JPS6314457A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS6314457A
JPS6314457A JP61158373A JP15837386A JPS6314457A JP S6314457 A JPS6314457 A JP S6314457A JP 61158373 A JP61158373 A JP 61158373A JP 15837386 A JP15837386 A JP 15837386A JP S6314457 A JPS6314457 A JP S6314457A
Authority
JP
Japan
Prior art keywords
optical semiconductor
resin composition
light
amorphous silica
primary sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61158373A
Other languages
Japanese (ja)
Other versions
JP2523512B2 (en
Inventor
Hideaki Taki
多喜 秀彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP15837386A priority Critical patent/JP2523512B2/en
Publication of JPS6314457A publication Critical patent/JPS6314457A/en
Application granted granted Critical
Publication of JP2523512B2 publication Critical patent/JP2523512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical semiconductor device, wherein the light transmission of a primary sealing resin layer is favorable, by a method wherein a light transmission type resin composition to be used for a primary sealing is constituted with an epoxy resin as its main component and is turned into one containing amorphous silica powder having a specific spheroidicity as an inorganic filler. CONSTITUTION:In an optical semiconductor device of a structure; wherein a primary sealing is performed on optical semiconductor units 1 and 2 with a light transmission type resin composition 4 and a secondary sealing is performed with a non-light transmission type resin composition 5; the light transmission type resin composition 4 to be used for the primary sealing is constituted with an epoxy resin as its main component and is turned into one containing amorphous silica powder having a Wadel spheroidicity of 0.5-1.0 as an inorganic filler. The above amorphous silica powder can be obtained by a method wherein fuse-solidified ingotlike amorphous silica, for example, is powdered by a machine and among the obtained mechanically pulverized materials, the ones having a spheroidicity of 0.5-1.0 at the spheroidicity of Wardel, desirably the ones having a spheroidicity of 0.7-1.0, are selected. Thereby, no irregular reflection of light is generated in the primary sealing resin layer and the transmission capacity of photo signals is improved. Accordingly, a high-efficiency optical semiconductor device can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、発光ダイオードやフォトダイオード等の光
半導体素子を樹脂組成物で一次封止および二次封止して
なる光半導体装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical semiconductor device in which an optical semiconductor element such as a light emitting diode or a photodiode is primarily sealed and secondarily sealed with a resin composition. be.

〔従来の技術〕[Conventional technology]

一般に、光半導体装置は、光透過型樹脂組成物で光半導
体素子を一次封止し、さらに外乱光による誤動作を防ぐ
ため、非光透過型樹脂組成物で二次封止することにより
構成されている。このような構造の光半導体装置を図面
に示す。図において、1.2は光半導体素子、3はそれ
らのリード、4は光透過型樹脂層、5は非光透過型樹脂
層である。上記光透過型樹脂層4および非光透過型樹脂
層5がプラスチックパッケージを構成する。上記図面の
装置において、外部リード3は銅系材料や鉄系材料で構
成されており、また、光半導体素子1.2自体も熱膨張
係数が小さい。したがって、樹脂層と素子等との熱膨張
係数の差に起因する封止時の熱応力を小さくするため、
一次封止樹脂層である光透過型樹脂層4および二次封止
樹脂層である非光透過型樹脂層5の双方とも熱膨張係数
を小さくすることが求められており、多量の無機質充填
剤が配合されている。
Generally, an optical semiconductor device is constructed by first sealing an optical semiconductor element with a light-transmitting resin composition, and then secondly sealing it with a non-light-transmitting resin composition to prevent malfunction due to ambient light. There is. An optical semiconductor device having such a structure is shown in the drawings. In the figure, 1.2 is an optical semiconductor element, 3 is a lead thereof, 4 is a light-transmitting resin layer, and 5 is a non-light-transmitting resin layer. The light-transmitting resin layer 4 and the non-light-transmitting resin layer 5 constitute a plastic package. In the device shown in the above drawing, the external lead 3 is made of a copper-based material or an iron-based material, and the optical semiconductor element 1.2 itself also has a small coefficient of thermal expansion. Therefore, in order to reduce the thermal stress during sealing caused by the difference in thermal expansion coefficient between the resin layer and the element,
Both the light-transmitting resin layer 4, which is the primary sealing resin layer, and the non-light-transmitting resin layer 5, which is the secondary sealing resin layer, are required to have a small coefficient of thermal expansion, and a large amount of inorganic filler is required. is blended.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

通常、上記二次封止樹脂層である非光透過型樹脂層5で
は、無機質充填剤として高純度のシリカ粉末(破砕タイ
プ)が用いられている。しかしながら、一次封止樹脂層
である光透過型樹脂層4に上記破砕タイプのシリカ粉末
を使用すると、光が樹脂中に進入しても乱反射し光透過
性が悪くなって光信号の伝達能力が低くなるという問題
が生じている。
Usually, in the non-light-transmitting resin layer 5, which is the secondary sealing resin layer, high-purity silica powder (crushed type) is used as an inorganic filler. However, if the above-mentioned crushed type silica powder is used in the light-transmissive resin layer 4, which is the primary sealing resin layer, even if light enters the resin, it will be diffusely reflected, resulting in poor light transmittance and the ability to transmit optical signals. The problem is that it is getting lower.

この発明は、このような事情に鑑みなされたもので、一
次封止樹脂層の光透過性の良好な光半導体装置の提供を
その目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide an optical semiconductor device in which a primary sealing resin layer has good light transmittance.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の光半導体装置は
、光半導体素子を光透過型樹脂組成物で一次封止し、非
光透過型樹脂組成物で二次封止してなる光半導体装置で
あって、一次封止に使用する上記光透過型樹脂組成物が
、エポキシ樹脂を主要成分とし、無機質充填剤としてワ
ーデルの球形度で0.5〜1.0の球形度をもつ無定形
シリカ粉末を含有しているという構成をとる。
In order to achieve the above object, an optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is first sealed with a light-transmitting resin composition and secondarily sealed with a non-light-transmitting resin composition. The above-mentioned light-transmitting resin composition used for primary sealing contains an epoxy resin as a main component and amorphous silica having a Wardell sphericity of 0.5 to 1.0 as an inorganic filler. It has a structure that contains powder.

すなわち、本発明者は、一次封止樹脂層に含有させる無
機質充填剤と二次封止樹脂層に含有させる無機質充填剤
とを同種のものにすると、両層の熱膨張係数が近似する
ようになって両層の界面からの剥離の防止に有利である
という前提のもとにシリカ粉末を中心に研究を重ねた。
That is, the present inventor has found that by using the same type of inorganic filler to be contained in the primary sealing resin layer and the inorganic filler to be contained in the secondary sealing resin layer, the thermal expansion coefficients of both layers are approximated. Therefore, we conducted extensive research focusing on silica powder, based on the premise that it is advantageous in preventing peeling from the interface between the two layers.

その結果、ワーデルの球形度で0.5〜1.0の球形度
を有する無定形シリカ粉末を使用すると所期の目的を達
成しうろことを見いだしこの発明に到達した。
As a result, it was found that the desired object could be achieved by using an amorphous silica powder having a Wardell sphericity of 0.5 to 1.0, and the present invention was achieved.

この発明の光半導体装置は、一次封止樹脂層を構成する
光透過型樹脂組成物としてエポキシ樹脂を主要成分とし
、無機質充填剤としてワーデルの球形度で0.5〜1.
0の球形度を有する無定形シリカ粉末を用いて得られる
The optical semiconductor device of the present invention has an epoxy resin as a main component as a light-transmitting resin composition constituting the primary sealing resin layer, and has a Wardell sphericity of 0.5 to 1.0 as an inorganic filler.
Obtained using an amorphous silica powder with a sphericity of 0.

上記無定形シリカ粉末は、ワーデルの球形度で0.5〜
1.0の球形度のものであることが必要である。このよ
うな無定形シリカは、溶融固化したインゴット状の無定
形シリカを機械粉砕し、得られた機械粉砕物のうち、ワ
ーデルの球形度で0.5〜1.0、好ましくは0.7〜
1、Oのものを選択することにより得ることができる。
The above amorphous silica powder has a Wardell sphericity of 0.5 to
It is necessary that the sphericity is 1.0. Such amorphous silica is obtained by mechanically pulverizing melted and solidified ingot-like amorphous silica, and the resulting mechanically pulverized product has a Wardell sphericity of 0.5 to 1.0, preferably 0.7 to 1.0.
1, can be obtained by selecting O.

ここで、ワーデルの球形度(化学工学便覧、丸善株式会
社発行参照)とは、粒子の球形度を、(粒子の投影面積
に等しい円の直径)/(粒子の投影像に外接する最小円
の直径)で測る指数で、この指数が1.0に近いほど真
球体に近い粒子であることを意味する。そして、この発
明において使用する無定形シリカ粉末をワーデルの球形
度で0.5〜1.0の球形度のものに限定する理由は、
つぎのとおりである。すなわち、球形度が0.5未満の
ものは異形状で鋭利な突片を持つことが多く、そのよう
なものを含むエポキシ樹脂組成物で光半導体素子を一次
封止すると、鋭利な突片を持つシリカ粉末により光が乱
反射し目的とする光信号伝達機能が得られなくなるから
である。
Here, Wardell's sphericity (see Chemical Engineering Handbook, published by Maruzen Co., Ltd.) is defined as the sphericity of a particle (diameter of a circle equal to the projected area of the particle)/(diameter of the smallest circle circumscribing the projected image of the particle). The closer this index is to 1.0, the closer the particle is to a perfect sphere. The reason why the amorphous silica powder used in this invention is limited to those with a Wardell sphericity of 0.5 to 1.0 is as follows.
It is as follows. In other words, those with a sphericity of less than 0.5 often have irregularly shaped and sharp protrusions, and when an optical semiconductor element is primarily sealed with an epoxy resin composition containing such sphericity, the sharp protrusions are removed. This is because light is diffusely reflected by the silica powder, making it impossible to obtain the desired optical signal transmission function.

上記のような無定形シリカ粉末は光透過型樹脂組成物全
体の50〜85%(重量、以下同じ)使用することが好
ましい。その使用量が50%未満になるとエポキシ樹脂
組成物にチキソトロピー物性を付与しにくく、したがっ
て、成形作業性に支障を生じると同時に応力歪みの低減
効果が不充分になるからである。逆に、使用量が85%
を超えるとトランスファーモールド成形等の成形作業に
問題が生じ、また被膜形成能が低下する傾向がみられる
からである。上記のような特定の球形度をもつ無定形シ
リカ粉末は、粒径が15011m以下のものであること
が好ましく、より好ましいのは平均粒径が16μm程度
のものである。すなわち、粒径が150μmを超えると
エポキシ樹脂組成物の未充填部分が生じ、成形作業性に
問題が生じると同時に不良品の発生率が高くなるからで
ある。
The amorphous silica powder as described above is preferably used in an amount of 50 to 85% (by weight, the same applies hereinafter) of the entire light-transmissive resin composition. If the amount used is less than 50%, it will be difficult to impart thixotropic properties to the epoxy resin composition, which will impede molding workability and at the same time, the effect of reducing stress strain will become insufficient. On the other hand, the amount used is 85%
This is because if it exceeds 100%, problems will occur in molding operations such as transfer molding, and the film forming ability will tend to decrease. The amorphous silica powder having a specific sphericity as described above preferably has a particle size of 15011 m or less, and more preferably has an average particle size of about 16 μm. That is, if the particle size exceeds 150 μm, unfilled portions of the epoxy resin composition will occur, causing problems in molding workability and at the same time increasing the incidence of defective products.

なお、上記ワーデルの球形度で0.5〜1.0の球形度
を有する無定形シリカ粉末の一部に代えて、従来から使
用されている他の無機質充填剤を使用してもよい。この
場合、上記他の無機質充填剤の多量使用は、上記無定形
シリカ粉末の使用の効果を損なうため、できるだけ少量
にとどめることが好適である。
Note that in place of a part of the amorphous silica powder having a Wardell sphericity of 0.5 to 1.0, other conventionally used inorganic fillers may be used. In this case, the use of a large amount of the other inorganic filler impairs the effect of using the amorphous silica powder, so it is preferable to keep it to a small amount as much as possible.

一次封止に使用する光透過型樹脂組成物の主要成分とな
るエポキシ樹脂は特に制限するものではなく、ノボラッ
ク系、ビスフェノール系、環式脂肪族系の各種のものが
あげられる。また、難燃性を付与するために、これらに
臭素や塩素等のハロゲン原子を導入したものも使用の対
象となる。好ましいのは作業性等の観点からフェノール
ノボラック、タレゾールノボラック等のノボラック系の
ものである。これらのものは、エポキシ当量が175〜
250、軟化点60〜130℃であることが好適である
。すなわち、上記の値を有するものは良好なプラスチッ
クパッケージを生成しうるからである。
The epoxy resin that is the main component of the light-transmitting resin composition used for primary sealing is not particularly limited, and various types such as novolak, bisphenol, and cycloaliphatic resins can be mentioned. Further, in order to impart flame retardancy, those into which halogen atoms such as bromine or chlorine are introduced are also candidates for use. Preferred are novolacs such as phenol novolak and talesol novolak from the viewpoint of workability. These have an epoxy equivalent of 175 to
250 and a softening point of 60 to 130°C. That is, those having the above values can produce good plastic packages.

上記エポキシ樹脂とともに用いられる硬化剤は、上記エ
ポキシ樹脂を硬化させるものであり、通常使用されてい
る、1分子中に2個以上の水酸基を有するフェノールノ
ボラック系硬化剤、タレゾールノボラック系硬化剤等が
用いられる。特に好適なのはフェノールノボラック系硬
化剤である。
The curing agent used with the epoxy resin is one that cures the epoxy resin, and includes commonly used phenol novolac curing agents having two or more hydroxyl groups in one molecule, talesol novolac curing agents, etc. is used. Particularly suitable are phenol novolac curing agents.

アミン系硬化剤は毒性やライフが短(なるという難点を
有し、酸無水物系硬化剤は成形性に問題を有しており、
その使用は好ましくない。
Amine-based curing agents have the disadvantages of toxicity and short life, while acid anhydride-based curing agents have problems with moldability.
Its use is not recommended.

なお、この発明で用いるエポキシ樹脂組成物には、上記
のエポキシ樹脂、硬化剤および上記無定形シリカ粉末に
加え、通常、内部離型剤、硬化促進剤およびその他の添
加剤が適宜配合される。
In addition to the above-mentioned epoxy resin, curing agent, and amorphous silica powder, the epoxy resin composition used in the present invention usually contains an internal mold release agent, a curing accelerator, and other additives as appropriate.

上記内部離型剤としては、ステアリン酸、バルミチン酸
等の長鎖カルボン酸、ステアリン酸亜鉛、ステアリン酸
カルシウム等の長鎖カルボン酸の金属塩、カルナバワッ
クス、モンタンワックス等のワックス類があげられる。
Examples of the internal mold release agent include long-chain carboxylic acids such as stearic acid and valmitic acid, metal salts of long-chain carboxylic acids such as zinc stearate and calcium stearate, and waxes such as carnauba wax and montan wax.

硬化促進剤としては、各種イミダゾール類や三級アミン
類、フェノール類、有機金属化合物あるいは三フッ化ホ
ウ素化合物があげられる。また、その他の添加剤として
、β−(3,4−エポキシシクロヘキシル)エチルトリ
メトキシシラン、T−グリシドキシプロビルトリメトキ
シシラン等のシランカップリング剤からなる充填剤の表
面処理剤や、酸化アンチモン、ハロゲン化合物、リン化
合物等の難燃化剤、各種顔料等があげられる。
Examples of the curing accelerator include various imidazoles, tertiary amines, phenols, organometallic compounds, and boron trifluoride compounds. In addition, other additives include surface treatment agents for fillers made of silane coupling agents such as β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and T-glycidoxypropyltrimethoxysilane, and oxidation Examples include flame retardants such as antimony, halogen compounds, and phosphorus compounds, and various pigments.

この発明に用いる一次封止用のエポキシ樹脂組成物は、
従来公知の方法で製造しうるちのであり、例えば上記エ
ポキシ樹脂と、硬化剤、上記無定形シリカ粉末、内部離
型剤、その他の添加剤を適宜に配合し、この配合物をミ
キシングロール機等の混練機に掛は加熱状態で混練して
半硬化状の樹脂組成物とし、これを室温に冷却したのち
、公知の手段によって粉砕し必要に応じて打錠すること
により得ることができる。
The epoxy resin composition for primary sealing used in this invention is:
It is manufactured by a conventionally known method, for example, the above epoxy resin, a curing agent, the above amorphous silica powder, an internal mold release agent, and other additives are appropriately blended, and this mixture is processed using a mixing roll machine, etc. It can be obtained by kneading in a heated kneading machine to obtain a semi-cured resin composition, which is cooled to room temperature, and then pulverized by known means and, if necessary, tableted.

なお、一次封止に使用する上記光透過型樹脂組成物とと
もに使用する二次封止用の非光透過型樹脂組成物として
は、従来公知のものをそのまま使用することができる。
In addition, as the non-light-transmitting resin composition for secondary sealing used together with the above-mentioned light-transmitting resin composition used for primary sealing, conventionally known ones can be used as they are.

このようなエポキシ樹脂組成物を用いての光半導体素子
の封止は特に限定するものではなく、通常の方法、例え
ばトランスファー成形等の公知のモールド方法により行
うことができる。
Sealing of an optical semiconductor element using such an epoxy resin composition is not particularly limited, and can be carried out by a conventional method, for example, a known molding method such as transfer molding.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の光半導体装置は、一次封止樹
脂層が、ワーデルの球形度で0.5〜1.0の球形度を
もつ特殊な無定形シリカ粉末を含むエポキシ樹脂組成物
で形成されているため、光の乱反射が生じず光信号の伝
達能力が高い、したがって、高性能装置として広範囲な
展開が可能である。
As described above, in the optical semiconductor device of the present invention, the primary sealing resin layer is made of an epoxy resin composition containing a special amorphous silica powder having a Wardell sphericity of 0.5 to 1.0. Because of this structure, diffused reflection of light does not occur and the optical signal transmission ability is high. Therefore, it can be widely used as a high-performance device.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

〔実施例1〜3、比較例1〜3〕 まず、各原料を下記の第1表に示す組成で配合し、この
配合物を120℃の熱ロールで5分間混練したのち、冷
却後粉砕し粉末状組成物とした。
[Examples 1 to 3, Comparative Examples 1 to 3] First, each raw material was blended with the composition shown in Table 1 below, and this blend was kneaded for 5 minutes with heated rolls at 120 ° C., and then crushed after cooling. It was made into a powdered composition.

ついで、得られた粉末状組成物を用い、光半導体装置を
、圧カフ0kg/co!、温度175℃、時間90秒の
条件でトランスファー成形して一次封止し、ついでエポ
キシ樹脂組成物(粉末エポキシ樹脂成形材料、MP−1
0,日東電工社製)で二次封止し試験品となる装置を得
た。
Then, using the obtained powder composition, an optical semiconductor device was manufactured using a pressure cuff of 0 kg/co! , a temperature of 175° C. and a time of 90 seconds were used for primary sealing, and then an epoxy resin composition (powdered epoxy resin molding material, MP-1
0, manufactured by Nitto Denko Corporation) to obtain a device to be used as a test product.

このようにして得られた実施例1〜3および比較例1〜
3の試験品装置で光透過率を測定した。
Examples 1 to 3 and Comparative Examples 1 to 3 thus obtained
The light transmittance was measured using the test product device No. 3.

この結果を第1表に示す。The results are shown in Table 1.

(以下余白) (以下余白) 第1表から明らかなように、実施別品はいずれも光透過
率が比較測高よりも著しく優れていることがわかる。
(Hereinafter in the margin) (Hereinafter in the margin) As is clear from Table 1, it can be seen that the light transmittance of each of the samples according to the implementation is significantly superior to that of the comparative measurements.

【図面の簡単な説明】[Brief explanation of drawings]

図面は光半導体装置の構成図である。 The drawing is a configuration diagram of an optical semiconductor device.

Claims (1)

【特許請求の範囲】[Claims] (1)光半導体素子を光透過型樹脂組成物で一次封止し
、非光透過型樹脂組成物で二次封止してなる光半導体装
置であつて、一次封止に使用する上記光透過型樹脂組成
物が、エポキシ樹脂を主要成分とし、無機質充填剤とし
てワーデルの球形度で0.5〜1.0の球形度をもつ無
定形シリカ粉末を含有していることを特徴とする光半導
体装置。
(1) An optical semiconductor device formed by first sealing an optical semiconductor element with a light-transmitting resin composition and secondarily sealing it with a non-light-transmitting resin composition, wherein the above-mentioned light-transmitting element is used for the primary sealing. An optical semiconductor characterized in that the mold resin composition contains an epoxy resin as a main component and amorphous silica powder having a Wardell sphericity of 0.5 to 1.0 as an inorganic filler. Device.
JP15837386A 1986-07-04 1986-07-04 Optical semiconductor device Expired - Lifetime JP2523512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15837386A JP2523512B2 (en) 1986-07-04 1986-07-04 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15837386A JP2523512B2 (en) 1986-07-04 1986-07-04 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS6314457A true JPS6314457A (en) 1988-01-21
JP2523512B2 JP2523512B2 (en) 1996-08-14

Family

ID=15670282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15837386A Expired - Lifetime JP2523512B2 (en) 1986-07-04 1986-07-04 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2523512B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114879A (en) * 2004-09-16 2006-04-27 Sharp Corp Optical semiconductor device and electronic apparatus
JP2007180275A (en) * 2005-12-28 2007-07-12 Sharp Corp Optical semiconductor device and electronic device
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
CN102548725A (en) * 2009-09-24 2012-07-04 旭硝子株式会社 Mold release film, and method for manufacturing light emitting diode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157278A (en) * 1979-05-25 1980-12-06 Sharp Corp Photo coupling device
JPS594630A (en) * 1982-06-30 1984-01-11 Matsushita Electric Works Ltd Resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157278A (en) * 1979-05-25 1980-12-06 Sharp Corp Photo coupling device
JPS594630A (en) * 1982-06-30 1984-01-11 Matsushita Electric Works Ltd Resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114879A (en) * 2004-09-16 2006-04-27 Sharp Corp Optical semiconductor device and electronic apparatus
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
JP2007180275A (en) * 2005-12-28 2007-07-12 Sharp Corp Optical semiconductor device and electronic device
CN102548725A (en) * 2009-09-24 2012-07-04 旭硝子株式会社 Mold release film, and method for manufacturing light emitting diode

Also Published As

Publication number Publication date
JP2523512B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US4282136A (en) Flame retardant epoxy molding compound method and encapsulated device
JPS6314457A (en) Optical semiconductor device
JP2874524B2 (en) Epoxy molding compound for sealing
JPS59108026A (en) Epoxy resin composition for sealing
JP2622110B2 (en) Semiconductor device
JPS63104487A (en) Optical semiconductor device
JPS61190961A (en) Semiconductor device
JPH08288539A (en) Primary sealing resin composition for photocoupler
JP2572761B2 (en) Semiconductor device
JP4105344B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JPH0616904A (en) Epoxy resin molding material for sealing
JP3353847B2 (en) Resin sealing resin composition and resin sealing type semiconductor device
JPH03140322A (en) Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device
JPS63160254A (en) Semiconductor device
JPH0616774A (en) Epoxy resin molding material for sealing use
JP2747247B2 (en) Resin composition for semiconductor encapsulation
JPS63299151A (en) Semiconductor device
JPH0563116A (en) Resin-sealed semiconductor device
JPS6162516A (en) Resin composition for sealing semiconductor
JPH093169A (en) Sealing resin composition and device for sealing electronic part
KR0137196B1 (en) Epoxy resin composition for semiconductor encapsulating
JPH10287795A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPS62192443A (en) Epoxy resin molding material for sealing
JP2000212250A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term