、この過共晶Al−Si系合金半凝固金属を製造した後、加圧成形することによりSiが観察されない組織が発生しない製品を得ることが可能となる。また、Siが均一に分散することで、より負荷の高い苛酷な使用条件にある製品に対してもアルミ合金の適用が可能になった。また、半凝固状態で成形するために収縮巣が少なく健全な組織を有する製品が得られる。 When producing a semi-solid metal by using an Al—Si hypereutectic aluminum alloy molten metal containing P at a superheat degree of 50 ° C. to 150 ° C. with respect to the melting point, the molten metal held in the hot water supply ladle or holding container In order to make the temperature uniform, the hot water ladle or molten metal near the inner wall of the holding container is moved to the hot water ladle or holding container while moving the hot water or while the molten metal is moved during cooling from the hot water to the molding temperature. In order to cool at a cooling rate of 3 ° C./second to 20 ° C./second in the cooling region between the hot water supply temperature of the molten metal and the Al—Si binary eutectic temperature to a predetermined temperature below the melting point, the primary crystal A hypereutectic Al-Si alloy semi-solid metal in which Si is crystallized finely and uniformly can be produced efficiently at low cost. Furthermore, after producing this hypereutectic Al—Si alloy semi-solid metal, it is possible to obtain a product in which a structure in which no Si is observed is not generated by pressure forming. In addition, by uniformly dispersing Si, the aluminum alloy can be applied even to products with higher load and severe usage conditions. In addition, since it is molded in a semi-solid state, a product having a small structure and a healthy structure can be obtained.

Al−Si系過共晶合金においては亜共晶合金と比較して、鋳型内での凝固が全体的に凝固するのではなく、凝固層が型表面から内部に向かって進行する表皮生成型の凝固形態をとる。このため、容器内壁近傍の湯を動かさなければ、容器中心と比較して温度低下が大きい内壁近傍には強固な凝固層ができ、その後の温度均一化の対策、たとえば保温、加熱を施しても簡単には温度均一化を図ることは困難である。また、凝固層の生成により溶湯から容器への熱伝達が小さくなるために、容器内部の溶湯温度の低下速度は遅くなる。
この対策として、給湯中、あるいは給湯から成形温度まで容器内壁近傍の湯を動かすことで、従来発生していたこれらの問題を解決することができる。溶湯の動かす時期は、融点以下になってもなお表皮生成型の凝固が継続されることから、融点直下で成形する場合を除き、容器から半凝固金属を排出までの間溶湯を動かすことが望ましい。
Compared to hypoeutectic alloys, the Al-Si hypereutectic alloy does not solidify in the mold as a whole, but a solidified layer that progresses from the mold surface toward the inside. It takes a solidified form. For this reason, if the hot water in the vicinity of the inner wall of the container is not moved, a strong solidified layer is formed in the vicinity of the inner wall where the temperature drop is large compared with the center of the container. It is difficult to achieve uniform temperature simply. Further, since the heat transfer from the molten metal to the container is reduced by the generation of the solidified layer, the rate of decrease in the molten metal temperature inside the container is slowed down.
As countermeasures, these conventional problems can be solved by moving hot water near the inner wall of the container during hot water supply or from the hot water supply to the molding temperature. When the molten metal moves, it is desirable to move the molten metal until the semi-solid metal is discharged from the container, except when molding directly below the melting point, since the solidification of the skin formation type will continue even when the melting point is below the melting point. .

本願発明は、いくつかの公知技術の数値限定範囲を見直して、初晶Siが微細に、且つ、均一に晶出したAl−Si系過共晶合金の半凝固金属の製造に最適な公知技術の組合せ及び数値限定を行ったことにあり、特に容器から半凝固金属を排出するまで溶湯を動かし続けることにより表皮生成型の凝固形態を呈するAl−Si系過共晶合金に対処したことを特徴としている。以下に、溶湯温度、冷却速度、Pの含有量等の数値限定理由について説明する。   The present invention is a review of several publicly known numerical limits, and is a publicly known technology that is optimal for producing a semi-solid metal of an Al-Si hypereutectic alloy in which primary Si is crystallized finely and uniformly. In particular, we dealt with the Al-Si hypereutectic alloy that exhibits a solidified form of skin formation by continuing to move the molten metal until the semi-solid metal is discharged from the container. It is said. The reasons for limiting the numerical values such as the molten metal temperature, the cooling rate, and the P content will be described below.

最初に溶湯温度について説明する。本願発明においては、溶湯温度の融点に対する過熱度が50℃よりも低い場合は、過共晶Al−Si系合金の溶湯を保持中に、微細化剤として添加されているPが凝集してAlPとして結晶の核にはなりえず、晶出するSiは100μm以上の粗大なSiになる。この結果、組織の均一性は得られない。一方、150℃より高くしても溶湯が酸化して酸化物殻を作りやすく、しかもガスの吸収が激しくて問題が発生しやすい。従って、Al−Si系過共晶合金の半凝固金属の製造に最適な溶湯の温度範囲を50℃〜150℃とする。 First, the molten metal temperature will be described. In the present invention, when the degree of superheat with respect to the melting point of the molten metal temperature is lower than 50 ° C., the P added as a refining agent aggregates while holding the molten eutectic Al—Si alloy, and AlP As a result, the crystal Si becomes coarse Si of 100 μm or more. As a result, tissue uniformity cannot be obtained. On the other hand, even if the temperature is higher than 150 ° C., the molten metal is easily oxidized to form an oxide shell, and the gas is strongly absorbed, so that problems are likely to occur. Therefore, the temperature range of the molten metal optimal for the production of the semi-solid metal of the Al—Si hypereutectic alloy is set to 50 ° C. to 150 ° C.

