JPS62142382A - Integrated type semiconductor laser device - Google Patents

Integrated type semiconductor laser device

Info

Publication number
JPS62142382A
JPS62142382A JP24053785A JP24053785A JPS62142382A JP S62142382 A JPS62142382 A JP S62142382A JP 24053785 A JP24053785 A JP 24053785A JP 24053785 A JP24053785 A JP 24053785A JP S62142382 A JPS62142382 A JP S62142382A
Authority
JP
Japan
Prior art keywords
waveguide
semiconductor laser
laser device
ridge
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24053785A
Other languages
Japanese (ja)
Inventor
Jun Osawa
大沢 潤
Yoshito Ikuwa
生和 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24053785A priority Critical patent/JPS62142382A/en
Publication of JPS62142382A publication Critical patent/JPS62142382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an integrated type semiconductor laser device characterized by a single ridge property and an emitting beam having a narrow half-value width, by making the refractive index of a specified waveguide larger than that of a waveguide neighboring said waveguide, and flowing a current only through the specified waveguide. CONSTITUTION:A second waveguide 16 is formed by the second ridge, which is narrower than a first ridge 15. The effective refractive index of the waveguide 16 is smaller than that of the first waveguide 15. A P-type diffused region 19 is contacted with only the first waveguide 15 and not contacted with the second waveguide 16. When a positive voltage is applied to a P-side electrode 20 and a negative voltage is applied to an N-side electrode 21, a current flows only through the first waveguide 15. A current, which is going to flow through the second waveguide 16, is cut off. Therefore, in an active layer 13, a part directly beneath the first waveguide 15 becomes an active region. Light emission and amplification owing to stimulated emission occur and oscillation is generated. The emitting beam in the horizontal direction becomes a narrow single ridge beam.

Description

【発明の詳細な説明】 r産業上の利用分野〕 この発明は、多連導波路を有するイ■積型半導体レーデ
’装置に係り、特にその横モード制御に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an integrated type semiconductor radar device having multiple waveguides, and particularly to transverse mode control thereof.

〔従来の技術〕[Conventional technology]

第7図(a)は、例えば〔人mercan In5ti
tute of Physics[1985年1月15
日発行rAppl−Phys−Lett、J−46f2
1. P136〜P138)に示された従来の集積型半
導体レーザ装置であり、図において、(1)はn型In
Pからなる半導体基板、(2)はこの半導体基板1.1
の一主1石上に設けられたn型InPからなる下クラ・
フド層、(3)はこの下クラッド層(2)上に設けられ
たI n G a A s Pがらなろって形成される
導波路、f61 (f 、I:泥上クラッドIj′;?
(,11上に設けられたP型InGaAsPからなろ埋
込み層、(7)(よこの理込み層(6)上に設けられた
P側電極、(81i;を上記半導体基板(1)の−主面
と対向ずろ面1ζ設けられたn fl!II電極てあろ
7゜この様に構成された集積型半導体レーザ装置は、P
側電極(7)に正、n側電極(8)に負の電圧を印加1
−ろと、第7図(c)に示す様な分布を示して埋込み層
(6)及びトクラノド層(4)内を電流が流れろ。この
電流により活性層(3)に注入されたキャリア(よ、放
射再結合により発光し、活性層(3)に沿って導波され
ろ。このときの横方向の導波、ずなわら、半導体基板(
1)主面に対して水平方向の導波は、リッジの存在によ
−、て形成される導波路(5)の等価屈折率(Nc)の
分布に従うから、第7図(a)に於ろ集積型半導体レー
ザ装置に於ては第7図(b)に示す様な等価屈折率(N
e)の分布に従い、光はリッジによって形成される導波
路(5)直−[;の活性層(3)近傍に閉じ込められた
状態で誘導放出により増幅されつつ、導波路(5)に沿
って往復し、発振に至る。そして、各々の導波路(5)
で形成され発振された導波光は導波路(〔5)を飛び出
したところで互いに結合し、同一波長で一定の位相関係
を保ったモード、すなわら位相同期をしてレーザ光とし
て発振するものである。
FIG. 7(a) shows, for example, [mercan In5ti
Tute of Physics [January 15, 1985
Japanese issue rAppl-Phys-Lett, J-46f2
1. (1) is a conventional integrated semiconductor laser device shown in pages 136 to 138), and in the figure, (1) is an n-type In
A semiconductor substrate made of P, (2) is this semiconductor substrate 1.1
A lower crack made of n-type InP installed on one main stone.
The hood layer (3) is a waveguide formed by the InGaAsP provided on the lower cladding layer (2), f61 (f, I: mud upper cladding Ij';?
(, 11), (7) (P-side electrode provided on the horizontal embedded layer (6), (81i; The integrated semiconductor laser device configured in this way has an n fl!
Apply a positive voltage to the side electrode (7) and a negative voltage to the n-side electrode (8) 1
- Then, the current flows in the buried layer (6) and the Tokuranod layer (4) with a distribution as shown in FIG. 7(c). Carriers injected into the active layer (3) by this current emit light by radiative recombination and are guided along the active layer (3). substrate(
1) Waveguide in the horizontal direction with respect to the main surface follows the distribution of the equivalent refractive index (Nc) of the waveguide (5) formed by the presence of the ridge, so in Fig. 7(a), In a filter integrated semiconductor laser device, the equivalent refractive index (N
According to the distribution e), the light is confined near the active layer (3) of the waveguide (5) formed by the ridge, and is amplified by stimulated emission while traveling along the waveguide (5). It goes back and forth, leading to oscillation. And each waveguide (5)
The guided light beams formed and oscillated are coupled to each other after exiting the waveguide ([5), and are oscillated as laser light in a mode with the same wavelength and a constant phase relationship, that is, phase synchronized. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以」二の様に構成された従来の半導体レーザ装置に於て
:ま、3連導波路(5)の水平方向の光強度外i’lj
が第3図(a)の破線で示す1番目のモードすなわち基
本モードと、第3図(b)の破線で示す3番目のモード
とではほとんど差異がなく、従って利得すなわち第7図
(C)に示す電流分布との市なりで示されろモード利得
においても、上記基本モードと3番目のモードとでは差
異がほとんどないから、水平方向の横モードは基本モー
ドに制御されず、3番目のモードで4発振を生じてしま
い、水平方向の遠視野像は複数のピークを持つ幅の広い
形状となり、実用上部いにくいという問題点があった。
In the conventional semiconductor laser device configured as follows: Well, outside the horizontal light intensity of the triple waveguide (5) i'lj
There is almost no difference between the first mode, that is, the fundamental mode, shown by the broken line in FIG. 3(a), and the third mode, shown by the broken line in FIG. 3(b), and therefore the gain, that is, the fundamental mode shown by the broken line in FIG. There is almost no difference between the fundamental mode and the third mode in the mode gain, which is shown by the current distribution shown in Figure 2, so the horizontal transverse mode is not controlled by the fundamental mode, but is This results in four oscillations, and the horizontal far-field pattern has a wide shape with multiple peaks, which is problematic for practical use.

この発明は上記の様な問題点を解決ずろためになされた
もので、横モードを基本モードに制御することにより、
単峰性で半値幅の狭い出射ビームを有する集積型半導体
レーザ装置を得ろことを目的とする。
This invention was made to solve the above problems, and by controlling the transverse mode to the fundamental mode,
The object of the present invention is to obtain an integrated semiconductor laser device having an output beam that is single-peaked and has a narrow half-width.

〔問題点を解決するための手段〕[Means for solving problems]

この発明(ご係ろ集積型半導体レーザ装置は、複数有る
導波路のうちの特定の導波路の実効的な屈折率を、この
導波路に隣り合う導波路のそれより〔作 用〕 この発明に於ては、特定の導波路の実効的な屈折率を大
きくしているから、導波路の実効的な屈折率により決定
されろ光強度は基準モードに於ては1−記特定の導波路
の部分にピークを有し、その他のモードに於ては、上記
特定の導波路以外の部分にピークを有ずろものであり、
一方り記特定の導波路のみ電流を流しているから、電流
分布(よこの特定の導波路部分にピークを有ずろもので
あり、よって、これら光強度分布と電流分布との重なり
にLっで決定されろモード利得は、に記その他のモード
に対して基準モードの方が数倍以−にも大きくliろも
のである。
In this invention, the effective refractive index of a particular waveguide among a plurality of waveguides is determined from that of the waveguide adjacent to this waveguide. In this case, since the effective refractive index of a specific waveguide is increased, the light intensity is determined by the effective refractive index of the waveguide. It has a peak in a part, and in other modes, it has a peak in a part other than the specific waveguide,
On the other hand, since the current is flowing only through a specific waveguide, the current distribution (which has a peak at the specific waveguide section on the side), therefore, the overlap between the light intensity distribution and the current distribution is large. The determined mode gain is several times larger in the reference mode than in the other modes mentioned above.

[実施例] 1λ下、乙の発明の一実施例を図について説明する。l
第1図(a)において(llllf n 厚! G n
 A sがらなろ半導体4.(仮、(+2) tよこの
半導体基(反(11)の−主面上に設けられj:n ”
i!j A I G a A sからなる下クラッド層
、(13)はこの下クラッド層(12)上に設けられた
P型AlGaAsからなる活性層、(14)はこの活性
層(13)上に設けられたP型AlGaAsからなる上
クラコ読路、(10はこの第1リツジ(15)よりも幅
の狭い第2シ リッジによって形成されて上記第1導波路(15)より
も実効的な屈折率が小さくされた第2導波路、(17)
は上記上クラッド! (+4)上に設けられ、この−L
クラッドIF7 (14)の材料となるP型のA I 
G a k sよりAl811成比の高いn型のAlG
aAsにより形成された埋込み層、(1B)は上記@1
導波路(+5)上を開口して上記埋込み層(17)上に
設けられた誘電体膜、(1つ)はこの誘電体膜(+8)
の開口部から上記埋込み層(+7)内に拡散され上記第
1導波路(15)に接続する様に形成されたP型拡散領
域、(至)はこのP型拡散領域(1つ)に接するように
して上記誘電体膜(18) J二に設けられたP側電極
、(2)は上記半導体基板Qlの一主面と対向する面に
設けられたn#i電極である。
[Example] Below 1λ, an example of the invention of B will be described with reference to the drawings. l
In FIG. 1(a), (llllf n thickness! G n
A s Garanaro Semiconductor 4. (tentatively, (+2) t side semiconductor group (provided on the negative main surface of (11) j:n ”
i! j A lower cladding layer made of A I Ga As, (13) an active layer made of P-type AlGaAs provided on this lower cladding layer (12), and (14) provided on this active layer (13). The upper Craco readout path (10 is formed by a second ridge narrower than the first ridge (15) and has an effective refractive index than the first waveguide (15)) is made of P-type AlGaAs. Miniaturized second waveguide, (17)
The above is clad! (+4) and this -L
P-type AI which is the material of cladding IF7 (14)
N-type AlG with a higher Al811 composition ratio than G a k s
A buried layer formed of aAs, (1B) is the above @1
A dielectric film provided on the buried layer (17) with an opening on the waveguide (+5), (one) is this dielectric film (+8)
A P-type diffusion region is formed so as to be diffused into the buried layer (+7) from the opening and connected to the first waveguide (15), and (to) is in contact with this P-type diffusion region (one). Thus, the P-side electrode (2) is provided on the dielectric film (18) J2, and (2) is the n#i electrode provided on the surface facing the one main surface of the semiconductor substrate Ql.

上記の様に構成された集積型半導体レーザ装置に於ては
、P型拡散領域(19)が第1導波路(15)にのみ接
し、第2導波路(1[))には接していないので、P側
電極(至)に正、n側電極(2)に負の電圧を印加する
と第1図(clに示す様な分布を示して第1導波路(1
5)にのみ流れ、第2導波路(1G)に流れ、lうとす
る電流は遮断されろものである。従って活性層(13)
に於ては第1導波F8 (1s)直下が活性領域となり
、誘電放出にモードでは第2導波路(+e)で強くなる
から、利得すなわら第1図(c)に示す電流分布との重
なりが大きい基本モードの方が3番目のモードよりもモ
ード利得が数倍以上も大きくなり、従って発振は基本モ
ードで起き、水平方向の出射ビームは狭い弔峰件のもの
となる。
In the integrated semiconductor laser device configured as described above, the P-type diffusion region (19) is in contact only with the first waveguide (15) and not with the second waveguide (1[)). Therefore, when a positive voltage is applied to the P-side electrode (to) and a negative voltage is applied to the N-side electrode (2), the first waveguide (1
5), and the current flowing to the second waveguide (1G) should be blocked. Therefore, the active layer (13)
In this case, the active region is directly below the first waveguide F8 (1s), and the dielectric emission mode becomes stronger in the second waveguide (+e), so the gain or current distribution shown in Figure 1(c) is The fundamental mode with a large overlap has a mode gain several times larger than the third mode, so oscillation occurs in the fundamental mode, and the horizontal output beam becomes a narrow beam.

また、光が第1導波路(15)のみならず、この第1導
波路(15)の両側に設けられた第2導波路(16)に
も広がるので、その分だけ発光部の面積が拡大され、寝
出力化を図ることができろ6のである。
Also, since the light spreads not only to the first waveguide (15) but also to the second waveguides (16) provided on both sides of this first waveguide (15), the area of the light emitting part is expanded accordingly. It is possible to increase the sleep output by doing so.

なお、上記実施例に於ては、第1リツジの幅を第2リツ
ジの幅より広くし、これによって第1導波路(15)の
実効的な屈折率を第2導波路(1c)の実効的な屈折率
より大きくしたが、第2図(u)に示すように第1リツ
ジの高さを第2す・ソジより高くして第2図(b)の如
く第1リツジの等両局折率(Ne)を第2リツジの等両
局折率(Ne)よりも太き(し、第19ツジによって形
成される第1導波路(15)の実効的な屈折率を第2リ
ツジに31って形成されろ第2導彼絡(10の実効的な
屈折率より大きくしても良い。
In the above embodiment, the width of the first ridge is made wider than the width of the second ridge, thereby increasing the effective refractive index of the first waveguide (15) to the effective refractive index of the second waveguide (1c). However, as shown in Figure 2(u), the height of the first ridge is made higher than that of the second ridge, and the height of the first ridge is made equal to the height of the first ridge as shown in Figure 2(b). The polarized refractive index (Ne) is set to be thicker than the equipolarized refractive index (Ne) of the second ridge (and the effective refractive index of the first waveguide (15) formed by the 19th ridge is set to the second ridge). A second conductive shield (31) is formed in the second conductor (which may have an effective refractive index greater than 10).

また、上記第1図及び第2図の実施例に於ては、第1リ
ツジを2個の第2リツジの間に設けたが、半導体基板(
11)の主面上の一方の端に第19ソジを設けろととも
に中央に同一)で複数の第2リツジを設け、それらの第
2リツジによって形成されろ第2導波路の実効的な屈折
率を上記第1リツジから遠ざかるに従い順次小さくする
様にしても良く、具体的には例えば第4図Zこ示す様に
P!F:!拡散jr” f19)接する幅の広い第1リ
ツジを半導体基板(U)の主面上の一方の端に設け、こ
の第1リツジから遠ざかるに従い順に幅の狭くなる第2
リツジを設ければ良いものである。この様に実効的屈折
率が一方向に1:1α次小さくなる構成とした場合には
基本モードとn番目のモードでは光分布が互いに反対側
の端に片寄るのでモード利得の差は史に大きくなり、第
1導波路(15)を複数の第2導波路(1G)の間に設
けたものより基本セードの選択性が大きくなるものであ
る。
In addition, in the embodiments shown in FIGS. 1 and 2 above, the first ridge was provided between the two second ridges, but the semiconductor substrate (
11) A 19th waveguide is provided at one end on the main surface of the waveguide, and a plurality of second ridges are provided at the center of the ridge, and the effective refractive index of the second waveguide formed by these second ridges is P! may be made gradually smaller as it moves away from the first ridge. Specifically, for example, as shown in FIG. 4, P! F:! Diffusion jr'' f19) A first ridge with a wide contacting area is provided at one end on the main surface of the semiconductor substrate (U), and a second ridge whose width becomes narrower as it goes away from the first ridge is provided at one end on the main surface of the semiconductor substrate (U).
It is good if a ridge is provided. In this way, when the effective refractive index is reduced by 1:1 α order in one direction, the light distribution in the fundamental mode and the n-th mode is biased toward the opposite ends, so the difference in mode gain is historically large. Therefore, the selectivity of the basic shade is greater than that in which the first waveguide (15) is provided between the plurality of second waveguides (1G).

川に上記実施例に於てLt、3連導波路の場合について
説明したが、導波路の数nは幾つでも良く、また実効的
屈折率が最も大きい導波路を1個とし、この導波路にの
み電流全圧す構造を示(7t:が、第5図に示すように
実効的屈折率が大きい複数個の第1ユ、q波路(15)
に電流を流ずl11′を造としても良い。
In the above embodiment, the case of Lt, triple waveguides was explained, but the number n of waveguides may be any number, and the waveguide with the largest effective refractive index is one, and this waveguide is However, as shown in FIG.
It is also possible to construct l11' without passing a current through.

まt:、上記実施例に於てはり、ソンの存在によって形
成されろ導波路の場合について1説明したが、吸収・反
射層の存在により形成されろ導波路であっても良い1.
例えば第6図は、第1.第2図に対応する3辿レーザの
構成例で、(22)(よ3つのストライブ状の溝を持つ
P型のGnAsからなる吸収・反射層であり、これらス
トライブ状の溝のうち、下クラッド層(12)と半導体
基板(11)とを接触させろ溝は第1導波路(15)を
形成し、その他の溝は第2導波路(IC)を形成するも
のである。(2)はP型のAlGaAsからなる上クラ
ッド層である。この構造で(よ活性層(13)と吸収・
反射層(22)との間隔が充分小さいと、溝部以外の平
坦部では第6図(b)及び第6図(d)に示すように等
両局折率(Ne)lよ低下(7、吸収損失(α)(よ大
きくなる。上記ストライブ状の溝部では等両局折率(N
elは平坦部より大きく ’y ’J、吸収損失(α)
は大幅に減少ずろので、溝部直上の活性層03)近傍に
導波路Qs) 、 (+e)が形成され、特に中央の溝
は幅が広く深いので、この溝によって形成される第1導
波路(15)の実効的屈折率は一番太き・(〔発明の効
果〕 この発明は以上説明した様に、特定の導波路の実効的な
屈折率を太き(しているから、導波路の実効的な屈折率
により決定されろ光強度は基準モードに於ては1−記特
定の導波路の部分にピークを有し、その他のモードに於
ては、上記特定の導波路以外の部分にピークを有ずろも
のであり、一方上記特定の導波路のみ電流を流している
から、電流分布はこの特定の導波路部分にピークを有す
るものであり、よってこれら光強度分布と電流分布との
重なりによって決定されろモード利得は、−上記その他
のモードに対して基準モードの方が数倍以にに大きくな
り、これによって横モードは基準モードに制御されるか
ら、t)i峰性で半値幅の狭い出射ビームが得られろと
いう効果がある。
In the above embodiments, the case where the waveguide is formed due to the presence of a layer is explained, but the waveguide may be formed due to the presence of an absorbing/reflecting layer.
For example, FIG. This is an example of the structure of a three-track laser corresponding to FIG. The groove that brings the lower cladding layer (12) into contact with the semiconductor substrate (11) forms the first waveguide (15), and the other grooves form the second waveguide (IC). (2) is the upper cladding layer made of P-type AlGaAs.In this structure, the active layer (13) and the absorption layer
If the distance between the reflective layer (22) and the reflective layer (22) is sufficiently small, in flat areas other than the grooves, the refractive index (Ne) decreases to equal (7, Absorption loss (α) (becomes much larger. In the above stripe-shaped groove, the equal bipolar refraction index (N
el is larger than the flat part 'y'J, absorption loss (α)
is significantly reduced, so a waveguide Qs), (+e) is formed near the active layer 03) directly above the groove, and since the central groove in particular is wide and deep, the first waveguide (Qs) formed by this groove is 15) The effective refractive index of The light intensity, which is determined by the effective refractive index, has a peak in the part of the specified waveguide in the reference mode, and peaks in the part other than the specified waveguide in other modes. On the other hand, since the current is flowing only in the specific waveguide, the current distribution has a peak in this specific waveguide, and therefore the overlap between the light intensity distribution and the current distribution The mode gain is determined by - The reference mode is several times larger than the other modes mentioned above, and the transverse mode is thereby controlled to the reference mode, so t) The half-width is i-peaked. This has the effect of providing a narrow output beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(C)ばこの発明の第1の実
施例を示す図で、第1図(a)は集積型半導体レーザ装
置の断面図、第1図Q>) fよ第1図(,1)に於る
集積型半導体レーザ装置の等偏屈折率(Ne)の分布図
、積型半導体レーザ装置の断面図、第2図(b)は第2
図(a)に於ろ集積型半導体レーザ装置の等偏屈折率(
Ne)の分布図、第2図(C)は第2図(a)に於ろ集
積型半導体レーザ装置の電流分布図、第3図(a)(よ
基準モードに於ろ光強度の分布図、第3図(b)は3番
目のモードに於る光強度の分布図、第4図(a)ないし
第4図(C)(よこの発明の第3の実施例を示す図で、
第4図(a)は集積型半導体し・−ザ装置の断面図、第
4図(b)は第4図(a)に於る集積型半導体レーザ装
置の等偏屈折率(Ne)の分布図、第4図(C)は第4
図(a)に於ろ集積型半導体レーザ装置の電流分布図、
第5図(a)ないし第5図(C)はこの発明の第4の実
施例を示す図で、第5図(a)は集積型半導体レーザ装
置の断面図、第5図(b)(よ第5図(a)に於る集積
型半導体に一ザ装置の等偏屈折率(Ne)の分布図、第
5図(c)は第5図(n)に於ろ集積型半導体レーサ装
;ρの電流分布図、第6図(a)ないし第6図(d)は
この発明の第5の実施例を示す図で、第6図(a)は集
積型半導体レーザ装置の断面図、第6図(b)は第6図
(a)にh+、ろDA vi”i!’、半導体レーザ装
置の等両局近来の集積型半導体レーサJA装置を示す図
で、第7図(闇はその断1fi図、)17図(b)は第
7図(nlに於ろ集積1(、+144導体し−ザ装置の
等偏屈折率(Nelの分布図、第7図(c)は第7図(
a)に於ろ集積型半導体レーザ装置の電す化分布図であ
る。 図にt、sいて、山)は半導体基板、(+31 Lt活
性11イ、(15)L、を特定の導波路、(1c)は特
定の導波I8(+slに隣り合う導〆皮路である。 なお、各図中同一符号は、同一または相当部分を示すも
のである。。 出願人 工業技術院長 等々力 達 第1図 第2図 第3図 第4図 第5図 第6図 第7図 手  続  補  正  書(自発) 昭和ρ′年、7月7・7日
FIGS. 1(a) to 1(C) are diagrams showing a first embodiment of the present invention, in which FIG. 1(a) is a sectional view of an integrated semiconductor laser device, and FIG. 1(Q>) f Figure 1(,1) is a distribution diagram of the equipolarized refractive index (Ne) of the integrated semiconductor laser device, and Figure 2(b) is a cross-sectional view of the integrated semiconductor laser device.
Figure (a) shows the equipolarized refractive index (
Figure 2(C) is a current distribution diagram of the integrated semiconductor laser device in Figure 2(a), and Figure 3(a) is a distribution diagram of light intensity in the reference mode. , FIG. 3(b) is a distribution diagram of the light intensity in the third mode, and FIGS. 4(a) to 4(C) are diagrams showing the third embodiment of the present invention.
FIG. 4(a) is a cross-sectional view of an integrated semiconductor laser device, and FIG. 4(b) is a distribution of equipolarized refractive index (Ne) of the integrated semiconductor laser device in FIG. 4(a). Figure 4 (C) is the fourth
Figure (a) shows a current distribution diagram of an integrated semiconductor laser device.
5(a) to 5(C) are diagrams showing a fourth embodiment of the present invention, in which FIG. 5(a) is a sectional view of an integrated semiconductor laser device, and FIG. 5(b) is a cross-sectional view of an integrated semiconductor laser device. Fig. 5(a) shows the distribution of the uniform refractive index (Ne) of the integrated semiconductor laser device, and Fig. 5(c) shows the distribution of the integrated semiconductor laser device in Fig. 5(n). 6(a) to 6(d) are diagrams showing a fifth embodiment of the present invention, and FIG. 6(a) is a sectional view of an integrated semiconductor laser device; Figure 6(b) is a diagram showing recent integrated semiconductor laser JA equipment such as h+, DA vi"i!', and semiconductor laser equipment in Figure 6(a), and Figure 7(dark is 17(b) is a distribution diagram of the uniform refractive index (Nel) of the +144 conductor and the device, and FIG. 7(c) is the distribution diagram of figure(
FIG. 3A is a power distribution diagram of an integrated semiconductor laser device. In the figure, t, s, and peaks) indicate the semiconductor substrate, (+31 Lt active 11 I, (15) L, a specific waveguide, and (1c) a specific waveguide I8 (+sl adjacent to the The same reference numerals in each figure indicate the same or corresponding parts. Applicant: Director General of the Agency of Industrial Science and Technology Todoroki Tatsu Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Procedural amendment (voluntary) July 7th and 7th, Showa ρ'

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上の活性層に隣接して形成された複数
個の導波路を有する集積型半導体レーザ装置において、
特定の導波路の実効的な屈折率をこの導波路に隣り合う
導波路のそれよりも大きく形成し、上記特定の導波路の
みに電流を流すようにしたことを特徴とする集積型半導
体レーザ装置。
(1) In an integrated semiconductor laser device having a plurality of waveguides formed adjacent to an active layer on a semiconductor substrate,
An integrated semiconductor laser device characterized in that the effective refractive index of a specific waveguide is formed to be larger than that of a waveguide adjacent to this waveguide, so that current flows only through the specific waveguide. .
(2)特定の導波路は隣り合う導波路よりも幅が広いこ
とを特徴とする特許請求の範囲第1項記載の集積型半導
体レーザ装置。
(2) The integrated semiconductor laser device according to claim 1, wherein a particular waveguide is wider than an adjacent waveguide.
(3)特定の導波路は隣り合う導波路よりも等価屈折率
が高いことを特徴とする特許請求の範囲第1項記載の集
積型半導体レーザ装置。
(3) The integrated semiconductor laser device according to claim 1, wherein a particular waveguide has a higher equivalent refractive index than an adjacent waveguide.
JP24053785A 1985-10-29 1985-10-29 Integrated type semiconductor laser device Pending JPS62142382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24053785A JPS62142382A (en) 1985-10-29 1985-10-29 Integrated type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24053785A JPS62142382A (en) 1985-10-29 1985-10-29 Integrated type semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62142382A true JPS62142382A (en) 1987-06-25

Family

ID=17061006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24053785A Pending JPS62142382A (en) 1985-10-29 1985-10-29 Integrated type semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62142382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016683A (en) * 2006-07-06 2008-01-24 Nichia Chem Ind Ltd Nitride semiconductor laser element
WO2019058780A1 (en) * 2017-09-25 2019-03-28 パナソニック株式会社 Semiconductor laser element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113294A (en) * 1984-11-07 1986-05-31 Sharp Corp Semiconductor laser array device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113294A (en) * 1984-11-07 1986-05-31 Sharp Corp Semiconductor laser array device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016683A (en) * 2006-07-06 2008-01-24 Nichia Chem Ind Ltd Nitride semiconductor laser element
WO2019058780A1 (en) * 2017-09-25 2019-03-28 パナソニック株式会社 Semiconductor laser element
JPWO2019058780A1 (en) * 2017-09-25 2020-11-05 パナソニック株式会社 Semiconductor laser element

Similar Documents

Publication Publication Date Title
US5287376A (en) Independently addressable semiconductor diode lasers with integral lowloss passive waveguides
US6075801A (en) Semiconductor laser with wide side of tapered light gain region
JP2008135786A (en) High power semiconductor laser diode
US4947401A (en) Semiconductor laser array
US4340967A (en) Semiconductor lasers with stable higher-order modes parallel to the junction plane
US5321714A (en) Reflection suppression in semiconductor diode optical switching arrays
JPS5940592A (en) Semiconductor laser element
KR940011107B1 (en) Semiconductor laser apparatus
EP0280459B1 (en) A scanning apparatus
JPS62142382A (en) Integrated type semiconductor laser device
US5200968A (en) Laser amplifier for amplifying optical waves without saturation
JPS63116489A (en) Optical integrated circuit
US4771433A (en) Semiconductor laser device
US4833510A (en) Semiconductor laser array with independently usable laser light emission regions formed in a single active layer
Figueroa et al. Modeling of the optical characteristics for twin-channel laser (TCL) structures
JP3393634B2 (en) Super luminescent diode
JPH04230087A (en) Semiconductor laser array
US5442650A (en) Distributed talbot filter surface-emitting distributed feedback laser
US4122410A (en) Lateral mode control in semiconductor lasers
JPH0474876B2 (en)
JP2001024211A (en) Semiconductor light receiving element
JPS6155276B2 (en)
JPH0824207B2 (en) Semiconductor laser device
JPH01238082A (en) Semiconductor laser
RU2047935C1 (en) Optically pumped semiconductor laser