JPS63141379A - Semiconductor light emitting device - Google Patents
Semiconductor light emitting deviceInfo
- Publication number
- JPS63141379A JPS63141379A JP61288205A JP28820586A JPS63141379A JP S63141379 A JPS63141379 A JP S63141379A JP 61288205 A JP61288205 A JP 61288205A JP 28820586 A JP28820586 A JP 28820586A JP S63141379 A JPS63141379 A JP S63141379A
- Authority
- JP
- Japan
- Prior art keywords
- region
- mqw
- active layer
- disordered
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 238000005253 cladding Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 6
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は半導体発光装置に係わシ、特に端面発光型の
発光ダイオード装置(以下LEDと略す)に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light emitting device, and particularly to an edge emitting type light emitting diode device (hereinafter abbreviated as LED).
第4図は従来の端面発光型IJD装置を示す斜視図であ
る。同図において、1はn型(以下n−と略す)工。P
基板、12はn −I nPクラッド層、13はP型(
以下P−と略す)IttGaAsP活性層、14はP−
InPり2ラド層、5はP −I nG、A、Pコンタ
クト層、16は5IO2絶縁膜、6はP側電極、7はn
側電極である。FIG. 4 is a perspective view showing a conventional edge-emitting IJD device. In the figure, 1 is an n-type (hereinafter abbreviated as n-) type. P
The substrate, 12 is an n-I nP cladding layer, 13 is a P-type (
(hereinafter abbreviated as P-)IttGaAsP active layer, 14 is P-
InP 2 Rad layer, 5 is P-I nG, A, P contact layer, 16 is 5IO2 insulating film, 6 is P side electrode, 7 is n
This is the side electrode.
このような構成において、P側電極6とn III を
極7との間にPIIIlt&6が正になるようなバイア
スを加えると、pH11を極6とコンタクト層5との間
にSiα絶縁膜16のない矩形状部分から正孔が、また
、n9111%極7からは電子がデバイス中に注入され
る。注入された電子および正孔は活性層13内で再結会
して光に変換され、その光はLEDの端面から外部に輻
射される。端面から遠い場所で生じた光はLED内を伝
搬する間にほとんど結晶に再吸収される。従って、一般
的には電流を効率良く元に変換して装置外に取シ出すた
めに第4図に示すようにオーミックコンタ、クトを端面
近傍にのみ設ける構造が採用されている。In such a configuration, if a bias is applied between the P-side electrode 6 and nIII and the pole 7 so that PIIIlt&6 becomes positive, the pH will change to 11 without the Siα insulating film 16 between the pole 6 and the contact layer 5. Holes are injected from the rectangular portion and electrons are injected from the n9111% pole 7 into the device. The injected electrons and holes are recombined within the active layer 13 and converted into light, and the light is radiated to the outside from the end face of the LED. Most of the light generated far from the end face is reabsorbed by the crystal while propagating within the LED. Therefore, in order to efficiently convert the current back to the source and take it out of the device, a structure is generally adopted in which ohmic contacts are provided only in the vicinity of the end faces, as shown in FIG.
従来の端面発光型LED!!置は、以上のように構成さ
れているので、光出力が面発光ff1LEDに比べて十
分に大きくとれないという問題があっ九。Conventional edge-emitting LED! ! Since the device is configured as described above, there is a problem that the light output cannot be sufficiently large compared to the surface emitting ff1 LED.
この発明は上記のような問題点を解消するためになされ
たもので、光出力の大きくとれる端面発光型の半導体発
光装置を得ることを目的とする。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an edge-emitting type semiconductor light-emitting device that can provide a large light output.
この発明に係る半導体発光装置は、活性層とそれをはさ
む上下のクラッド層を多重量子井戸(以下MQWと略す
)で構成し、複数のストライプよシ構成される活性領域
及び光導波路部分を除き不純物を拡散してMQWt−無
秩序化したものである。In the semiconductor light emitting device according to the present invention, the active layer and the upper and lower cladding layers sandwiching the active layer are composed of multiple quantum wells (hereinafter abbreviated as MQW), and the active region composed of a plurality of stripes and the optical waveguide portion are free of impurities. It is MQWt-disordered by spreading it.
この発明における複数のストライプにより構成される活
性領域及び光導波路は、端面付近で複数のストライプ状
活性領域で光を生じせしめ、この光を導波路によシ1つ
に集めて端面よシ外部に輻射する。The active region and optical waveguide composed of a plurality of stripes in the present invention generate light in the plurality of stripe-shaped active regions near the end face, collect this light into a single waveguide, and transmit the light from the end face to the outside. radiate.
以下、この発明の一実施例を図について説明する0
第1図はこの発明の一実施例を示す半導体発光装置の斜
視図であり、前述の図と同一部分には同一符号を付しで
ある。同図において、2はn−MQWクラッド層、3は
P−MQW活性層、4はP−MQWクラッド層、8はC
d拡散領域、9はCdが拡散されていない非無秩序化領
域、10は光放射領域である。また、第2図は第1図に
おけるA−A’線の断面を示す図であり、図において、
11はPn接合の位置を示している。また、第3図(、
)及び第3図(b)は第2図のB−B’線及びC−C′
線における屈折率分布の様子を示す図である。An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a perspective view of a semiconductor light emitting device showing an embodiment of the invention, and the same parts as in the previous figures are given the same reference numerals. . In the figure, 2 is an n-MQW cladding layer, 3 is a P-MQW active layer, 4 is a P-MQW cladding layer, and 8 is a C
d diffusion region, 9 a non-disordered region in which Cd is not diffused, and 10 a light emission region. Moreover, FIG. 2 is a diagram showing a cross section taken along the line AA' in FIG. 1, and in the diagram,
11 indicates the position of the Pn junction. Also, Figure 3 (,
) and Figure 3(b) are lines BB' and C-C' in Figure 2.
FIG. 2 is a diagram showing a refractive index distribution along a line.
ここで、n−MQWクラッド層2.P−MQW活性層3
.P−MQWクラッド層4の禁止帯巾を各々Ef(n−
d)、Ey(A−IJ、)、Et<p−ct)とすると
、この間には
Et(A、L、K Er(n−Ct)=Er(P−Ct
)の関係が成立するように各層の禁止帯巾が設定されて
いる。Here, the n-MQW cladding layer 2. P-MQW active layer 3
.. Let Ef(n-
d), Ey(A-IJ, ), Et<p-ct), then Et(A, L, K Er(n-Ct)=Er(P-Ct)
) The prohibited band width for each layer is set so that the following relationship holds true.
このような構成において、P側電極6とn側電極7との
間にP側電極6が正になるようなバイアスを加えると、
デバイス内に電流が流れる。本実施例においてはPn接
合はデバイス全面にわたって形成されているが、Pn接
合の拡散電位はcdが拡散されていない非無秩序化領域
9におけるPn接合のそれが、Cd拡散領域8のPn接
合のそれよりも小さい。従って、電流は非無秩序化領域
9のみに選択的に注入される。注入された電流は活性層
3内において光に変換される。ところで、MQWiIs
造は不純物の拡散によシ無秩序化され、その無秩序化さ
れた領域においては、禁止帯巾は非無秩序化領域のそれ
よシ大きくなシ、屈折率は小さくなる。従って、非無秩
序化領域9内の活性層3の横方向(第2図のB−B’l
J)の屈折率分布は第3図(、)のようになっている。In such a configuration, if a bias is applied between the P-side electrode 6 and the n-side electrode 7 so that the P-side electrode 6 becomes positive,
Current flows within the device. In this example, the Pn junction is formed over the entire surface of the device, but the diffusion potential of the Pn junction is that of the Pn junction in the non-disordered region 9 where CD is not diffused, and that of the Pn junction of the Cd diffusion region 8. smaller than Therefore, current is selectively injected only into the non-disordered region 9. The injected current is converted into light within the active layer 3. By the way, MQWis
The structure is disordered by the diffusion of impurities, and in the disordered region, the forbidden band is larger than that in the non-disordered region, and the refractive index becomes smaller. Therefore, in the lateral direction of the active layer 3 in the non-disordered region 9 (BB'l in FIG.
The refractive index distribution of J) is as shown in Figure 3 (,).
また、縦方向(第2図のc−c’線)の屈折率分布は通
常のダブルへテロ構造の如く第3図(b)に示す形にな
っている。つまシ、非無秩序化領域9内の活性層3は他
の部分に比べて屈折率が高く、光導波路を構成している
。従って、複数のストライプで発生した光は非無秩序化
領域9に形成された導波路を伝わり、端面近くで1本の
ストライプにまとめられて端面の光放射領域10よシ外
部に放射される。Further, the refractive index distribution in the vertical direction (line cc' in FIG. 2) is in the form shown in FIG. 3(b), like a normal double heterostructure. The active layer 3 within the non-disordered region 9 has a higher refractive index than other portions, and forms an optical waveguide. Therefore, the light generated in a plurality of stripes propagates through the waveguide formed in the non-disordered region 9, is collected into one stripe near the end face, and is radiated outside the light emitting region 10 on the end face.
このような構成によnば、複数本のストライプで光を発
生させるため、従来の端面発光型IDのように1本のス
トライプで光を発生させるものよシも、光出力が大きく
できる。According to such a configuration, since light is generated with a plurality of stripes, the light output can be increased compared to a conventional edge-emitting ID that generates light with a single stripe.
なお、上記実施例では、ストライプが3本のものを示し
たが、ストライプ数は何本であっても良いことは云うま
でもない。In the above embodiment, the number of stripes is three, but it goes without saying that the number of stripes may be any number.
また、上記実施例では、不純物の拡散フロントが基板に
近い側のクラッド層中にあるものについて示したが、基
板にまで拡散が行なわれていてもよく、上記実施例と全
く同様の効果を奏する。Further, in the above embodiment, the impurity diffusion front is located in the cladding layer on the side closer to the substrate, but the diffusion may also be carried out to the substrate, and the same effect as in the above embodiment can be obtained. .
以上説明したようにこの発明によれば、活性層とそれを
はさむ上下クラッド層をMQWで構成し、光放射端面近
傍では1本でそこから離れた領域で複数本のストライブ
に枝分かれするストライプ部以外の場所に不純物を拡散
してMQWを無秩序化したので、光出力の大きくとれる
端面発光型の半導体発光装置が得られるとい5極めて優
れた効果がある。As explained above, according to the present invention, the active layer and the upper and lower cladding layers sandwiching it are composed of MQW, and the stripe portion is one stripe near the light emitting end face and branches into multiple stripes in a region away from the active layer. Since the MQW is disordered by diffusing impurities to other locations, an edge-emitting type semiconductor light-emitting device with a large optical output can be obtained, which is an extremely excellent effect.
第1図はこの発明の一実施例による半導体発光装置を示
す斜視図、第2図はこの発明の一実施例による半導体発
光装置のストライプ部の断面図、第3図(a)、第3図
(b)は屈折率分布を示す図、第4図は従来の半導体発
光装置il:を示す斜視図である。
1・−・・n−InP基叛基板・・拳・n−仁
MQWクラッド層、3・・・−MQW活性層、4・・・
・P−MQWクラッド層、5・・・・P−I 、llG
、A、Pコンタクト層、8−−−−Cd拡散領域、9・
・・・非無秩序化領域、10・・・・光放射領域、11
・・・・Pn接合位置。
代理人 大 岩 増 雄
第3図
第4図
手続補正書(自発)FIG. 1 is a perspective view showing a semiconductor light emitting device according to an embodiment of the present invention, FIG. 2 is a sectional view of a stripe portion of the semiconductor light emitting device according to an embodiment of the present invention, FIG. 3(a), FIG. (b) is a diagram showing a refractive index distribution, and FIG. 4 is a perspective view showing a conventional semiconductor light emitting device il:. 1...n-InP based substrate...Fist/n-Ni MQW cladding layer, 3...-MQW active layer, 4...
・P-MQW cladding layer, 5...P-I, llG
, A, P contact layer, 8---Cd diffusion region, 9.
...Non-disordered region, 10...Light emission region, 11
...Pn junction position. Agent Masuo Oiwa Figure 3 Figure 4 procedural amendment (voluntary)
Claims (2)
重量子井戸構造のクラッド層、第1または第2または真
性の導電型の多重量子井戸構造の活性層、第2の導電型
の多重量子井戸構造のクラッド層および第2の導電型の
コンタクト層を順次積層して設け、光放射端面近傍では
1本のストライプでこの光放射端面から離れた個所で複
数本のストライプに枝別れするストライプ以外の部位に
第2の導電型をもたらす不純物を第1の導電型のクラッ
ド層ないしは半導体基板まで拡散して多重量子井戸構造
を無秩序化したことを特徴とする半導体発光装置。(1) A cladding layer having a multi-quantum well structure of a first conductivity type, an active layer having a multi-quantum well structure of a first, second or intrinsic conductivity type, and a second conductivity on a semiconductor substrate of a first conductivity type. A cladding layer with a type multi-quantum well structure and a contact layer of a second conductivity type are sequentially laminated, and one stripe is formed near the light emitting end face and branches into multiple stripes at a location away from the light emitting end face. A semiconductor light emitting device characterized in that a multi-quantum well structure is disordered by diffusing an impurity that causes a second conductivity type to a portion other than the separated stripes to a cladding layer or a semiconductor substrate of a first conductivity type.
P系材料で構成したことを特徴とする特許請求の範囲第
1項記載の光半導体発光装置。(2) The second conductivity type contact layer is made of InGaAs.
The optical semiconductor light emitting device according to claim 1, characterized in that it is made of a P-based material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61288205A JPS63141379A (en) | 1986-12-03 | 1986-12-03 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61288205A JPS63141379A (en) | 1986-12-03 | 1986-12-03 | Semiconductor light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63141379A true JPS63141379A (en) | 1988-06-13 |
Family
ID=17727178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61288205A Pending JPS63141379A (en) | 1986-12-03 | 1986-12-03 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63141379A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5825525A (en) * | 1996-01-12 | 1998-10-20 | Lockheed Missiles & Space Co. | Electro-optic modulator with voltage tunable quantum well waveguide cladding layer |
-
1986
- 1986-12-03 JP JP61288205A patent/JPS63141379A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5825525A (en) * | 1996-01-12 | 1998-10-20 | Lockheed Missiles & Space Co. | Electro-optic modulator with voltage tunable quantum well waveguide cladding layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008135786A (en) | High power semiconductor laser diode | |
US7154127B2 (en) | Semiconductor light emitting device | |
US6947461B2 (en) | Semiconductor laser device | |
JPS63141379A (en) | Semiconductor light emitting device | |
US20040013146A1 (en) | Laser diode with a low absorption diode junction | |
JPH04144182A (en) | Optical semiconductor device array | |
JPS60788A (en) | Optical integrated circuit and manufacture thereof | |
JPH04159784A (en) | Semiconductor light emitting element and manufacture thereof | |
JPH07202259A (en) | Gaalas light emitting diode | |
JPS6260278A (en) | Semiconductor light emitting diode | |
JPS62142382A (en) | Integrated type semiconductor laser device | |
JPS63104494A (en) | Semiconductor laser device | |
JP2550711B2 (en) | Semiconductor laser | |
JPS5916432B2 (en) | Composite semiconductor laser device | |
JP2801346B2 (en) | Semiconductor laser device | |
JPS59188179A (en) | Light emitting diode | |
JPS6395681A (en) | Semiconductor light-emitting device | |
JPH0438880A (en) | Semiconductor light emitting element | |
JPS62130583A (en) | Semiconductor laser and manufacture thereof | |
JPH03101284A (en) | Semiconductor laser | |
JPH04177785A (en) | Semiconductor light emitting element | |
JPS63249391A (en) | Semiconductor light emitting device | |
JPS6230391A (en) | Integrated semiconductor laser | |
JPH03133188A (en) | Surface emitting laser element | |
JPS62213289A (en) | Semiconductor laser |