次に、冷却速度の限定理由について説明する。溶湯の温度が、融点に対する過熱度が50℃以下で融点までの温度範囲においては、溶湯の冷却速度を1℃/秒以上とする。3℃/秒以上の冷却速度とすることが望ましい。この理由は、冷却速度が遅いと溶湯中に存在する初晶Siの核となるAlPが凝集して核としての機能を持たなくなり、初晶Siが粗大化するためである。
一方、融点からAl−Si二元系合金合金共晶温度までの温度範囲においては、3℃/秒〜20℃/秒とする。この理由は、冷却速度が遅いとAlPが初晶Siとは独立して成長するために、また、AlPが凝集して核としての機能を持たなくなるために初晶Siが粗大化するためである。また、この温度範囲における冷却速度が遅いと初晶Siが浮上するため、初晶Siが存在しない組織が形成されたり、凝固殻を容器近傍に作りやすくなるために不均一な組織となる。また、冷却速度が20℃/秒を超えれば、例え溶湯を動かしても凝固層の発生を防止することは難しいためである。
Next, the reason for limiting the cooling rate will be described. When the temperature of the molten metal is such that the degree of superheat with respect to the melting point is 50 ° C. or less and the temperature reaches the melting point, the cooling rate of the molten metal is 1 ° C./second or more. A cooling rate of 3 ° C./second or more is desirable. This is because when the cooling rate is low, AlP which is a nucleus of primary Si present in the molten metal aggregates and does not have a function as a nucleus, and primary Si becomes coarse.
On the other hand, in the temperature range from the melting point to the Al—Si binary alloy alloy eutectic temperature, the temperature is set to 3 ° C./second to 20 ° C./second. This is because when the cooling rate is low, AlP grows independently of primary Si, and AlP aggregates and does not function as a nucleus, so primary Si becomes coarse. . In addition, when the cooling rate in this temperature range is low, primary Si floats, so that a structure in which primary Si does not exist is formed, or a solidified shell is easily formed near the container, resulting in a non-uniform structure. Moreover, if the cooling rate exceeds 20 ° C./second, it is difficult to prevent the formation of a solidified layer even if the molten metal is moved.

次に、P(リン)の含有量の数値限定理由について説明する。過共晶Al−Si系合金の溶湯中に添加されるPの量はSi(珪素)の量によって異なるが、0.005%未満であれば過共晶Al−Si系合金中のSi量に係わらずSiサイズは50μm以下になりえない。一方、Pを0.03%を超えて添加してもそれ以上の微細化の効果の改善は期待できない。以上により、Pの添加量は0.005〜0.03Wt%とする。   Next, the reason for limiting the numerical value of the P (phosphorus) content will be described. The amount of P added to the melt of the hypereutectic Al—Si alloy varies depending on the amount of Si (silicon), but if it is less than 0.005%, the amount of Si in the hypereutectic Al—Si alloy is reduced. Regardless, the Si size cannot be less than 50 μm. On the other hand, even if P is added in excess of 0.03%, further improvement in the effect of miniaturization cannot be expected. As described above, the addition amount of P is set to 0.005 to 0.03 Wt%.

更に、給湯中あるいは、給湯中から溶湯を保持している容器から半凝固金属を排出するまでの間、容器内壁面近傍あるいは保持容器の内壁近傍の溶湯を動かし続けることの重要性について説明する。
過共晶Al−Si系合金は、温度が共晶温度以下に低下した部分に凝固層が明瞭に発生する表皮生成型凝固を呈する合金である。このため、保持容器あるいは給湯用ラドルに注湯した時に保持容器内壁あるいは給湯用ラドル内壁に溶湯が接触して抜熱されれば、溶湯は該内壁近傍の溶湯は既に存在している初晶の核AlPを起点にして初晶Siを晶出しながら凝固層の幅を厚くしつつ、保持容器あるいは給湯用ラドルの中心に向かって徐々に成長する。
Further, the importance of continuing to move the molten metal near the inner wall surface of the container or the inner wall of the holding container during the hot water supply or until the semi-solid metal is discharged from the container holding the molten metal during the hot water supply will be described.
The hypereutectic Al—Si alloy is an alloy that exhibits skin-generating solidification in which a solidified layer is clearly generated in a portion where the temperature has dropped below the eutectic temperature. For this reason, if the molten metal comes into contact with the inner wall of the holding container or the hot water supply ladle when the molten metal is poured into the holding container or the hot water supply ladle and the heat is removed, the molten metal is the primary crystal in which the molten metal near the inner wall already exists. While the primary crystal Si is crystallized starting from the core AlP, the width of the solidified layer is increased while gradually growing toward the center of the holding vessel or the hot water supply ladle.

この場合、凝固層は容器内壁と溶湯の直接接触を妨げることから、凝固層の成長とともに保持容器内あるいは給湯用ラドルの中の溶湯と保持容器あるいは給湯用ラドルとの熱伝達率を低下させるため、冷却速度が遅くなる。これを防止するために、保持容器あるいは給湯用ラドル内壁近傍の溶湯を主に動かすことで、溶湯全体の温度が均一に下がる状態にして冷却速度を速める。これにより、初晶Siの核となるAlPの凝集を妨げることができるために微細な初晶Siを晶出した半凝固金属が得られる。
以上のことをより効果的に行って均一な温度の半凝固金属を得るためには、注湯時に限定することなく注湯後も好ましくは成形する直前まで、保持容器または給湯用ラドル内面近傍の凝固層の成長を抑制しながら速やかに冷却するための攪拌が必要である
In this case, since the solidified layer prevents direct contact between the inner wall of the container and the molten metal, the heat transfer coefficient between the molten metal in the holding container or the hot water supply ladle and the holding container or the hot water supply ladle decreases with the growth of the solidified layer. The cooling rate is slow. In order to prevent this, the molten metal near the inner wall of the holding container or the hot water supply ladle is mainly moved, so that the temperature of the entire molten metal is lowered uniformly and the cooling rate is increased. Thereby, since the aggregation of AlP serving as the nucleus of primary Si can be prevented, a semi-solid metal obtained by crystallizing fine primary Si can be obtained.
In order to obtain a semi-solid metal having a uniform temperature by more effectively performing the above, it is not limited to the time of pouring, and preferably after the pouring, preferably immediately before forming, in the vicinity of the inner surface of the holding container or the hot water supply ladle. Stirring is required to cool quickly while suppressing the growth of the solidified layer

ここで、溶湯を動かす期間について補足説明しておく。目標とする半凝固金属の液相率が大きい場合(例えば80%以上、好ましくは90%以上)には、冷却目標温度が高いため、注湯中のみ溶湯を動かしておれば(攪拌しておれば)、溶湯の慣性により溶湯が動き続けるため表皮生成型凝固形態を防止できるからである。一方、液相率が小さい場合には(例えば80%未満)、注湯中から溶湯を保持している容器から半凝固金属を排出するまでの間、溶湯を動かし続けておく必要がある。   Here, a supplementary explanation will be given regarding the period during which the molten metal is moved. When the liquid phase ratio of the target semi-solid metal is large (for example, 80% or more, preferably 90% or more), the target temperature for cooling is high. This is because, since the molten metal continues to move due to the inertia of the molten metal, it is possible to prevent the skin formation type solidification form. On the other hand, when the liquid phase ratio is small (for example, less than 80%), it is necessary to keep the molten metal moving until the semi-solid metal is discharged from the container holding the molten metal from the molten metal.

なお、本願発明でいう過共晶Al−Si系合金とは、Al−Si二元系合金に限定されず、それ以外にCu、MgおよびFe、Mn、Ni、Crなどの遷移金属などの元素が含まれる多元系合金をも含むものである。このため、初晶Siが晶出する合金を過共晶Al−Si系合金としている。 The hypereutectic Al—Si alloy referred to in the present invention is not limited to the Al—Si binary alloy, but other elements such as transition metals such as Cu, Mg and Fe, Mn, Ni, and Cr are also used. It also includes a multi-component alloy containing. For this reason, the alloy from which primary Si crystallizes is a hypereutectic Al-Si alloy.

以上の説明からわかるように、本願発明は溶湯の凝固形態が特殊な表皮生成型凝固を呈する、Pを0.005%〜0.03%含むAl−Si系過共晶アルミニウム合金の半凝固金属を製造する方法において、容器内面の凝固層の生成を防止しなければ初晶Siが微細に、且つ、均一に晶出した過共晶Al−Si合金の半凝固金属を製造できないということに着目してなされたものである。
更に、容器に注湯する溶湯温度を特定すること及びこの給湯温度から所定の液相率を有する温度までの冷却領域における溶湯の冷却速度として、Pを0.005%〜0.03%含むAl−Si系過共晶アルミニウム合金の半凝固金属に適した冷却速度を特定することに意義がある。
As can be seen from the above description, the present invention is a semi-solid metal of an Al-Si hypereutectic aluminum alloy containing 0.005% to 0.03% P in which the solidification form of the molten metal exhibits a special skin formation type solidification. Focusing on the fact that a semi-solid metal of hypereutectic Al-Si alloy in which primary Si is crystallized finely and uniformly can be produced unless the formation of a solidified layer on the inner surface of the container is prevented. It was made.
Furthermore, Al containing P from 0.005% to 0.03% as the cooling rate of the molten metal in the cooling region from the hot water supply temperature to the temperature having a predetermined liquid phase rate is specified It is meaningful to specify a cooling rate suitable for a semi-solid metal of a Si-based hypereutectic aluminum alloy.

以下に本発明に係わる半凝固金属の製造方法及びその成形方法の具体的な実施の形態について図1、図2及び図3を参照しながら説明する。
図1は給湯温度から成形温度まで冷却する過程での容器内の溶湯温度の分布を示す説明図、図2は保持容器内にて半凝固金属を製造し、成形するまでのプロセスの説明図、図3は給湯用ラドル内にて溶湯から半凝固金属を製造し、成形するまでのプロセスの説明図である。
Hereinafter, a specific embodiment of a method for producing a semi-solid metal and a method for forming the same according to the present invention will be described with reference to FIG. 1, FIG. 2 and FIG.
FIG. 1 is an explanatory view showing the distribution of the molten metal temperature in the container in the process of cooling from the hot water supply temperature to the forming temperature, and FIG. 2 is an explanatory view of the process until the semi-solid metal is manufactured and formed in the holding container, FIG. 3 is an explanatory view of a process from manufacturing and forming a semi-solid metal from molten metal in a hot water supply ladle.

最初に、図1を参照しながら表皮生成型凝固を呈する過共晶Al−Si合金における温度の均一化のために容器内壁付近の溶湯を動かすことの重要性について説明する。図1中のT3は保持容器内壁近傍の溶湯温度であり、T1は保持容器中心部の溶湯温度、T2がこの中間位置での溶湯温度を表している。
縦軸に融点に対する過熱度を、横軸に注湯(給湯ともいう)開始からの経過時間をとったグラフにおいて、溶湯を動かさない場合の各位置での溶湯温度(T1、T2、T3)の時間変化を図1に示している。特に、内壁近傍の溶湯温度(T3)は注湯終了時には二元共晶温度近くまで低下している。また、容器中心部の溶湯温度(T1)は注湯終了時でも融点に対する過熱度が40℃以上もあり、溶湯の温度差は100℃位に達している。
一方、容器内壁付近の溶湯を動かすことにより、図1において太線で示しているように溶湯の温度差は殆どなく均一になっており、且つ、溶湯の温度低下もT3に近い状態になっている。これにより、容器内壁付近の溶湯を動かすことの重要性が理解できます。
First, the importance of moving the molten metal in the vicinity of the inner wall of the container in order to make the temperature uniform in the hypereutectic Al-Si alloy exhibiting skin-generating solidification will be described with reference to FIG. In FIG. 1, T3 is the molten metal temperature near the inner wall of the holding container, T1 is the molten metal temperature at the center of the holding container, and T2 is the molten metal temperature at this intermediate position.
In the graph in which the vertical axis indicates the degree of superheat with respect to the melting point and the horizontal axis indicates the elapsed time from the start of pouring (also referred to as hot water supply), the melt temperatures (T1, T2, T3) at each position when the melt is not moved The time change is shown in FIG. In particular, the molten metal temperature (T3) in the vicinity of the inner wall decreases to near the binary eutectic temperature at the end of pouring. Further, the molten metal temperature (T1) at the center of the container has a superheat degree of 40 ° C. or more with respect to the melting point even at the end of pouring, and the temperature difference of the molten metal reaches about 100 ° C.
On the other hand, by moving the molten metal near the inner wall of the container, the temperature difference of the molten metal is almost uniform as shown by the thick line in FIG. 1, and the temperature drop of the molten metal is close to T3. . This makes it possible to understand the importance of moving the molten metal near the inner wall of the container.

図1に太線で示している溶湯の温度変化の割合(温度低下率)は冷却速度に依存することになる。本願発明においては、注湯温度からAl−Si2元共晶温度以上で融点以下の所定の温度までの温度領域において3℃/s〜20℃/秒の冷却速度で冷却することを条件としており、この範囲の冷却速度を選択することにより、図1に太線で示した温度低下曲線となる。ただし、二元共晶温度まで温度を下げた場合の冷却速度は、注湯開始から二元共晶温度到達までの時間で、注湯温度から共晶温度まで下降した温度(温度差)を除した値を言う。なお、Al−Si二元系合金においては、共晶温度到達までの範囲の液相率はAl−Si二元系合金の金属状態図により求めるが、共晶温度到達後も共晶温度に保持して共晶反応を促進させて液相率を下げて所定の液相率を求める場合には、以下のようにする。即ち、初晶Si晶出完了時点での液相率から、共晶反応開始から共晶反応終了までの時間で、共晶反応開始から半凝固金属排出までの時間を除して求めた係数(値)に初晶Si晶出完了時点の液相率をかけて求めた値を差し引いた値を全液相率とする。Si以外にCu、Mgなどの他の元素を含むアルミ合金においては、液相率は計算状態図にて求める。この場合のPの添加量は0.005Wt%〜0.03Wt%を条件としている。   The rate of temperature change (temperature reduction rate) of the molten metal indicated by the thick line in FIG. 1 depends on the cooling rate. In the present invention, it is a condition that cooling is performed at a cooling rate of 3 ° C./s to 20 ° C./second in a temperature range from the pouring temperature to a predetermined temperature not lower than the melting point but not lower than the Al—Si binary eutectic temperature. By selecting a cooling rate within this range, a temperature decrease curve indicated by a thick line in FIG. 1 is obtained. However, the cooling rate when the temperature is lowered to the binary eutectic temperature is the time from the start of pouring to the arrival of the binary eutectic temperature, excluding the temperature that dropped from the pouring temperature to the eutectic temperature (temperature difference). Say the value you did. In Al-Si binary alloys, the liquidus ratio in the range up to the eutectic temperature is obtained from the metal phase diagram of the Al-Si binary alloy, but is maintained at the eutectic temperature even after the eutectic temperature is reached. Then, when the eutectic reaction is promoted and the liquid phase ratio is lowered to obtain a predetermined liquid phase ratio, the following is performed. That is, the coefficient obtained by dividing the liquid phase ratio at the time of completion of primary Si crystallization by the time from the start of the eutectic reaction to the end of the eutectic reaction and the time from the start of the eutectic reaction to the discharge of the semi-solid metal ( The value obtained by subtracting the value obtained by multiplying the value) by the liquid phase ratio at the time of completion of primary crystal crystallization is defined as the total liquid phase ratio. In an aluminum alloy containing other elements such as Cu and Mg in addition to Si, the liquid phase ratio is obtained from a calculation state diagram. In this case, the amount of P is 0.005 Wt% to 0.03 Wt%.

次に、図2に基づいて、熱伝導率が27kcal/mhr℃のステンレス製の保持容器及び冷却機能を有しない冶具を用いて本願発明を実施した場合について説明する。図2の(1)は、攪拌翼を有する攪拌時具3を容器中心部で回転させることにより保持容器内壁近傍を主に攪拌するとともに、保持容器外面に冷却用エア4を吹き付けて5℃/秒の冷却速度で冷却した。なお、攪拌は注湯中及び注湯後も行った。引き続き攪拌を続けながら、所定の液相率になった段階で初晶Siが液中に分散した半凝固金属M2を保持容器から排出して成形する。また、温度の局部的な低下を防ぐために、保持容器2の下部に必要に応じて熱伝導率が0.4kcal/mhr℃の断熱材5を設けることもできる。
また、攪拌冶具3としては攪拌翼を有さない冷却冶具3を使用して、この攪拌冶具3を容器内面に沿って円周状に動かすこともできる。
Next, based on FIG. 2, the case where this invention is implemented using the stainless steel holding | maintenance container whose heat conductivity is 27 kcal / mhr (degreeC), and the jig | tool which does not have a cooling function is demonstrated. (1) in FIG. 2 is that the stirring tool 3 having a stirring blade is rotated at the center of the container to mainly stir the vicinity of the inner wall of the holding container, and the cooling air 4 is blown to the outer surface of the holding container to Cooled at a cooling rate of 2 seconds. Stirring was also performed during and after pouring. While continuing the stirring, the semi-solid metal M2 in which the primary crystal Si is dispersed in the liquid is discharged from the holding container at the stage where the predetermined liquid phase ratio is reached, and is molded. Moreover, in order to prevent the local fall of temperature, the heat insulating material 5 whose heat conductivity is 0.4 kcal / mhr (degreeC) can also be provided in the lower part of the holding container 2 as needed.
Moreover, the cooling jig 3 which does not have a stirring blade as the stirring jig 3 can be used, and this stirring jig 3 can be moved along the inner surface of the container.

図2の(2)は、攪拌時具3aを上下に動かすことにより、主に保持容器内壁近傍の溶湯を上下攪拌するとともに、保持容器外面に冷却用エア4を吹き付けて5℃/秒の冷却速度で冷却した。なお、攪拌は注湯中及び注湯後も行った。引き続き攪拌を続けながら、所定の液相率になった段階で初晶Siが液中に分散した半凝固金属M2を保持容器から排出して成形する。また、温度の局部的な低下を防ぐために、保持容器2の下部に必要に応じて熱伝導率が0.4kcal/mhr℃の断熱材5を設けることもできる。   (2) in FIG. 2 shows that the molten metal near the inner wall of the holding container is stirred up and down mainly by moving the stirring tool 3a up and down, and cooling air 4 is blown to the outer surface of the holding container to cool at 5 ° C./second. Cooled at speed. Stirring was also performed during and after pouring. While continuing the stirring, the semi-solid metal M2 in which the primary crystal Si is dispersed in the liquid is discharged from the holding container at the stage where the predetermined liquid phase ratio is reached, and is molded. Moreover, in order to prevent the local fall of temperature, the heat insulating material 5 whose heat conductivity is 0.4 kcal / mhr (degreeC) can also be provided in the lower part of the holding container 2 as needed.

図2の(3)は、攪拌冶具として電磁誘導装置の誘導コイル7を使用した場合を示す。保持容器に注湯する前に、電磁誘導装置の誘導コイル7に印可して保持容器に磁界をかける。このようにして特許文献4に記載されているように、溶湯が電磁攪拌されるとともに保持容器内壁に凝固層が発生しない。なお、冷却速度を調整するために保持容器外面に冷却用エア4を吹き付けることもできる。電磁場の印加は半凝固金属を容器から排出するまで行った。所定の液相率になった段階で初晶Siが液中に分散した半凝固金属M2を保持容器から排出して成形する。また、温度の局部的な低下を防ぐために、保持容器2の下部に必要に応じて熱伝導率が0.4kcal/mhr℃の断熱材5を設けることもできる。   (3) of FIG. 2 shows the case where the induction coil 7 of an electromagnetic induction device is used as a stirring jig. Before pouring the holding container, a magnetic field is applied to the holding container by applying it to the induction coil 7 of the electromagnetic induction device. Thus, as described in Patent Document 4, the molten metal is electromagnetically stirred and a solidified layer is not generated on the inner wall of the holding container. In addition, in order to adjust a cooling rate, the air 4 for cooling can also be sprayed on the holding container outer surface. The electromagnetic field was applied until the semi-solid metal was discharged from the container. The semi-solid metal M2 in which the primary crystal Si is dispersed in the liquid is discharged from the holding container and molded at a stage where the predetermined liquid phase ratio is reached. Moreover, in order to prevent the local fall of temperature, the heat insulating material 5 whose heat conductivity is 0.4 kcal / mhr (degreeC) can also be provided in the lower part of the holding container 2 as needed.

なお、半凝固金属を保持容器または給湯用ラドルから排出して金型で成形する方法としては、図2(a)に示す横型ダイカスト法、図2(c)に示す竪型ダイカスト法、図2(b)に示す竪型プレス法等がある。また、成形方法としては図2に記載の方法以外にも押し出し成形法の適用も可能である。液相率が高く流動性があれば重力鋳造、低圧鋳造などにも適用できる。
成形速度や成形圧力はそれぞれの成形法で慣用されている条件で同様に行われる。たとえば、横型ダイカスト法では0.1m/秒〜10m/秒、竪型ダイカスト法では0.05m/秒〜1m/秒、竪型プレス法では0.05m/秒〜1m/秒等である。
In addition, as a method of discharging the semi-solid metal from the holding container or the hot water supply ladle and forming it with a mold, the horizontal die casting method shown in FIG. 2 (a), the vertical die casting method shown in FIG. 2 (c), FIG. There is a vertical press method shown in (b). In addition to the method shown in FIG. 2, an extrusion molding method can be applied as the molding method. If the liquid phase ratio is high and fluid, it can be applied to gravity casting, low pressure casting, and the like.
The molding speed and the molding pressure are similarly performed under conditions commonly used in each molding method. For example, the horizontal die casting method is 0.1 m / second to 10 m / second, the vertical die casting method is 0.05 m / second to 1 m / second, and the vertical pressing method is 0.05 m / second to 1 m / second.

次に、図3に基づいて、熱伝導率が0.8kcal/mhr℃の給湯用ラドル1及び冷却機能を有する攪拌冶具8を用いる場合を示す。冷却機能を有する攪拌冶具8を用いて、ラドル内壁近傍の溶湯を主に攪拌することで凝固層の発生を抑制しつつ溶湯の温度を低下させ、所定の液相率になった半凝固金属を給湯用ラドルから排出して成形する。なお、成形法法については、上述した保持容器の場合と同じである。   Next, based on FIG. 3, a case where a hot water supply ladle 1 having a thermal conductivity of 0.8 kcal / mhr ° C. and a stirring jig 8 having a cooling function is used is shown. By using the stirring jig 8 having a cooling function, the molten metal near the inner wall of the ladle is mainly stirred to reduce the temperature of the molten metal while suppressing the generation of the solidified layer. It is discharged from the hot water supply ladle and molded. In addition, about the shaping | molding method, it is the same as the case of the holding container mentioned above.

なお、容器の熱伝導率と溶湯の攪拌・揺動用冶具の冷却機能の有無との関係について、補足説明する。
溶湯の保持容器や給湯用ラドルの熱伝導率が大きい場合には、容器からの冷却で充分であり攪拌・揺動用冶具に冷却機能を持たせると過冷却状態になったり、半凝固金属の適正温度の維持が困難になるためである。即ち、給湯用ラドルあるいは保持容器の熱伝導率熱を3kcal/m・hr・℃以上の場合(容器材料としてステンレス等を使用した場合)は、攪拌・揺動用冶具に冷却機能を持たせない。
一方、給湯用ラドルあるいは保持容器の熱伝導率熱を3kcal/m・hr・℃未満の場合(容器材料としてセラミック等を使用した場合)は、溶湯の冷却速度が遅くなるため、冷却機能を持った溶湯の攪拌・揺動用冶具により溶湯の冷却速度(能力)を高める必要があるためである。
The relationship between the thermal conductivity of the container and the presence / absence of the cooling function of the molten metal stirring / rocking jig will be supplementarily described.
When the thermal conductivity of the molten metal holding container or hot water supply ladle is large, cooling from the container is sufficient. This is because it becomes difficult to maintain the temperature. That is, when the heat conductivity heat of the hot water supply ladle or holding container is 3 kcal / m · hr · ° C. or more (when stainless steel or the like is used as the container material), the stirring / swinging jig is not provided with a cooling function.
On the other hand, when the heat conductivity heat of the hot water supply ladle or holding container is less than 3 kcal / m · hr · ° C (when ceramic etc. is used as the container material), the cooling rate of the molten metal becomes slow, so it has a cooling function. This is because it is necessary to increase the cooling rate (capacity) of the molten metal with a jig for stirring and shaking the molten metal.

本願発明に係る半凝固金属の製造方法は、融点に対して過熱度が50℃〜150℃で、Pを0.005%〜0.03%含むAl−Si系過共晶アルミニウム合金溶湯を用いて半凝固金属を製造するにあたり、給湯用ラドル内あるいは保持容器内で保持される溶湯の温度が均一になるように、給湯用ラドル内壁近傍あるいは保持容器の内壁近傍の溶湯を主に給湯中は動かしながらあるいは給湯中から成形温度まで溶湯を動かしながら、給湯用ラドルあるいは保持容器に注がれる溶湯を初期温度(給湯温度ともいう)からAl−Si2元系共晶温度以上で融点以下の温度までの温度領域において、3℃/秒〜20℃/秒の冷却速度で冷却して、その後所定の液相率を有する半凝固金属を保持容器あるいは給湯用ラドルから排出することにより、半凝固成形に適した鋳造素材を得ることができる。また、その鋳造素材を用いて成形することで成形品内部に均一で微細な金属組織を有する機械的性質の優れた収縮巣のない高品質の製品が得られる。よって、耐熱・耐摩耗性の優れたアルミ合金を効率的に製造できるようになった。これにより、自動車用部品の軽量化、鉄鋼部品の代替が可能となり、産業上の利用価値は高い。   The method for producing a semi-solid metal according to the present invention uses an Al—Si hypereutectic aluminum alloy molten metal having a superheat degree of 50 ° C. to 150 ° C. and a P content of 0.005% to 0.03% with respect to the melting point. When manufacturing semi-solid metal, the molten metal near the inner wall of the hot water supply ladle or the inner wall of the holding container is mainly used during hot water supply so that the temperature of the molten metal held in the hot water supply ladle or the holding container becomes uniform. While moving or moving the molten metal from the hot water supply to the molding temperature, the molten metal poured into the hot water supply ladle or holding container is moved from the initial temperature (also referred to as the hot water supply temperature) to a temperature not lower than the melting point and above the Al-Si binary eutectic temperature. In the temperature range of 3 ° C./second to 20 ° C./second, and then discharging a semi-solid metal having a predetermined liquid phase rate from the holding container or the hot water supply ladle, It can be obtained cast material suitable for solid molding. Further, by molding using the casting material, a high-quality product having a uniform and fine metal structure inside the molded product and having excellent mechanical properties and no shrinkage nest can be obtained. Therefore, it has become possible to efficiently produce an aluminum alloy having excellent heat resistance and wear resistance. This makes it possible to reduce the weight of automobile parts and replace steel parts, and has high industrial utility value.

本発明の実施例に係わる容器内の溶湯の温度変化の説明図、即ち、給湯温度から成形温度まで冷却する過程での容器内の溶湯温度の変化を示す説明図である。It is explanatory drawing of the temperature change of the molten metal in the container concerning the Example of this invention, ie, explanatory drawing which shows the change of the molten metal temperature in a container in the process of cooling from hot water supply temperature to shaping | molding temperature. 本発明の実施例に係わる熱伝導率が1kcal/mhr℃以上の保持容器内にて半凝固金属を製造し成形するまでのプロセスの説明図Explanatory drawing of the process until it manufactures and shape | molds a semi-solid metal in the holding | maintenance container whose thermal conductivity concerning the Example of this invention is 1 kcal / mhr (degreeC) or more. 本発明の実施例に係わる熱伝導率が1kcal/mhr℃未満の給湯ラドル内にて溶湯から半凝固金属を製造し成形するまでのプロセスの説明図Explanatory drawing of the process until it manufactures and shape | molds a semi-solid metal from a molten metal in the hot water supply ladle whose thermal conductivity which concerns on the Example of this invention is less than 1 kcal / mhr (degreeC)

符号の説明Explanation of symbols

1 給湯用ラドル
2 保持容器
3 冷却機能を有しない攪拌治具
4 冷却用エアー
5 断熱材
6 揺動治具
7 電磁誘導装置の誘導コイル
8 冷却機能を有する攪拌治具
10 射出スリーブ
11 射出プランジャ
20 金型装置
M1 溶湯
M2 半凝固金属
T1 容器中心部の溶湯温度
T2 容器中心と容器内壁との中間位置での溶湯温度
T3 容器内壁近傍の溶湯温度
DESCRIPTION OF SYMBOLS 1 Ladle 2 for hot water supply 3 Holding container 3 Stirring jig | tool which does not have a cooling function 4 Cooling air 5 Heat insulating material 6 Swing jig 7 Induction coil 8 of an electromagnetic induction device 10 Stirring jig 10 which has a cooling function Injection sleeve 11 Injection plunger 20 Mold apparatus M1 Molten metal M2 Semi-solid metal T1 Molten metal temperature T2 Molten metal temperature T3 between the middle of the container and the inner wall of the container T3 Molten metal temperature near the inner wall of the container

Claims (4)

融点に対して過熱度が50℃〜150℃で、Pを0.005%〜0.03%含むAl−Si系過共晶アルミニウム合金溶湯を用いて半凝固金属を製造するにあたり、給湯用ラドル内あるいは保持容器内で保持される溶湯の温度が均一になるように、給湯用ラドル内壁近傍あるいは保持容器の内壁近傍の溶湯を注湯中は動かしながら、あるいは注湯中から成形温度まで該溶湯を動かしながら、給湯用ラドルあるいは保持容器に注がれる溶湯の注湯温度からAl−Si2元系共晶温度以上で融点以下の所定の温度までの温度領域において3℃/s〜20℃/秒の冷却速度で冷却して、その後二元共晶温度以上で所定の液相率を有する半凝固金属を保持容器あるいは給湯用ラドルから排出することを特徴とする半凝固金属の製造方法。 When manufacturing a semi-solid metal using an Al-Si-based hypereutectic aluminum alloy molten metal having a superheat degree of 50 ° C to 150 ° C with respect to the melting point and containing 0.005% to 0.03% P, a hot water supply ladle The molten metal near the inner wall of the hot water supply ladle or near the inner wall of the holding container is moved during the pouring, or from the pouring to the molding temperature so that the temperature of the molten metal held in the inner or holding container is uniform. 3 ° C / s to 20 ° C / second in the temperature range from the pouring temperature of the molten metal poured into the hot water supply ladle or holding vessel to a predetermined temperature not lower than the melting point and higher than the Al-Si binary eutectic temperature. A method for producing a semi-solid metal, characterized in that the semi-solid metal having a predetermined liquid phase ratio at a temperature equal to or higher than the binary eutectic temperature is discharged from a holding container or a hot water supply ladle. 熱伝導率が3kcal/mhr℃以上の給湯用ラドルあるいは保持容器の内面近傍を冷却機能を有しない治具により攪拌もしくは揺動することにより溶湯を動かすか、あるいは誘導装置により給湯用ラドルあるいは保持容器に磁場を印加して溶湯を動かすことを特徴とする請求項1記載の半凝固金属の製造方法。 A hot water supply ladle having a thermal conductivity of 3 kcal / mhr ° C. or more, or a molten metal is moved by stirring or rocking the vicinity of the inner surface of the holding container with a jig having no cooling function, or a hot water supply ladle or holding container by an induction device 2. The method for producing a semi-solid metal according to claim 1, wherein the molten metal is moved by applying a magnetic field to the metal. 熱伝導率が3kcal/mhr℃未満の保持容器あるいは給湯用ラドル内に溶湯を注ぎ、該溶湯の温度を冷却機能を有する治具により攪拌もしくは揺動しながら所定の液相率となる温度まで冷却することを特徴とする請求項1記載の半凝固金属の製造方法。 The molten metal is poured into a holding container or a hot water supply ladle having a thermal conductivity of less than 3 kcal / mhr ° C., and the temperature of the molten metal is cooled to a temperature at which a predetermined liquid phase ratio is obtained while stirring or swinging with a jig having a cooling function. The method for producing a semi-solid metal according to claim 1. 半凝固金属を請求項1〜請求項3により製造し、該半凝固金属を用いて重力鋳造、低圧鋳造、層流充填高圧鋳造、高速ダイカスト鋳造法、竪型プレス法のいずれかの方法により成形することを特徴とする半凝固金属の成形方法。
A semi-solid metal is produced according to claims 1 to 3, and the semi-solid metal is formed by any one of gravity casting, low-pressure casting, laminar flow filling high-pressure casting, high-speed die casting, and vertical press method. A method for forming a semi-solid metal, comprising:
JP2004097680A 2004-03-30 2004-03-30 Method for producing semi-solid metal and method for forming the same Expired - Fee Related JP4179206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097680A JP4179206B2 (en) 2004-03-30 2004-03-30 Method for producing semi-solid metal and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097680A JP4179206B2 (en) 2004-03-30 2004-03-30 Method for producing semi-solid metal and method for forming the same

Publications (2)

Publication Number Publication Date
JP2005279712A true JP2005279712A (en) 2005-10-13
JP4179206B2 JP4179206B2 (en) 2008-11-12

Family

ID=35178646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097680A Expired - Fee Related JP4179206B2 (en) 2004-03-30 2004-03-30 Method for producing semi-solid metal and method for forming the same

Country Status (1)

Country Link
JP (1) JP4179206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302265A (en) * 2013-06-17 2013-09-18 昆明理工大学 Method for preparing hypereutectic aluminum-silicon alloy pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302265A (en) * 2013-06-17 2013-09-18 昆明理工大学 Method for preparing hypereutectic aluminum-silicon alloy pipe

Also Published As

Publication number Publication date
JP4179206B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4836244B2 (en) Casting method
JP3520994B1 (en) Solid-liquid coexisting metal slurry manufacturing equipment
JP3496833B1 (en) Method for producing metallic material in solid-liquid coexistence state
JP3919810B2 (en) Method for producing semi-solid metal slurry, molding method and molded product
JP3246363B2 (en) Forming method of semi-molten metal
JP3246296B2 (en) Forming method of semi-molten metal
US20070215311A1 (en) Method and Device for the Production of Metal Slurry, and Method and Device for Produciton of Ingot
JP4179206B2 (en) Method for producing semi-solid metal and method for forming the same
JP3520991B1 (en) Method for producing metallic material in solid-liquid coexistence state
JP3491468B2 (en) Method for forming semi-solid metal
JP2001303150A (en) Metallic grain for casting, its producing method and injection-forming method for metal
JP3246273B2 (en) Forming method of semi-molten metal
JP2003183756A (en) Aluminum alloy for semi-solid molding
JP3783275B2 (en) Method for forming semi-molten metal
JPH08257722A (en) Casting method by die casting
JP3536559B2 (en) Method for forming semi-solid metal
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
JP2003126950A (en) Molding method of semi-molten metal
JP3473214B2 (en) Forming method of semi-molten metal
JP2004034135A (en) Aluminum alloy with superior formability in semi-molten state and manufacturing method of its cast ingot
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JP4414950B2 (en) Metal billet for semi-molten casting and method for producing metal billet for semi-molten casting
JP3339333B2 (en) Method for forming molten metal
JP3246319B2 (en) Forming method of semi-molten metal
JPH0987773A (en) Method for molding half-molten metal

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4179206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees