JPH0910893A - Apparatus for producing metal for half melt molding - Google Patents

Apparatus for producing metal for half melt molding

Info

Publication number
JPH0910893A
JPH0910893A JP7160890A JP16089095A JPH0910893A JP H0910893 A JPH0910893 A JP H0910893A JP 7160890 A JP7160890 A JP 7160890A JP 16089095 A JP16089095 A JP 16089095A JP H0910893 A JPH0910893 A JP H0910893A
Authority
JP
Japan
Prior art keywords
metal
cooling
semi
insulating container
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7160890A
Other languages
Japanese (ja)
Inventor
Mitsuru Adachi
充 安達
Hiroto Sasaki
寛人 佐々木
Yasunori Harada
康則 原田
Tatsuo Sakamoto
達雄 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP7160890A priority Critical patent/JPH0910893A/en
Priority to CA002177455A priority patent/CA2177455C/en
Priority to EP02028272A priority patent/EP1331279A3/en
Priority to DE69633988T priority patent/DE69633988T2/en
Priority to EP96108499A priority patent/EP0745694B1/en
Publication of JPH0910893A publication Critical patent/JPH0910893A/en
Priority to US09/490,983 priority patent/US6769473B1/en
Priority to US10/852,952 priority patent/US6851466B2/en
Priority to US11/008,749 priority patent/US7121320B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To obtain a metal for half melt molding dispersed with primary crystals in a liquid phase by holding the metal in which crystal nuclei are generated by contact of molten metal with a jig for cooling while cooling the metal down to the molding temp. of a solid-liquid coexistence state by a heat insulated vessel. CONSTITUTION: The surface temp. of the jig 1 for cooling is kept lower than the m.p. of a molten alloy and the molten allay held at an excess heat degree of about <300 deg.C with respect to a liquidus temp. is poured onto the top end of the jig 1 for cooling of a nucleus forming section 10. The flowing down molten alloy is housed into the heat insulated vessel 22 where the molten alloy is held for about 5 seconds to 60 minutes at the temp. below the liquidus temp. and higher than the eutectic temp. or solidus temp. The extremely fine and isotropic dendrite-like primary crystals are formed in the molten allay from the crystal nuclei and grow as spheroidal primary crystals with an increase in the solid phase rate as the temp. of the melt falls. These spheroidal primary crystals are formed at a prescribed liquid phase rate. The half molten metal dispersed with the extremely fine primary crystals suitable for half melt molding in the liquid phase is extremely easily obtd. in such a manner.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半溶融成形用金属の製造
装置に係り、特に、極めて簡便容易に半溶融成形に適し
た微細な初晶が液相中に分散した半溶融成形用金属の製
造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a metal for semi-melt forming, and particularly to a metal for semi-melt forming in which fine primary crystals suitable for semi-melt forming are dispersed in a liquid phase very easily and easily. The present invention relates to a manufacturing device.

【0002】[0002]

【従来の技術】チクソキャスト法は、従来の鋳造法に比
べて鋳造欠陥や偏析が少なく、金属組織が均一で、金型
寿命が長いことや成形サイクルが短いなどの利点があ
り、最近注目されている半溶融成形技術である。この成
形法(A)において使用されるビレットは、半溶融温度
領域で機械攪拌や電磁攪拌を実施するか、あるいは加工
後の再結晶を利用することによって得られた球状化組織
を特徴とするものである。これに対して、従来鋳造法に
よる素材を用いて半溶融成形する方法も知られている。
これは、例えば、等軸晶組織を発生しやすいマグネ合金
においてさらに微細な結晶を生じせしめるためにZrを
添加する方法(B)や炭素系微細化剤を使用する方法
(C)であり、またアルミ合金において微細化剤として
Al−5%Ti−1%B母合金を従来の2倍〜10倍程
度添加する方法(D)であり、これらの方法により得ら
れた素材を半溶融温度域に加熱し初晶を球状化させ成形
する方法である。また、固溶限以内の合金に対して、固
相線近くの温度まで比較的急速に加熱した後、素材全体
の温度を均一にし局部的な溶融を防ぐために、固相線を
超えて材料が柔らかくなる適当な温度まで緩やかに加熱
して成形する方法(E)が知られている。一方、ビレッ
トを半溶融温度領域まで昇温し成形する方法と異なり、
球状の初晶を含む融液を機械攪拌や電磁攪拌などにより
連続的に生成し、ビレットとして一旦固化することな
く、そのままそれを成形するレオキャスト法(F)が知
られている。
2. Description of the Related Art The thixocasting method has attracted attention recently because of its advantages such as less casting defects and segregation, uniform metal structure, longer die life and shorter molding cycle than the conventional casting method. Is a semi-melt molding technology. The billet used in this molding method (A) is characterized by a spheroidized structure obtained by performing mechanical stirring or electromagnetic stirring in the semi-melting temperature region, or by utilizing recrystallization after processing. Is. On the other hand, a method of semi-solid molding using a material obtained by a conventional casting method is also known.
This is, for example, a method (B) of adding Zr or a method (C) of using a carbon-based refiner in order to generate finer crystals in a Magne alloy which is likely to generate an equiaxed crystal structure. This is a method (D) in which an Al-5% Ti-1% B mother alloy is added as a refining agent in an aluminum alloy in an amount of about 2 to 10 times that of a conventional method (D). In this method, the primary crystals are made spherical by heating and molding. Also, for alloys within the solid solubility limit, after heating relatively quickly to a temperature near the solidus, the material exceeds the solidus in order to equalize the temperature of the entire material and prevent local melting. A method (E) of forming by heating gently to an appropriate temperature at which the material is softened is known. On the other hand, unlike the method of heating the billet to the semi-melting temperature range and molding,
A rheocast method (F) is known in which a melt containing spherical primary crystals is continuously generated by mechanical stirring, electromagnetic stirring, or the like, and is directly solidified as a billet without being solidified.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た(A)の方法は攪拌法や再結晶を利用する方法のいず
れの場合も煩雑であり、製造コストが高くなる難点があ
る。また、マグネ合金においては(B)の場合には、Z
rが高くコスト的に問題であり、(C)の方法では、炭
化物系微細化剤を使用してその微細化効果を十分に発揮
させるためには、酸化防止元素であるBeを、例えば、
7ppm程度に低く管理する必要があり、成形直前の加
熱処理時に酸化燃焼しやすく、作業上不都合である。一
方、アルミ合金においては、単に微細化剤を添加するだ
けでは500μm程度であり、100μm以下の微細な
結晶粒の組織を得ることは容易ではない。このため、多
量に微細化剤を添加する方法(D)があるが、微細化剤
が炉底に沈降しやすく工業的には難しく、かつコストも
高い。さらに(E)の方法では、固相線を超えてから緩
やかに加熱して素材の均一加熱と球状化を図ることを特
徴とするチクソ成形法が提案されているが、通常のデン
ドライト組織を加熱してもチクソ組織(初晶デンドライ
トが球状化されている)には変化しない。しかも(A)
〜(E)のいずれのチクソ成形法においても半溶融成形
するために、一旦液相を固化しそのビレットを再度、高
周波誘導炉などで半溶融温度領域まで昇温する必要があ
り、従来鋳造法に比べてコスト高になる。また、(F)
の方法では、球状の初晶を含む融液を連続的に生成供給
するため、コスト的、エネルギー的にもチクソキャスト
よりも有利であるが、球状組織と液相からなる金属原料
を製造する機械と最終製品を製造する鋳造機との処理能
力の違いが発生したりして設備的連動が困難である。本
発明は、上述の従来の各方法の問題点に着目し、ビレッ
トを使用することなくしかも煩雑な方法をとることなく
簡便容易に、半溶融成形に適した微細な初晶が液相中に
分散した半溶融成形に適した半溶融金属を製造する装置
を提供することを目的とするものである。
However, the above-mentioned method (A) is complicated in both cases of the stirring method and the method of utilizing recrystallization, and there is a drawback that the manufacturing cost becomes high. Further, in the case of (B), in the case of the magnet alloy, Z
In the method (C), since the r is high and the cost is a problem, in order to sufficiently exert the refining effect by using the carbide-based refining agent, Be, which is an antioxidant element, is
It is necessary to control the concentration to be about 7 ppm, which is oxidative and combustible during the heat treatment immediately before molding, which is inconvenient for work. On the other hand, in the case of an aluminum alloy, it is about 500 μm just by adding a refiner, and it is not easy to obtain a fine grain structure of 100 μm or less. For this reason, there is a method (D) in which a large amount of the finely-dividing agent is added, but the finely-dividing agent is liable to settle on the furnace bottom and is industrially difficult, and the cost is high. Further, in the method (E), a thixo-molding method characterized by uniform heating and spheroidization of the material by gradually heating after exceeding the solidus line has been proposed. However, it does not change into the thixo structure (the primary dendrite is spheroidized). Moreover (A)
In any of the thixomolding methods (1) to (E), in order to perform semi-melt molding, it is necessary to once solidify the liquid phase and raise the billet again to a semi-melt temperature range in a high frequency induction furnace or the like. The cost is higher than. Also, (F)
In this method, since a melt containing spherical primary crystals is continuously generated and supplied, it is more advantageous in terms of cost and energy than thixocasting, but a machine for producing a metal raw material composed of a spherical structure and a liquid phase. It is difficult to interlock the equipment because the difference in processing capacity between the casting machine and the casting machine that manufactures the final product may occur. The present invention focuses on the problems of each of the above-mentioned conventional methods, and easily and easily without using a billet and without taking a complicated method, a fine primary crystal suitable for semi-melt molding is in the liquid phase. An object of the present invention is to provide an apparatus for producing a semi-molten metal suitable for dispersed semi-melt forming.

【0004】[0004]

【課題を解決するための手段】本発明においては、上述
の課題を解決するため、第1の発明では、微細な初晶が
液相中に分散した半溶融成形用金属の製造装置であっ
て、溶湯を冷却用治具に接触させて液中に結晶核を発生
させる核生成部と、該核生成部により得られた金属を固
液共存状態の成形温度まで冷却しつつ保持することがで
きる断熱容器を有する結晶生成部とを備えた構成とし
た。また、第2の発明では、第1の発明における核生成
部の冷却用治具を、内部に冷却媒体が通過する流路が配
設され、溶湯の流れ方向に沿設された左右一対の堰を上
面に備えた傾斜平面板とするか、または円筒管もしくは
半円筒管とした。さらに、第3の発明では、第1の発明
における核生成部の冷却用治具を、静止または回転駆動
手段により回転自在な漏斗管とした。そして、第4の発
明は、第1〜第3の発明において、結晶生成部の断熱容
器を懸架する把持部を外周部に略等間隔で複数個配設さ
れた竪軸回りに回転自在な水平円板ならびに該水平円板
の回転駆動手段を備えるとともに、該肥持部の一個所に
懸架された前記断熱容器を持ち上げる昇降手段ならびに
該持ち上げられた断熱容器を移送する移動手段を備え、
かつ、該水平円板の把持部に懸架され冷却用治具を介し
て注湯される断熱容器を注湯中に任意の傾斜角度に傾斜
させる断熱容器の傾動手段を備えてなる構成とした。
In order to solve the above-mentioned problems, the present invention provides, in the first invention, an apparatus for producing a metal for semi-melt forming in which fine primary crystals are dispersed in a liquid phase. , A nucleation part for bringing the molten metal into contact with a cooling jig to generate crystal nuclei in the liquid, and the metal obtained by the nucleation part can be held while being cooled to a molding temperature in a solid-liquid coexisting state. And a crystal production unit having a heat insulating container. Further, in the second invention, the cooling jig of the nucleation section in the first invention is provided with a pair of left and right weirs provided with a flow passage through which a cooling medium passes inside and arranged along the flow direction of the molten metal. Was an inclined flat plate having an upper surface, or a cylindrical tube or a semi-cylindrical tube. Further, in the third invention, the cooling jig of the nucleation part in the first invention is a funnel tube which is rotatable by a stationary or rotary driving means. And 4th invention WHEREIN: 1st-3rd invention WHEREIN: The holding | maintenance part which suspends the heat insulation container of a crystal | crystallization production | generation part is arrange | positioned in the outer peripheral part at a substantially equal space | interval, and is horizontally rotatable about a vertical axis. In addition to a disk and a rotation driving means for the horizontal disk, an elevating means for lifting the heat insulating container suspended in one place of the fertilizer and a moving means for transferring the lifted heat insulating container,
In addition, a tilting means of the heat insulating container for tilting the heat insulating container, which is suspended on the holding portion of the horizontal disk and is poured through the cooling jig through the cooling jig, at an arbitrary inclination angle, is provided.

【0005】[0005]

【作用】本発明においては、核生成部の冷却用治具に液
相線温度に対して過熱度を300℃未満に保持された合
金溶湯を注湯し、該合金の融点よりも低い冷却用治具に
接触させて液中に結晶核を発生させつつ、結晶生成部の
断熱容器内へ注入し、成形温度近くまで冷却降温させて
から、成形装置へ移送し成形する。したがって、煩雑な
方法をとることなく、極めて簡便容易に半溶融成形に適
した微細な初晶を液相中に分散した半溶融金属が得られ
る。
In the present invention, a molten alloy having a superheat degree of less than 300 ° C. with respect to the liquidus temperature is poured into a cooling jig of the nucleation part to cool it below the melting point of the alloy. While being brought into contact with a jig to generate crystal nuclei in the liquid, the crystal nuclei are poured into the heat insulating container of the crystal forming part, cooled and cooled to near the molding temperature, and then transferred to a molding device for molding. Therefore, a semi-molten metal in which fine primary crystals suitable for semi-melt molding are dispersed in a liquid phase can be obtained very simply and easily without taking a complicated method.

【0006】[0006]

【実施例】以下図面に基づいて、本発明の実施例の詳細
について説明する。図1〜図10は本発明の実施例に係
り、図1は半溶融成形用金属製造装置100の側面図、
図2は核生成部10を構成する冷却用治具1の斜視図、
図3は他の実施例を示す冷却用治具1Aの横断面図、図
4は他の実施例を示す冷却用治具1C(漏斗管)の側面
断面図、図5は他の実施例を示す半溶融成形用金属製造
装置100Aの全体平面図、図6は図5のA−A視の縦
断面図、図7は図5のB−B視の縦断面図、図8は断熱
容器22の縦断面図、図9は半溶融成形用金属の製造方
法を説明する工程説明図、図10は成形品の金属組織を
示す顕微鏡写真の模写図である。また、図11は核生成
部を経由せずに直接断熱容器へ注湯して冷却した溶湯に
より得られた成形品の金属組織(比較例)の顕微鏡写真
の模写図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 10 relate to an embodiment of the present invention, and FIG. 1 is a side view of a semi-melt forming metal manufacturing apparatus 100,
FIG. 2 is a perspective view of the cooling jig 1 that constitutes the nucleation unit 10,
3 is a lateral sectional view of a cooling jig 1A showing another embodiment, FIG. 4 is a side sectional view of a cooling jig 1C (funnel tube) showing another embodiment, and FIG. 5 is another embodiment. FIG. 6 is an overall plan view of the semi-melt forming metal manufacturing apparatus 100A shown in FIG. 6, FIG. 6 is a vertical sectional view taken along line AA of FIG. 5, FIG. 7 is a vertical sectional view taken along line BB of FIG. 5, and FIG. 9 is a vertical cross-sectional view, FIG. 9 is a process explanatory view illustrating a method for producing a metal for semi-melt molding, and FIG. 10 is a copy of a micrograph showing a metal structure of a molded product. Further, FIG. 11 is a copy of a micrograph of a metal structure (comparative example) of a molded product obtained by pouring and cooling the molten metal directly into a heat insulating container without passing through the nucleation part.

【0007】図1に示すように、半溶融金属成形用製造
装置100は核生成部10と結晶生成部20とから構成
され、核生成部10は、傾斜した銅製平面板の上面に左
右一対の堰2を突設した冷却用治具1とこれを傾斜状態
に保持するスタンド3と冷却用治具1内部に冷却媒体
(通常は冷却水)を通過させる流路に接続された冷却配
管4(注入管4aおよび戻り管4b)とからなり、一
方、結晶生成部20は、核生成部10により得られた金
属溶湯を固液共存状態の成形温度まで冷却しつつ保持す
ることにより、微細な結晶を生成させるためのものであ
り、冷却用治具1を流下した後に注ぎ込まれる金属溶湯
Mの容器となる断熱容器22で形成される。断熱容器2
2は、必要に応じて、図8に示すように、金属容器24
内に収納され蓋板25でボルト締めされて剛性を保持さ
れたものとし、後述するように、移送の便のために金属
容器24の側面には左右一対の丸鋼で形成された吊り具
24aが突設される。銅製平面板など金属平板を冷却用
治具1として使用する場合には、金属冷却板への溶湯の
付着を防止するために、必要に応じてその表面にBNな
どの非金属質のコーティング剤を塗布することにより漏
れ性を悪くするような配慮が望ましい。また、堰2は冷
却用治具1の上表面を流れる溶湯の流れ状態を制御する
ために設けたものである。
As shown in FIG. 1, a semi-molten metal forming manufacturing apparatus 100 comprises a nucleation section 10 and a crystal generation section 20. The nucleation section 10 has a pair of left and right on the upper surface of an inclined copper flat plate. A cooling jig 1 provided with a projecting weir 2, a stand 3 for holding it in an inclined state, and a cooling pipe 4 connected to a flow path for passing a cooling medium (usually cooling water) inside the cooling jig 1 ( Injection tube 4a and return tube 4b), while the crystal forming part 20 holds the molten metal obtained by the nucleation part 10 while cooling it to the forming temperature in the solid-liquid coexisting state, thereby forming fine crystals. And is formed by a heat insulating container 22 which serves as a container for the molten metal M poured after the cooling jig 1 has flowed down. Insulation container 2
2, if necessary, as shown in FIG.
It is assumed that it is housed inside and is rigidly held by being bolted with a lid plate 25, and as will be described later, a hanging tool 24a formed of a pair of left and right round steels on the side surface of the metal container 24 for the convenience of transportation. Is projected. When a metal flat plate such as a copper flat plate is used as the cooling jig 1, a non-metallic coating agent such as BN is applied to the surface of the metal cooling plate in order to prevent the molten metal from adhering to the cooling plate. Care should be taken to make the leaking property worse by applying it. The weir 2 is provided to control the flow state of the molten metal flowing on the upper surface of the cooling jig 1.

【0008】図3は冷却用治具として、円筒管からなる
冷却用治具1Aや半円筒管からなる冷却用治具1Bを採
用した例を示し、冷却用治具1Aや1Bの内部には、銅
製平面板の冷却用治具1と同様に、冷却媒体流路5およ
び冷却配管4(注入管4aおよび戻り管4b)を設け
る。
FIG. 3 shows an example in which a cooling jig 1A made up of a cylindrical tube and a cooling jig 1B made up of a semi-cylindrical tube are adopted as cooling jigs. Similarly to the cooling jig 1 for the flat plate made of copper, the cooling medium flow path 5 and the cooling pipe 4 (the injection pipe 4a and the return pipe 4b) are provided.

【0009】一方、冷却用治具として漏斗管を使用した
例が図4に示されており、この場合の冷却用治具1Cは
静止した状態で金属溶湯Mを注入した後、その下部に置
かれた断熱容器22へ落下させるようにしてもよいが、
冷却効果を上げるため、冷却用治具1Cを台座1a上の
スラスト軸受1bで支承して回転自在とし、減速電動機
1fにより平歯車1e、1dを介して低速度で回転しつ
つ注入してもよい。
On the other hand, an example in which a funnel tube is used as a cooling jig is shown in FIG. 4, and the cooling jig 1C in this case is placed in the lower portion after pouring the molten metal M in a stationary state. You may make it fall to the heat-insulated container 22 which was covered,
In order to enhance the cooling effect, the cooling jig 1C may be rotatably supported by the thrust bearing 1b on the pedestal 1a, and injected while rotating at a low speed by the reduction motor 1f through the spur gears 1e and 1d. .

【0010】以上のように構成された半溶融成形用金属
製造装置100において、半溶融成形用金属を得るに
は、まず核生成部10の冷却用治具1(または1A、1
B、1C)の上端へ、液相線温度に対して過熱度を30
0℃未満に保持された合金溶湯を注ぎ、流下させる。こ
のとき、冷却用治具1の表面温度はこの合金の融点より
も低い温度に保持しておく。そして、冷却用治具1(ま
たは1A、1B、1C)を流下した合金溶湯を断熱容器
22内へ静かに収納し、この断熱容器22内において液
相線温度以下でかつ共晶温度あるいは固相線温度より高
い温度の状態に5秒間〜60分間保持することにより、
微細な球状の初晶を多数発生させて、所定の液相率で成
形する。ここで、所定の液相率とは、加圧成形に適する
液相の量比を意味し、ダイカスト鋳造、スクイズ鋳造な
どの高圧鋳造では液相率は20%〜90%、好ましくは
30%〜70%(30%未満では素材の成形性が劣り、
70%以上では素材が軟いためハンドリングが難しいば
かりでなく、均一な組織が得にくくなる)とし、押出法
や鍛造法では、0.1%〜70%、好ましくは0.1%
〜50%(50%以上では組織の不均一が生じる惧れが
ある)とする。また、本発明でいう断熱容器22とは、
金属製容器または非金属製容器とするか、あるいは半導
体を含む非金属材料を表面に塗布した金属製容器、もし
くは半導体を含む非金属材料を複合させた金属製容器と
し、かつ、該容器の内部あるいは外部から該容器の加熱
または冷却が可能なものである。
In the semi-melt forming metal producing apparatus 100 having the above-described structure, in order to obtain the semi-melt forming metal, first, the cooling jig 1 (or 1A, 1A, 1A) of the nucleation section 10 is obtained.
B, 1C) to the upper end of the liquidus temperature to 30 degrees
The alloy melt kept below 0 ° C. is poured and allowed to flow down. At this time, the surface temperature of the cooling jig 1 is kept at a temperature lower than the melting point of this alloy. Then, the molten alloy that has flowed down the cooling jig 1 (or 1A, 1B, 1C) is gently stored in the heat insulating container 22, and within the heat insulating container 22, the temperature is lower than the liquidus temperature and the eutectic temperature or the solid phase. By keeping the temperature higher than the line temperature for 5 seconds to 60 minutes,
A large number of fine spherical primary crystals are generated and molded at a predetermined liquid phase ratio. Here, the predetermined liquid phase ratio means the amount ratio of the liquid phase suitable for pressure molding, and the liquid phase ratio is 20% to 90%, preferably 30% to in high pressure casting such as die casting and squeeze casting. 70% (If less than 30%, the moldability of the material is poor,
If it is 70% or more, not only is it difficult to handle because the material is soft, it is difficult to obtain a uniform structure.) In the extrusion method or forging method, 0.1% to 70%, preferably 0.1%
-50% (50% or more may cause nonuniformity of the structure). Further, the heat insulating container 22 in the present invention means
A metal container or a non-metal container, or a metal container whose surface is coated with a non-metal material containing a semiconductor, or a metal container in which a non-metal material containing a semiconductor is combined, and the inside of the container Alternatively, the container can be heated or cooled from the outside.

【0011】具体的には以下のとおりの手順により作業
を進める。図9の工程[1]においてラドル150内に
入れられた完全液体である金属Mを工程[2]におい
て、(a)冷却用治具1を用いて低温溶湯(必要に応じ
て結晶核生成を促進する元素も添加)から結晶核を発生
させ断熱効果を有する断熱容器22に注ぐ、または、
(b)微細組織生成促進元素を含む融点直上の低温溶湯
を直接、断熱効果を有する断熱容器22に注ぐ、のいず
れかの方法により多数の結晶核を含む液相線直下の合金
を得る。つぎに工程[3]において、該断熱容器22に
おいて該合金を半溶融状態で保持する。この間、導入さ
れた結晶核から極微細で等方的な図10に示すようなデ
ントライト状の初晶が生成し([3]−a)、融体の温
度低下に伴う固相率の増加につれて球状の初晶として成
長する([3]−c)。核生成部10を経由せず、単に
断熱容器22に溶湯を注ぐだけでは、図11に示すよう
な少し角のとれた粗大なデンドライト組織しか得られな
い。このようにして得られた所定の液相率を有する金属
Mを、例えば、[3]−dのようにダイキャストの射出
スリーブ40に挿入した後ダイカストマシンの金型キャ
ビティ50a内で加圧成形して成形品を得る。
Specifically, the work proceeds according to the following procedure. In step [2], the metal M, which is a complete liquid, put in the ladle 150 in step [1] of FIG. (Also adding an accelerating element) to generate crystal nuclei and pour into a heat insulating container 22 having a heat insulating effect, or
(B) A low-temperature molten metal immediately above the melting point containing the microstructure generation promoting element is directly poured into the heat insulating container 22 having a heat insulating effect to obtain an alloy immediately below the liquidus line containing a large number of crystal nuclei. Next, in step [3], the alloy is held in the semi-molten state in the heat insulating container 22. During this period, an extremely fine and isotropic primary crystal of dentrite as shown in FIG. 10 is generated from the introduced crystal nuclei ([3] -a), and the solid fraction increases as the temperature of the melt decreases. As a result, spherical primary crystals grow ([3] -c). If the molten metal is simply poured into the heat insulating container 22 without passing through the nucleation unit 10, only a slightly sharp and coarse dendrite structure as shown in FIG. 11 can be obtained. The metal M having a predetermined liquid phase ratio thus obtained is inserted into the die-casting injection sleeve 40 as shown in [3] -d, and then pressure-molded in the die cavity 50a of the die casting machine. To obtain a molded product.

【0012】図1、図2、図3、図4に示す本発明と従
来のチクソキャスト法、レオキャスト法、の違いは図よ
り明らかである。すなわち、本発明では従来法のように
は、半溶融温度領域で晶出したデンドライト状の初晶を
機械攪拌や電磁攪拌で強制的に破砕球状化することはな
く、液中に導入された結晶核を起点として半溶融温度領
域での温度低下とともに晶出、成長する多数の初晶が合
金自身が持っている熱量により(必要に応じて外部から
加熱保持されることもありうる)連続的に球状化される
ものであり、また、チクソキャスト法におけるビレット
の再昇温による半溶融化の工程が省かれているため極め
て簡便な方法である。
The difference between the present invention shown in FIGS. 1, 2, 3 and 4 and the conventional thixocasting method and rheocasting method is clear from the drawings. That is, in the present invention, unlike the conventional method, dendrite-like primary crystals crystallized in the semi-melting temperature region are not crushed into spherical particles by force by mechanical stirring or electromagnetic stirring, and crystals introduced into the liquid A large number of primary crystals that crystallize and grow with a decrease in temperature in the semi-melting temperature region starting from the nucleus (depending on the need, may be heated and held externally) continuously This is an extremely simple method because it is spheroidized and the step of semi-melting by reheating the billet in the thixocast method is omitted.

【0013】上述した各工程、すなわち、図1に示す冷
却用治具1への注湯工程、初晶の生成、球状工程、成形
工程のそれぞれにおいて設定された鋳造条件、球状化条
件および成形条件で示した数値限定理由について以下に
説明する。鋳造温度が融点に対して300℃以上高けれ
ば、あるいは冷却用治具1の表面温度が融点以上の場合
では、(1)結晶の核発生が少なく、しかも、(2)断
熱効果を有する断熱容器に注がれた時の溶湯Mの温度が
液相線よりも高いために残存する結晶核の割合も低く、
初晶のサイズが大きくなる。このため、鋳造温度は液相
線に対する過熱度を300℃未満とし、冷却用治具1の
表面温度は、合金の融点よりも低くする。なお、液相線
に対する過熱度を100℃未満とすることにより、ま
た、冷却用治具1の温度を合金Mの融点よりも50℃以
上低くすることにより、より微細な初晶サイズとするこ
とができる。冷却用治具1に溶湯Mを接触させる方法と
しては、治具の表面を溶湯Mを移動させる場合(傾斜し
た治具1へ溶湯を流す)と溶湯中を冷却用治具1が移動
する場合の2種類があるが、本発明の実施例(図1〜図
3)では、静止した冷却用治具1、1A、1Bへ溶湯M
を移動させ、図4の冷却用治具1Cでは、静止のほか冷
却用治具1C(漏斗管)を回転させつつ、溶湯Mを注ぐ
ようにして冷却効率を向上させるようにした。また、結
晶生成部20における断熱容器22内の冷却保持時間を
5秒〜60分間としたが、断熱容器22での保持時間が
5秒未満であれば、希望する液相率を示す温度にするこ
とが容易ではなく、また球状の初晶を生成することが困
難である。一方、保持時間が60分を超えると生成した
球状初晶や共晶組織が粗くなり機械的性質が低下する。
このため保持時間は5秒〜60分とする。
Casting conditions, spheroidizing conditions and molding conditions set in each of the above-mentioned processes, namely, the process of pouring into the cooling jig 1 shown in FIG. 1, the production of primary crystals, the spherical process, and the molding process. The reason for limiting the numerical value indicated by will be described below. When the casting temperature is higher than the melting point by 300 ° C. or higher, or when the surface temperature of the cooling jig 1 is higher than the melting point, (1) the generation of crystal nuclei is small, and (2) a heat insulating container having a heat insulating effect. Since the temperature of the molten metal M when it is poured into the liquid is higher than the liquidus, the proportion of remaining crystal nuclei is low,
The size of the primary crystals increases. Therefore, the casting temperature is set so that the degree of superheat with respect to the liquidus is less than 300 ° C., and the surface temperature of the cooling jig 1 is lower than the melting point of the alloy. A finer primary crystal size is obtained by setting the superheat degree to the liquidus below 100 ° C. and by lowering the temperature of the cooling jig 1 by 50 ° C. or more below the melting point of the alloy M. You can As a method of bringing the molten metal M into contact with the cooling jig 1, a method of moving the molten metal M on the surface of the jig (flowing the molten metal to the inclined jig 1) and a case of moving the cooling jig 1 in the molten metal In the embodiment of the present invention (FIGS. 1 to 3), the molten metal M is applied to the stationary cooling jigs 1, 1A, 1B.
In the cooling jig 1C of FIG. 4, the cooling efficiency is improved by pouring the molten metal M while rotating the cooling jig 1C (funnel tube) in addition to being stationary. Further, the cooling holding time in the heat insulating container 22 in the crystal forming part 20 is set to 5 seconds to 60 minutes, but if the holding time in the heat insulating container 22 is less than 5 seconds, the temperature showing the desired liquid phase rate is obtained. Is not easy, and it is difficult to generate spherical primary crystals. On the other hand, if the holding time exceeds 60 minutes, the generated spherical primary crystals and eutectic structure become coarse and the mechanical properties deteriorate.
Therefore, the holding time is 5 seconds to 60 minutes.

【0014】前述したように、断熱容器22での保持時
間は5秒〜60分間と成形温度までの冷却時間によって
広範囲に異なり、保持時間が例えば10分〜60分間の
ように長い場合には、ひとつの核生成部10(冷却用治
具1)に対してひとつの結晶生成部20(断熱容器2
2)の組み合わせの製造装置では著しく生産性が低い。
この問題点を解消し、冷却待時間の生産ロスを回避して
生産性を向上させた半溶融成形用金属製造装置100A
が図5に示すものである。図5において、半溶融成形用
金属製造装置100Aは、外周に複数個の断熱容器22
を懸架できる把持部を有し、中心の回転軸62回りに回
転自在な水平円板で形成された回転円板(ターンテーブ
ル)60を備えたものである。断熱容器22を収納した
金属容器24の側面には、図8に示すように、左右一対
の丸鋼で形成された吊具24a、24aを水平方向に突
出させた状態で溶接付けしておき、回転円板(ターンテ
ーブル)60の外周部に略等間隔に金属容器24の直径
よりも一回り半円形状の切欠きを設けるとともに、吊具
24a、24aを載置するための半円形状のパイプから
なる吊具受け30aを水平に張出して固設し、図8のよ
うに断熱容器22と一体となった金属容器24を懸架す
る。
As described above, the holding time in the heat insulating container 22 varies over a wide range from 5 seconds to 60 minutes depending on the cooling time to the molding temperature, and when the holding time is long such as 10 minutes to 60 minutes, One nucleation unit 10 (cooling jig 1) for one crystal generation unit 20 (heat insulation container 2)
The production apparatus of the combination of 2) has remarkably low productivity.
This metal melting apparatus 100A for semi-molten forming solves this problem and improves productivity by avoiding production loss during cooling waiting time.
Is shown in FIG. In FIG. 5, the semi-melt forming metal manufacturing apparatus 100A includes a plurality of heat insulating containers 22 on the outer circumference.
The rotating disk (turntable) 60 is formed by a horizontal disk that has a gripping portion that can suspend the rotating disk 62 and is rotatable around a central rotating shaft 62. On the side surface of the metal container 24 accommodating the heat insulating container 22, as shown in FIG. 8, the hangers 24a and 24a formed of a pair of left and right round steels are welded in a state of horizontally protruding, Notches having a semicircular shape that is slightly larger than the diameter of the metal container 24 are provided on the outer peripheral portion of the rotating disk (turntable) 60 at approximately equal intervals, and a semicircular shape for mounting the suspenders 24a, 24a. A hanger receiver 30a made of a pipe is horizontally extended and fixed, and a metal container 24 integrated with the heat insulating container 22 is suspended as shown in FIG.

【0015】このように構成された回転円板(ターンテ
ーブル)60に懸架された断熱容器22は、図5に示す
ように、左方の冷却用治具1を介して注湯され、低速度
で回転する回転円板(ターンテーブル)60に移送さ
れ、所定の冷却時間を経過した後丁度180℃回転した
右方位置に回転移動する。この右方位置には、図6に示
すように、ターンテーブル60の断熱懸架位置の下方に
油圧シリンダなどの断熱容器22の昇降手段(油圧シリ
ンダ)26が布設され、断熱容器22の底面を押し上げ
る作用をなし、次工程の射出スリーブ40へ断熱容器2
2を移送した後に内部の半凝固状態の金属溶湯を供給す
るようになっている。また、図7に示すように、冷却用
治具1より直立した断熱容器22へ直接注湯すると空気
巻込みを起して鋳造欠陥の惧れがあり好ましくないの
で、あらかじめ断熱容器22を所定角度傾けておいて断
熱容器22の側壁を伝わらせて静かに注湯する配慮が望
ましい。そのため、先端にピン支持された回転自在な押
圧板28bを取りつけたピストンロッド28aを有する
油圧シリンダなどの押圧手段(油圧シリンダ)28を、
冷却用治具1の下方に設置する。以上のように構成され
た半溶融成形用金属製造装置1Aは、複数の断熱容器2
2、…を順次連続処理して射出スリーブへ溶湯金属を供
給することができるので、単一の断熱容器22のものに
比べて、冷却待時間を要せず、生産性の低下を防止でき
る。
As shown in FIG. 5, the heat insulating container 22 suspended on the rotating disk (turntable) 60 thus constructed is poured through the cooling jig 1 on the left side, and is cooled at a low speed. It is transferred to a rotating disk (turntable) 60 which rotates at a temperature of 60 ° C., and after a lapse of a predetermined cooling time, it is rotated to a right position rotated by 180 ° C. At this right position, as shown in FIG. 6, an elevating means (hydraulic cylinder) 26 for the heat insulating container 22 such as a hydraulic cylinder is installed below the heat insulating suspending position of the turntable 60 to push up the bottom surface of the heat insulating container 22. Insulation container 2 which acts and is attached to injection sleeve 40 in the next step
After transferring 2, the metal melt in a semi-solidified state inside is supplied. Further, as shown in FIG. 7, when the molten metal is directly poured into the heat insulating container 22 which is upright from the cooling jig 1, air entrainment may occur, which may cause casting defects. It is desirable to tilt it so that the side wall of the heat insulating container 22 is transmitted and the molten metal is gently poured. Therefore, a pressing means (hydraulic cylinder) 28 such as a hydraulic cylinder having a piston rod 28a to which a rotatable pressing plate 28b supported by a pin at the tip is attached,
It is installed below the cooling jig 1. The metal manufacturing apparatus for semi-melt molding 1A configured as described above includes a plurality of heat insulation containers 2
Since the molten metal can be sequentially supplied to the injection sleeve by sequentially performing the processes of 2, ..., As compared with the case of the single heat insulating container 22, a waiting time for cooling is not required, and a decrease in productivity can be prevented.

【0016】以上のようにして、本発明の半溶融成形用
金属製造装置100や100Aでは、半溶融成形に適し
た微細な初晶が液相中に分散した、かつ非金属介在物の
混入のない半溶融金属を得ることができる。しかも、断
熱性容器の中にて保持、冷却しているために、半溶融金
属の表面は酸化されにくい、金属内部の温度分布は非常
に良いという特徴を有するために、半溶融成形において
通常成形素材の加熱に使用する高周波炉はほとんどの合
金において不要である。なお、ロボットあるいは専用機
械にて該容器を掴んで、所定の成形温度になった断熱容
器22中の金属をダイキャスト(スクイズ鋳造機を含
む)の射出スリーブ40内に射出チップの面に接する側
に該金属の上端を向けて挿入すれば、半溶融成形するこ
とができ、図10に示すような微細な球状の初晶を有す
る組織からなる高品質の鋳造材が得られる。しかし、核
生成部10を経由せずに単に断熱容器22に溶湯を注ぐ
だけでは、図11に示すような少し角がとれた粗大なデ
ンドライトしか得られない。また、本発明の装置にて製
造した半溶融金属はダイキャスト以外の加圧成形法を用
いても良いし、加圧しないで静かに砂型、金型の中に挿
入しても構わない。なお、上記実施例では核の生成手段
として、内部に冷却手段を有する銅製平板を使用した
が、結晶核が発生し、しかも、再溶解しないようにする
ことができれば良いので、以下のような手段が適用でき
る。
As described above, in the metal-making apparatus 100 or 100A for semi-melt forming of the present invention, fine primary crystals suitable for semi-melt forming are dispersed in the liquid phase, and non-metallic inclusions are not mixed. No semi-molten metal can be obtained. Moreover, since the surface of semi-molten metal is hard to be oxidized because it is held and cooled in a heat-insulating container, and the temperature distribution inside the metal is very good, it is usually molded in semi-melt molding. The high frequency furnace used to heat the material is not needed in most alloys. The side of the container that is held by a robot or a dedicated machine and contacts the surface of the injection chip in the injection sleeve 40 of the die cast (including the squeeze casting machine) of the metal in the heat-insulated container 22 that has reached a predetermined molding temperature. If the metal is inserted with the upper end facing to, semi-molten molding can be performed, and a high-quality cast material having a structure having fine spherical primary crystals as shown in FIG. 10 can be obtained. However, if the molten metal is simply poured into the heat insulating container 22 without passing through the nucleation unit 10, only coarse dendrites with a slight angle as shown in FIG. 11 can be obtained. The semi-molten metal produced by the apparatus of the present invention may be subjected to a pressure molding method other than die casting, or may be gently inserted into a sand mold or a metal mold without being pressurized. In the above example, a copper flat plate having a cooling means inside was used as the means for generating nuclei, but it is sufficient if it can prevent crystal nuclei from being generated and, further, re-dissolve. Can be applied.

【0017】堰2をつけない替わりに、前述したよう
に、図3に示すような筒状、円弧状の冷却用治具1A、
1Bを使用したりすることもできる。また、図4に示す
ように、駆動手段により回転する円錐状の冷却用治具1
Cの中に溶湯を注いで結晶核を発生させた後、その下部
より該溶湯を断熱容器22に注いだりすることもでき
る。なお、冷却用治具1の材質は、所定の時間内に冷却
し、かつ核が含まれていれば良く、金属に限定されるも
のではない。また、上記実施例では結晶生成手段とし
て、断熱性セラミック容器を使用し、他の本発明の実施
例では、該容器22を多数配置できる回転式のターンテ
ーブル60を使用したが、断熱容器22の配置、固定方
法はこれに限定されるものではなく、直線的にあるいは
それ以外の方法で配置しても構わないし、固定方法も所
定の箇所に位置決めできるようにした、例えば、図8に
示すような断熱容器22の直径よりも少し大きい内径を
持つ金属容器24に入れ、必要に応じて底面を押圧し
て、断熱容器22を油圧シリンダなどの昇降手段26に
より昇降させるようにする方法でも構わない。なお、本
発明においては、核生成部と結晶生成部を分けたが、両
工程を一緒にすることも可能である。たとえば、断熱容
器22内の溶湯に対して冷却治具や湯面振動治具を使用
することにより核の生成と、結晶生成を行なわせても良
い。
Instead of attaching the weir 2, as described above, a cylindrical or arc-shaped cooling jig 1A as shown in FIG.
It is also possible to use 1B. Further, as shown in FIG. 4, a conical cooling jig 1 rotated by a driving means.
After pouring the molten metal into C to generate crystal nuclei, the molten metal can be poured into the heat insulating container 22 from below. The material of the cooling jig 1 is not limited to metal as long as it is cooled within a predetermined time and contains a nucleus. Further, in the above-described embodiment, a heat insulating ceramic container is used as the crystal generating means, and in other embodiments of the present invention, the rotary turntable 60 in which a large number of the containers 22 can be arranged is used. The arrangement and the fixing method are not limited to this, and they may be arranged linearly or by other methods, and the fixing method can be positioned at a predetermined position, for example, as shown in FIG. Alternatively, the heat insulating container 22 may be placed in a metal container 24 having an inner diameter slightly larger than the diameter of the heat insulating container 22, the bottom surface may be pressed if necessary, and the heat insulating container 22 may be lifted and lowered by a lifting means 26 such as a hydraulic cylinder. . Although the nucleation part and the crystal formation part are separated in the present invention, both steps can be combined. For example, nucleation and crystal formation may be performed by using a cooling jig or a molten surface vibrating jig for the molten metal in the heat insulating container 22.

【0018】[0018]

【発明の効果】以上説明したことからも明らかなよう
に、本発明に係わる半溶融成形用金属の製造装置では、
溶湯を冷却用治具に接触させて液中に結晶核を発生させ
る核生成部とその核生成部により得られた金属を固液共
存状態の成形温度まで冷却しつつ保持することができる
断熱容器を有する結晶生成部を備えることにより、煩雑
な方法をとることなく、極めて簡便容易に、半溶融成形
に適した微細な初晶が液相中に分散した半溶融金属を製
造することができる。具体的には、1)機械攪拌や電磁
攪拌のような煩雑な装置が不要、2)断熱容器内におい
て成形に適した半溶融金属にするために、成形に必要な
量のみを準備することが可能であるため、その後の成形
工程でのトラブルに対しても問題がない、3)半溶融成
形温度に昇温するために高価な高周波過熱装置が不要、
4)半溶融成形前において断熱容器に保持されているた
めに、金属素材の温度分布が良い、酸化されにくい、金
属素材の成形直前での温度低下がほとんどない、5)半
溶融成形前において断熱容器に保持されているために、
金属素材の液相率にあまり関係なく成形に適した温度に
することができる。6)半溶融金属で得られた鋳造品の
製品部以外の金属あるいはスクラップは再溶解により容
易に半溶融金属の原料となる、などの種々の優れた効果
がある。
As is apparent from the above description, in the apparatus for producing a metal for semi-melt forming according to the present invention,
An adiabatic container capable of holding the molten metal while cooling it to the forming temperature in the solid-liquid coexisting state by bringing the molten metal into contact with a cooling jig to generate crystal nuclei in the liquid and the metal obtained by the nucleation part By providing a crystal-forming part having, the semi-molten metal in which fine primary crystals suitable for semi-melt molding are dispersed in the liquid phase can be produced very simply and easily without taking a complicated method. Specifically, 1) no complicated device such as mechanical stirring or electromagnetic stirring is required. 2) In order to obtain a semi-molten metal suitable for molding in a heat-insulating container, it is necessary to prepare only an amount necessary for molding. Since it is possible, there is no problem with trouble in the subsequent molding process. 3) No expensive high-frequency superheater is required to raise the temperature to the semi-melt molding temperature.
4) The temperature distribution of the metal material is good because it is held in a heat-insulating container before the semi-melt molding, it hardly oxidizes, and there is almost no temperature drop immediately before the molding of the metal material. 5) The heat insulation before the semi-melt molding Being held in a container,
A temperature suitable for molding can be achieved regardless of the liquid phase ratio of the metal material. 6) There are various excellent effects such that the metal or scrap other than the product part of the cast product obtained from the semi-molten metal can be easily used as a raw material of the semi-molten metal by remelting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る半溶融成形用金属製造装
置の側面図である。
FIG. 1 is a side view of a semi-melt forming metal manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の実施例に係る半溶融成形用金属製造装
置の核生成部を構成する冷却用治具の斜視図である。
FIG. 2 is a perspective view of a cooling jig constituting a nucleation part of the semi-melt forming metal manufacturing apparatus according to the embodiment of the present invention.

【図3】本発明の他の実施例に係る半溶融成形用金属製
造装置の核生成部を構成する冷却用治具の横断面図であ
る。
FIG. 3 is a cross-sectional view of a cooling jig that constitutes a nucleation unit of a semi-melt forming metal manufacturing apparatus according to another embodiment of the present invention.

【図4】本発明の別の他の実施例に係る半溶融成形用金
属製造装置の核生成部を構成する冷却用治具の側面断面
図である。
FIG. 4 is a side sectional view of a cooling jig that constitutes a nucleation unit of a semi-melt forming metal manufacturing apparatus according to another embodiment of the present invention.

【図5】本発明の他の実施例を示す半溶融成形用金属製
造装置の全体平面図である。
FIG. 5 is an overall plan view of a semi-melt forming metal manufacturing apparatus showing another embodiment of the present invention.

【図6】図5のA−A視の縦断面図である。6 is a vertical cross-sectional view taken along the line AA of FIG.

【図7】図5のB−B視の縦断面図である。FIG. 7 is a vertical cross-sectional view taken along the line BB of FIG.

【図8】本発明の実施例に係る断熱容器の縦断面図であ
る。
FIG. 8 is a vertical cross-sectional view of a heat insulating container according to an embodiment of the present invention.

【図9】本発明に係る半溶融成形用金属の製造方法を説
明する工程説明図である。
FIG. 9 is an explanatory process diagram illustrating a method for producing a metal for semi-solid forming according to the present invention.

【図10】本発明に係る成形品の金属組織を示す顕微鏡
写真の模写図である。
FIG. 10 is a copy of a micrograph showing a metal structure of a molded product according to the present invention.

【図11】本発明に係る比較例の金属組織を示す顕微鏡
写真の模写図である。
FIG. 11 is a copy of a micrograph showing a metal structure of a comparative example according to the present invention.

【符号の説明】[Explanation of symbols]

1 冷却用治具 1A 冷却用治具 1B 冷却用治具 1C 冷却用治具(漏半管) 1a 台座 1b スラスト軸受 1d 平歯車 1e 平歯車 1f 減速電動機 2 堰 3 スタンド 4 冷却配管 4a 冷却配管(注入管) 4b 冷却配管(戻り管) 5 冷却媒体流路 10 核生成部 20 結晶生成部 22 断熱容器 24 金属容器 26 昇降手段(油圧シリンダ) 28 押圧手段(油圧シリンダ) 28a ピストンロッド 28b 押圧板 40 射出スリーブ 50 金型 50a 金型キャビティ 60 回転円板(ターンテーブル) 62 回転軸 100 半溶融成形用金属製造装置 100A 半溶融成形用金属製造装置 150 ラドル 1 Cooling Jig 1A Cooling Jig 1B Cooling Jig 1C Cooling Jig (Leak Half Pipe) 1a Pedestal 1b Thrust Bearing 1d Spur Gear 1e Spur Gear 1f Reducer Motor 2 Weir 3 Stand 4 Cooling Pipe 4a Cooling Pipe ( Injection pipe 4b Cooling pipe (return pipe) 5 Cooling medium flow path 10 Nucleation part 20 Crystal generation part 22 Thermal insulation container 24 Metal container 26 Elevating means (hydraulic cylinder) 28 Pressing means (hydraulic cylinder) 28a Piston rod 28b Pressing plate 40 Injection sleeve 50 Mold 50a Mold cavity 60 Rotating disk (turntable) 62 Rotating shaft 100 Semi-melt forming metal manufacturing apparatus 100A Semi-melt forming metal manufacturing apparatus 150 Ladle

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月24日[Submission date] June 24, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】具体的には以下のとおりの手順により作業
を進める。図9の工程[1]においてラドル150内に
入れられた完全液体である金属Mを工程[2]におい
て、(a)冷却用治具1を用いて低温溶湯(必要に応じ
て結晶核生成を促進する元素も添加)から結晶核を発生
させ断熱効果を有する断熱容器22に注ぐ、または、
(b)微細組織生成促進元素を含む融点直上の低温溶湯
を直接、断熱効果を有する断熱容器22に注ぐ、のいず
れかの方法により多数の結晶核を含む液相線直下の合金
を得る。つぎに工程[3]において、該断熱容器22に
おいて該合金を半溶融状態で保持する。この間、導入さ
れた結晶核から極微細で等方的な図10に示すような
ンドライト状の初晶が生成し([3]−a)、融体の温
度低下に伴う固相率の増加につれて球状の初晶として成
長する([3]−c)。核生成部10を経由せず、単に
断熱容器22に溶湯を注ぐだけでは、図11に示すよう
な少し角のとれた粗大なデンドライト組織しか得られな
い。このようにして得られた所定の液相率を有する金属
Mを、例えば、[3]−dのようにダイキャストの射出
スリーブ40に挿入した後ダイカストマシンの金型キャ
ビティ50a内で加圧成形して成形品を得る。
Specifically, the work proceeds according to the following procedure. In step [2], the metal M, which is a complete liquid, put in the ladle 150 in step [1] of FIG. (Also adding an accelerating element) to generate crystal nuclei and pour into a heat insulating container 22 having a heat insulating effect, or
(B) A low-temperature molten metal immediately above the melting point containing the microstructure generation promoting element is directly poured into the heat insulating container 22 having a heat insulating effect to obtain an alloy immediately below the liquidus line containing a large number of crystal nuclei. Next, in step [3], the alloy is held in the semi-molten state in the heat insulating container 22. During this time, as shown in isotropic 10 in very fine from the introduced crystal nuclei de
A ndrite- shaped primary crystal is formed ([3] -a), and grows as a spherical primary crystal as the solid fraction increases with the temperature decrease of the melt ([3] -c). If the molten metal is simply poured into the heat insulating container 22 without passing through the nucleation unit 10, only a slightly sharp and coarse dendrite structure as shown in FIG. 11 can be obtained. The metal M having a predetermined liquid phase ratio thus obtained is inserted into the die-casting injection sleeve 40 as shown in [3] -d, and then pressure-molded in the die cavity 50a of the die casting machine. To obtain a molded product.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】このように構成された回転円板(ターンテ
ーブル)60に懸架された断熱容器22は、図5に示す
ように、左方の冷却用治具1を介して注湯され、低速度
で回転する回転円板(ターンテーブル)60に移送さ
れ、所定の冷却時間を経過した後丁度180℃回転した
右方位置に回転移動する。この右方位置には、図6に示
すように、ターンテーブル60の断熱懸架位置の下方に
油圧シリンダなどの断熱容器22の昇降手段(油圧シリ
ンダ)26が布設され、断熱容器22の底面を押し上げ
る作用をなし、次工程の射出スリーブ40へ断熱容器2
2を移送した後に内部の半凝固状態の金属溶湯を供給す
るようになっている。また、図7に示すように、冷却用
治具1より直立した断熱容器22へ直接注湯すると空気
巻込みを起して鋳造欠陥の惧れがあり好ましくないの
で、あらかじめ断熱容器22を所定角度傾けておいて断
熱容器22の側壁を伝わらせて静かに注湯する配慮が望
ましい。そのため、先端にピン支持された回転自在な押
圧板28bを取りつけたピストンロッド28aを有する
油圧シリンダなどの押圧手段(油圧シリンダ)28を、
冷却用治具1の下方に設置する。以上のように構成され
た半溶融成形用金属製造装置100Aは、複数の断熱容
器22、…を順次連続処理して射出スリーブへ溶湯金
属を供給することができるので、単一の断熱容器22の
ものに比べて、冷却待時間を要せず、生産性の低下を防
止できる。
As shown in FIG. 5, the heat insulating container 22 suspended on the rotating disk (turntable) 60 thus constructed is poured through the cooling jig 1 on the left side, and is cooled at a low speed. It is transferred to a rotating disk (turntable) 60 which rotates at a temperature of 60 ° C., and after a lapse of a predetermined cooling time, it is rotated to a right position rotated by 180 ° C. At this right position, as shown in FIG. 6, an elevating means (hydraulic cylinder) 26 for the heat insulating container 22 such as a hydraulic cylinder is installed below the heat insulating suspending position of the turntable 60 to push up the bottom surface of the heat insulating container 22. Insulation container 2 which acts and is attached to injection sleeve 40 in the next step
After transferring 2, the metal melt in a semi-solidified state inside is supplied. Further, as shown in FIG. 7, when the molten metal is directly poured into the heat insulating container 22 which is upright from the cooling jig 1, air entrainment may occur, which may cause casting defects. It is desirable to tilt it so that the side wall of the heat insulating container 22 is transmitted and the molten metal is gently poured. Therefore, a pressing means (hydraulic cylinder) 28 such as a hydraulic cylinder having a piston rod 28a to which a rotatable pressing plate 28b supported by a pin at the tip is attached,
It is installed below the cooling jig 1. More thixoforming metal production apparatus 1 00 A configured as described above, a plurality of heat insulating container 22, ... can be supplied successively semi molten metal continuous processing to the injection sleeve to a single adiabatic Compared with the container 22, the cooling waiting time is not required, and the productivity can be prevented from lowering.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪本 達雄 山口県宇部市大字小串字沖の山1980番地 宇部興産株式会社宇部機械製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Sakamoto 1980, Okiyama, Ogushi, Ube, Yamaguchi Prefecture Ube Machinery Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 微細な初晶が液相中に分散した半溶融成
形用金属の製造装置であって、溶湯を冷却用治具に接触
させて液中に結晶核を発生させる核生成部と、該核生成
部により得られた金属を固液共存状態の成形温度まで冷
却しつつ保持することができる断熱容器を有する結晶生
成部とを備えたことを特徴とする半溶融成形用金属の製
造装置。
1. A device for producing a semi-melt forming metal in which fine primary crystals are dispersed in a liquid phase, which comprises a nucleation unit for bringing a molten metal into contact with a cooling jig to generate crystal nuclei in the liquid. And a crystal forming part having a heat insulating container capable of holding the metal obtained by the nucleation part while cooling it to a forming temperature in a solid-liquid coexisting state. apparatus.
【請求項2】 核生成部の冷却用治具を、内部に冷却媒
体が通過する流路が配設され、溶湯の流れ方向に沿設さ
れた左右一対の堰を上面に備えた傾斜平面板とするか、
または円筒管もしくは半円筒管とした請求項1記載の半
溶融成形用金属の製造装置。
2. A slanting flat plate having a pair of left and right weirs provided on the upper surface of the cooling jig of the nucleation section, the flow path through which a cooling medium passes being disposed, and being provided along the flow direction of the molten metal. Or
The apparatus for producing a metal for semi-melt forming according to claim 1, which is a cylindrical tube or a semi-cylindrical tube.
【請求項3】 核生成部の冷却用治具を、静止または回
転駆動手段により回転自在な漏斗管とした請求項1記載
の半溶融成形用金属の製造装置。
3. The apparatus for producing a metal for semi-melt forming according to claim 1, wherein the cooling jig of the nucleation part is a funnel tube which is stationary or rotatable by a rotary drive means.
【請求項4】 結晶生成部の断熱容器を懸架する把持部
を外周部に略等間隔で複数個配設された竪軸回りに回転
自在な水平円板ならびに該水平円板の回転駆動手段を備
えるとともに、該把持部の一個所に懸架された前記断熱
容器を持ち上げる昇降手段ならびに該持ち上げられた断
熱容器を移送する移動手段を備え、かつ、該水平円板の
把持部に懸架され冷却用治具を介して注湯される断熱容
器を注湯中に任意の傾斜角度に傾斜させる断熱容器の傾
動手段を備えてなる請求項1ないし請求項3記載の半溶
融成形用金属の製造装置。
4. A horizontal disc rotatable around a vertical axis, which is provided with a plurality of gripping portions for suspending a heat-insulating container of a crystal production unit at an outer peripheral portion at substantially equal intervals, and a rotation driving means for the horizontal disc. And a moving means for transferring the lifted heat-insulating container and a means for transferring the lifted heat-insulating container, the cooling jig being suspended on the grip of the horizontal disk. The apparatus for producing a metal for semi-melt forming according to claim 1, further comprising tilting means of the heat insulating container for tilting the heat insulating container poured through the tool at an arbitrary tilt angle during pouring.
JP7160890A 1995-05-29 1995-06-27 Apparatus for producing metal for half melt molding Pending JPH0910893A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP7160890A JPH0910893A (en) 1995-06-27 1995-06-27 Apparatus for producing metal for half melt molding
CA002177455A CA2177455C (en) 1995-05-29 1996-05-27 Method and apparatus for shaping semisolid metals
EP02028272A EP1331279A3 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
DE69633988T DE69633988T2 (en) 1995-05-29 1996-05-29 Method and apparatus for forming semi-solid metals
EP96108499A EP0745694B1 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
US09/490,983 US6769473B1 (en) 1995-05-29 2000-01-24 Method of shaping semisolid metals
US10/852,952 US6851466B2 (en) 1995-05-29 2004-05-24 Method and apparatus for shaping semisolid metals
US11/008,749 US7121320B2 (en) 1995-05-29 2004-12-09 Method for shaping semisolid metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160890A JPH0910893A (en) 1995-06-27 1995-06-27 Apparatus for producing metal for half melt molding

Publications (1)

Publication Number Publication Date
JPH0910893A true JPH0910893A (en) 1997-01-14

Family

ID=15724586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160890A Pending JPH0910893A (en) 1995-05-29 1995-06-27 Apparatus for producing metal for half melt molding

Country Status (1)

Country Link
JP (1) JPH0910893A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246446A (en) * 2004-03-05 2005-09-15 Nissei Plastics Ind Co Method for forming low melting point metal alloy
JP2007222948A (en) * 2007-06-13 2007-09-06 Nissei Plastics Ind Co Method for forming low melting point metal alloy
CN100340357C (en) * 2003-07-10 2007-10-03 上海交通大学 Self-mixed melt refined and frozen structure launder
US7343959B2 (en) 2003-07-11 2008-03-18 Nissei Plastic Industrial Co., Ltd. Pressure casting method of magnesium alloy and metal products thereof
CN100421841C (en) * 2005-11-18 2008-10-01 北京有色金属研究总院 Composite shearing semi-solid state metal rheological slurry preparation method
CN107803471A (en) * 2017-11-21 2018-03-16 华南理工大学 A kind of shaped device and method for aluminum alloy organization's refinement
CN109307433A (en) * 2018-09-30 2019-02-05 禹州市毛吕铸造有限公司 A kind of feeding device for Metal Melting
KR102302136B1 (en) * 2020-10-29 2021-09-14 주식회사케이.피.씨 Tapping apparatus for gasification melting furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340357C (en) * 2003-07-10 2007-10-03 上海交通大学 Self-mixed melt refined and frozen structure launder
US7343959B2 (en) 2003-07-11 2008-03-18 Nissei Plastic Industrial Co., Ltd. Pressure casting method of magnesium alloy and metal products thereof
JP2005246446A (en) * 2004-03-05 2005-09-15 Nissei Plastics Ind Co Method for forming low melting point metal alloy
CN100421841C (en) * 2005-11-18 2008-10-01 北京有色金属研究总院 Composite shearing semi-solid state metal rheological slurry preparation method
JP2007222948A (en) * 2007-06-13 2007-09-06 Nissei Plastics Ind Co Method for forming low melting point metal alloy
CN107803471A (en) * 2017-11-21 2018-03-16 华南理工大学 A kind of shaped device and method for aluminum alloy organization's refinement
CN109307433A (en) * 2018-09-30 2019-02-05 禹州市毛吕铸造有限公司 A kind of feeding device for Metal Melting
CN109307433B (en) * 2018-09-30 2023-11-03 赤峰云铜有色金属有限公司 Feeding device for metal smelting
KR102302136B1 (en) * 2020-10-29 2021-09-14 주식회사케이.피.씨 Tapping apparatus for gasification melting furnace

Similar Documents

Publication Publication Date Title
JP3211754B2 (en) Equipment for manufacturing metal for semi-solid molding
US6769473B1 (en) Method of shaping semisolid metals
EP0841406B1 (en) Method of shaping semisolid metals
JPH08187547A (en) Production of metallic slurry for casting
JPH1133692A (en) Manufacture of metallic slurry for semi-solidified casting
CN100532596C (en) Method for preparing and rheologic molding semisolid alloy pulp
CN100554455C (en) The preparation of semi-solid alloy slurry and forming method
CN1194831C (en) Method and equipment for preparing semisolid fused mass of ferrous material
JPH0910893A (en) Apparatus for producing metal for half melt molding
JP3246296B2 (en) Forming method of semi-molten metal
JP3246363B2 (en) Forming method of semi-molten metal
JP3783275B2 (en) Method for forming semi-molten metal
CN1301166C (en) Preparation method of high speed steel blank and its equipment
JP3246358B2 (en) Forming method of semi-molten metal
JP3246273B2 (en) Forming method of semi-molten metal
JP3491468B2 (en) Method for forming semi-solid metal
JPH08318349A (en) Production of casting metallic billet and producing apparatus thereof
US20040050523A1 (en) Process for transforming a metal alloy into a partially-solid/partially-liquid shaped body
JPH08257722A (en) Casting method by die casting
JP2003183756A (en) Aluminum alloy for semi-solid molding
JPH0987773A (en) Method for molding half-molten metal
JP2005297003A (en) Method for producing semi-solidified slurry of light metal or light alloy, and casting method therefor
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
JP3473214B2 (en) Forming method of semi-molten metal
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy