JPH01238082A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01238082A
JPH01238082A JP6312488A JP6312488A JPH01238082A JP H01238082 A JPH01238082 A JP H01238082A JP 6312488 A JP6312488 A JP 6312488A JP 6312488 A JP6312488 A JP 6312488A JP H01238082 A JPH01238082 A JP H01238082A
Authority
JP
Japan
Prior art keywords
optical waveguide
layer
diffraction grating
semiconductor laser
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6312488A
Other languages
Japanese (ja)
Inventor
Hideho Saito
斉藤 秀穂
Yuichi Tomori
裕一 東盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6312488A priority Critical patent/JPH01238082A/en
Publication of JPH01238082A publication Critical patent/JPH01238082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the yield of an element without necessitating an optical waveguide itself to be equipped with a diffraction grating, by joining a stripe like active region and optical waveguide by pads and mounting diffraction gratings at the end face which is away from the optical waveguide without mounting the above gratings at the main frame of the optical waveguide. CONSTITUTION:End faces at the far-edge side from a stripe like optical waveguide layer 5 are formed vertically with respect to a p-n junction which is formed between an active layer 2 and the second clad layer 3 and are formed slantwise with respect to the stripe like optical waveguide layer 5. Further, diffraction grating reflecting mirrors 12 are formed in the vertical direction with respect to the p-n junction at the end faces; besides, the relation among the energy band widths of Ea, Eg, and Ec is Ea>Eg>Ec. For operating a semiconductor laser, a current is caused to flow between a p-type electrode 10 and an n-type electrode 9 of the laser part. A laser oscillation beam lambda 19 is guided by the optical waveguide layer Eg 5 and only the beam having specific wavelength lambda is reflected by the diffraction grating reflecting mirrors 12 and is fed back to the optical waveguide layer 5 and the active layer 2. Thus, laser oscillations are caused by only the beam having specific wavelengths lambda.

Description

【発明の詳細な説明】 (1)発明の属する技術分野 本発明は、回折格子を有し、単一縦モードの狭線幅化さ
れた光源用の半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to a semiconductor laser having a diffraction grating and having a narrowed linewidth in a single longitudinal mode for use as a light source.

(2)従来の技術とその問題点 従来、狭線幅単一縦モード半導体レーザとして、多電極
DFBレーザ或いは、多電極DBRレーザが用いられて
おり、いずれも活性領域あるいは、光導波領域に回折格
子を有している。しかし、回折格子上への結晶成長は結
晶欠陥を生じさせやすく、光学的特性を劣化させる原因
となり、高歩留りで製作するのが困難であった。
(2) Conventional technology and its problems Conventionally, a multi-electrode DFB laser or a multi-electrode DBR laser has been used as a narrow linewidth single longitudinal mode semiconductor laser, and in either case, diffraction occurs in the active region or optical waveguide region. It has a grid. However, crystal growth on a diffraction grating tends to cause crystal defects, causing deterioration of optical properties, making it difficult to manufacture with a high yield.

(例えば、村田、水戸: rl、5μm帯波長可変DB
Rレーザの波長チューニング範囲」:昭和62年度電子
情報通信学会、半導体材料部門全国大会講演論文集予稿
287) (3)発明の目的 本発明は、このような点に鑑みてなされたもので、その
目的は回折格子を光導波路領域の遠端に設けることによ
り、導波路そのものに回折格子を設ける必要をなくして
、素子歩留りの向上を図るとともに、高倍転性を有せし
めた狭線幅単一モードの半導体レーザを提供することに
ある。
(For example, Murata, Mito: rl, 5 μm band wavelength variable DB
"Wavelength Tuning Range of R Laser": 1987 Institute of Electronics, Information and Communication Engineers, Semiconductor Materials Division National Conference Proceedings Proceedings Proceedings 287) (3) Purpose of the Invention The present invention has been made in view of the above points. The purpose is to provide a diffraction grating at the far end of the optical waveguide region, eliminating the need for a diffraction grating in the waveguide itself, improving device yield, and creating a narrow linewidth single mode with high multiplication performance. The purpose of the present invention is to provide a semiconductor laser of the type.

(4)発明の構成 (4−1)発明の特徴と従来の技術との差異本発明は、
ストライブ状の活性領域とストライブ状の光導波路をバ
ットジヨイントし、回折格子を活性領域あるいは光導波
路本体に設けず、光導波路の遠端に設けることをもっと
も主要な特徴とするものである。従来の技術では、回折
格子上の結晶成長が必要であり、結晶欠陥及び光学的損
失の増大等製作上の問題があった。
(4) Structure of the invention (4-1) Differences between the characteristics of the invention and the conventional technology The present invention has the following features:
The main feature is that the striped active region and the striped optical waveguide are butt jointed, and the diffraction grating is not provided in the active region or the optical waveguide body, but at the far end of the optical waveguide. . Conventional techniques require crystal growth on a diffraction grating, which poses manufacturing problems such as increased crystal defects and optical loss.

本発明はこの点を改良したもので、従来の構成とは異な
り、回折格子を外付けする簡単な構成であるので高歩留
り、高信顛性の素子を製作することができるという利点
がある。
The present invention improves on this point, and unlike the conventional structure, it has a simple structure in which a diffraction grating is externally attached, so it has the advantage of being able to manufacture elements with high yield and high reliability.

(4−2)実施例 第1図は本発明の第1の実施例を示す斜視図であって、
1はn−1nPの第1のクラッド層(EC)、2はu−
1nGaAsP活性層(Ea)、3はp−1nPの第2
のクラッド層(EC)、4はp−InGaAsPコンタ
クト層、5はストライブ状のu−InGaAsP光導波
路層(Ea)、6はp−InP電流ブロック層、7はn
−InP電流ブロック層、8はn−InP基板、9はn
−電極、10はp−電極、11はプロトン注入絶縁領域
、12は回折格子反射鏡、13は高反射膜、14は回折
格子のピッチP、15は回折格子反射鏡の傾き角θ、1
6はレーザ部、17は波長制御部、19はレーザ発振光
(λ)である。ストライブ状の光導波路層5の遠端側の
端面ば、活性層2と第2のクラッド層3との間に形成さ
れるp−n接合に対して垂直に、かつストライブ状の光
導波路層に対して斜めに形成されている。また、その端
面にはこのp−n接合に垂直な方向に回折格子反射鏡1
2を形成し、且つエネルギバンド幅Ea、Ea、ECの
間にはEa>Ea>Ecの関係を有している。
(4-2) Example FIG. 1 is a perspective view showing a first example of the present invention,
1 is n-1nP first cladding layer (EC), 2 is u-
1nGaAsP active layer (Ea), 3 is p-1nP second layer
cladding layer (EC), 4 is a p-InGaAsP contact layer, 5 is a striped u-InGaAsP optical waveguide layer (Ea), 6 is a p-InP current blocking layer, 7 is an n
-InP current blocking layer, 8 is n-InP substrate, 9 is n
- electrode, 10 is a p-electrode, 11 is a proton injection insulating region, 12 is a diffraction grating reflector, 13 is a high reflection film, 14 is the pitch P of the diffraction grating, 15 is the tilt angle θ of the diffraction grating reflector, 1
6 is a laser section, 17 is a wavelength control section, and 19 is a laser oscillation light (λ). The end surface on the far end side of the striped optical waveguide layer 5 is perpendicular to the pn junction formed between the active layer 2 and the second cladding layer 3, and the striped optical waveguide It is formed diagonally to the layer. In addition, a diffraction grating reflector 1 is placed on the end face in a direction perpendicular to this p-n junction.
2, and has a relationship of Ea>Ea>Ec between the energy band widths Ea, Ea, and EC.

これを動作させるには、レーザ部のp−電極10とn−
電極9の間に電流を流し、半導体レーザを発光させる。
To operate this, the p-electrode 10 of the laser section and the n-
A current is passed between the electrodes 9 to cause the semiconductor laser to emit light.

レーザ発振光(λ)19は光導波路層(Ea)5に導か
れ、回折格子反射鏡12である特定の波長λの光だけ反
射し、光導波路層5と活性層2に帰還する。そこで特定
の波長λの光のみでレーザ発振が起こる。
The laser oscillation light (λ) 19 is guided to the optical waveguide layer (Ea) 5, and only light with a specific wavelength λ, which is the diffraction grating reflecting mirror 12, is reflected and returned to the optical waveguide layer 5 and the active layer 2. Therefore, laser oscillation occurs only with light of a specific wavelength λ.

すなわち、回折格子により選択された光λのみでレーザ
発振が起こり、かつ低損失の光導波路層5によって実効
的にキャビティが長くなることによって線幅は狭くなる
That is, laser oscillation occurs only with the light λ selected by the diffraction grating, and the cavity is effectively lengthened by the low-loss optical waveguide layer 5, thereby narrowing the line width.

ここにおいて、レーザ発振光の波長λと回折格子のピッ
チPとの間には、次の関係がある。
Here, the following relationship exists between the wavelength λ of the laser oscillation light and the pitch P of the diffraction grating.

θは、回折格子反射鏡の傾き角15である。naffは
実効屈折率である。λ=1.55μm、θ=30°。
θ is the tilt angle 15 of the diffraction grating reflector. naff is the effective refractive index. λ=1.55μm, θ=30°.

n *tt =3.25. m = 1のとき、回折格
子のピy+はP =0.48μmとしなければならない
n*tt=3.25. When m = 1, the pi y+ of the diffraction grating must be P = 0.48 μm.

また、波長λ及び端面の位相の制御は、波長制御部17
に順方向電流を流し、導波路層5内の注入キャリア数を
調節して、実効屈折率neffを制御することによって
、可能となる。屈折率変化Δnは、プラズマ振動の式を
微分することによって次のように得られる。
Further, the wavelength λ and the phase of the end face are controlled by the wavelength control section 17.
This is possible by applying a forward current to the waveguide layer 5, adjusting the number of carriers injected into the waveguide layer 5, and controlling the effective refractive index neff. The refractive index change Δn can be obtained as follows by differentiating the plasma oscillation equation.

#−6.7X10−”(am3) xΔN (am −
:I) −−−−−■ここで、nは屈折率、Cは光速、
λは発振波長、ΔNはキャリア密度変化(C1l−’)
 、Tn@ 、 1’nkは各々電子とホールの実効質
量、ε。は透電率、eは電子の電荷である。
#-6.7X10-" (am3) xΔN (am-
:I) -----■Where, n is the refractive index, C is the speed of light,
λ is the oscillation wavelength, ΔN is the carrier density change (C1l-')
, Tn@, 1'nk are the effective masses of electrons and holes, respectively, and ε. is the conductivity and e is the electron charge.

このように、光導波路層5に、電流を注入することによ
り、実効屈折率n*ffを調節できるので、回折格子の
ピッチPが固定であっても発振波長λ及び端面位相を制
御することができる。
In this way, by injecting a current into the optical waveguide layer 5, the effective refractive index n*ff can be adjusted, so even if the pitch P of the diffraction grating is fixed, the oscillation wavelength λ and the end face phase can be controlled. can.

第2図は本発明の第2の実施例を示す断面図である。第
1の実施例と異なる所は、回折格子反射鏡12を前記の
p−n接合に対して斜めに、回折格子の方向をp−n接
合に対して平行にしたことである。
FIG. 2 is a sectional view showing a second embodiment of the invention. The difference from the first embodiment is that the diffraction grating reflector 12 is made oblique to the pn junction, and the direction of the diffraction grating is parallel to the pn junction.

第3図は本発明の第3の実施例を示す斜視図である。第
1.第2の実施例と異なるのは、光導波路層5上の電極
を分割して、それぞれ波長制御部17と端面位相制御部
18としたことである。これにより、波長制御と端面位
相制御が独立に行なえる自由度がある。
FIG. 3 is a perspective view showing a third embodiment of the present invention. 1st. The difference from the second embodiment is that the electrode on the optical waveguide layer 5 is divided into a wavelength control section 17 and an end face phase control section 18, respectively. Thereby, there is a degree of freedom in which wavelength control and end face phase control can be performed independently.

(5)発明の詳細 な説明したように、従来の多電極型DFB或いはDBR
半導体レーザにおいては、活性領域あるいは光導波路領
域本体に、回折格子を設置しなければならないので、結
晶成長時の問題が多く、素子の歩留り信頼性の低下が問
題であった。これに対して、本発明の半導体レーザはス
トライプ状の光導波路層の遠端側にドライエッ′チング
の方法を使用して、外部に回折格子反射鏡を設けるから
、結晶成長時の問題もなく、素子の高歩留化、高信頼化
に寄与することができる利点がある。
(5) As described in detail of the invention, the conventional multi-electrode DFB or DBR
In semiconductor lasers, since a diffraction grating must be provided in the active region or the optical waveguide region, there are many problems during crystal growth, which causes a reduction in device yield and reliability. In contrast, the semiconductor laser of the present invention uses a dry etching method on the far end side of the striped optical waveguide layer to provide an external diffraction grating reflector, so there is no problem during crystal growth. It has the advantage of contributing to higher yield and higher reliability of devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の構造を示す斜視図、第
2図は本発明の第2の実施例の構造を示す断面図、第3
図は本発明の第3の実施例の構造を示す斜視図である。 1・・・n−InPの第1の クラッド層(Ec)、2
・・・u−1nGaAsP活性層(El)、3・・・p
−InPの第2のクラッド層(EC)、4−p−1nG
aAsPコン゛タクト層、5 ・−u−1nGaAsP
光導波路層(Ea)、6・・・p−1nP電流ブロック
層、7・・・n−InP電流ブロック層、8・・・n−
InP基板、9・・・n−電極、10・・・p=電掻、
11・・・プロトン注入絶縁領域、12・・・回折格子
反射鏡、13・・・高反射膜、14・・・回折格子のピ
ッチP、15・・・回折格子反射鏡の傾き角θ、16・
・・レーザ部、17・・・波長制御部、18・・・位相
制御部、19・・・レーザ発振光(λ)。 特許出願人  日本電信電話株式会社
FIG. 1 is a perspective view showing the structure of the first embodiment of the present invention, FIG. 2 is a sectional view showing the structure of the second embodiment of the invention, and FIG.
The figure is a perspective view showing the structure of a third embodiment of the present invention. 1...n-InP first cladding layer (Ec), 2
...u-1nGaAsP active layer (El), 3...p
-Second cladding layer (EC) of InP, 4-p-1nG
aAsP contact layer, 5 ・-u-1nGaAsP
Optical waveguide layer (Ea), 6...p-1nP current blocking layer, 7...n-InP current blocking layer, 8...n-
InP substrate, 9...n-electrode, 10...p=electroplating,
11... Proton injection insulating region, 12... Diffraction grating reflector, 13... High reflection film, 14... Pitch P of diffraction grating, 15... Tilt angle θ of diffraction grating reflector, 16・
... Laser section, 17... Wavelength control section, 18... Phase control section, 19... Laser oscillation light (λ). Patent applicant Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に形成されたエネルギバンド幅がE
_cの第1のクラッド層と、該第1のクラッド層上のエ
ネルギバンド幅がE_aでかつストライプ状の発光領域
となる活性層と、前記第1のクラッド層上のエネルギバ
ンド幅がE_gのストライプ状の導波路層と、該活性層
と該光導波路層上のエネルギバンド幅がE_cの第2の
クラッド層と、該第2のクラッド層において前記ストラ
イプ状の活性層と光導波路層とが接する部分に形成され
た絶縁領域と、該絶縁領域により分離されコンタクト層
を介して前記発光領域上に形成された主電極と、前記光
導波路層上に形成された波長及び位相制御用電極とを備
えた半導体レーザにおいて、 前記光導波路層の遠端側の端面を前記活性層と前記第2
のクラッド層との間に形成されるp−n接合に対して垂
直にかつ前記ストライプ状の光導波路層に対して斜めに
形成し、該端面に前記p−n接合に垂直な方向に回折格
子を形成し、且つエネルギバンド幅E_a、E_g、E
_cの間には、E_a<E_g<E_cの関係を有し、
前記光導波路層の該p−n接合に順方向電流を流し、注
入されたキャリアの濃度に応じて屈折率を調節すること
により、発振波長及び端面位相を制御するように構成さ
れたことを特徴とする半導体レーザ。
(1) The energy band width formed on the semiconductor substrate is E
a first cladding layer of _c, an active layer on the first cladding layer having an energy band width of E_a and serving as a striped light emitting region, and a stripe on the first cladding layer having an energy band width of E_g. a second cladding layer having an energy band width of E_c on the active layer and the optical waveguide layer, and the striped active layer and the optical waveguide layer are in contact with each other in the second cladding layer. an insulating region formed on a portion thereof, a main electrode separated by the insulating region and formed on the light emitting region via a contact layer, and a wavelength and phase control electrode formed on the optical waveguide layer. In the semiconductor laser, a far end side end surface of the optical waveguide layer is connected to the active layer and the second semiconductor laser.
is formed perpendicularly to the p-n junction formed between the striped optical waveguide layer and the cladding layer, and obliquely to the striped optical waveguide layer, and a diffraction grating is provided on the end face in the direction perpendicular to the p-n junction. and energy band widths E_a, E_g, E
There is a relationship between E_a<E_g<E_c,
It is characterized in that it is configured to control the oscillation wavelength and end face phase by flowing a forward current through the p-n junction of the optical waveguide layer and adjusting the refractive index according to the concentration of injected carriers. semiconductor laser.
(2)前記光導波路層の遠端側の端面を、前記ストライ
プ状光導波路に垂直にかつ該p−n接合に斜めに形成し
、かつ、該端面に該p−n接合に平行に回折格子を形成
したことを特徴とする特許請求の範囲第1項記載の半導
体レーザ。
(2) An end face on the far end side of the optical waveguide layer is formed perpendicular to the striped optical waveguide and obliquely to the p-n junction, and a diffraction grating is formed on the end face parallel to the p-n junction. A semiconductor laser according to claim 1, characterized in that the semiconductor laser is formed with:
(3)各電極が3分割され、それぞれ発光部、位相制御
部、波長制御部とされたことを特徴とする特許請求の範
囲第1項又は第2項記載の半導体レーザ。
(3) The semiconductor laser according to claim 1 or 2, wherein each electrode is divided into three parts, each of which serves as a light emitting part, a phase control part, and a wavelength control part.
JP6312488A 1988-03-18 1988-03-18 Semiconductor laser Pending JPH01238082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6312488A JPH01238082A (en) 1988-03-18 1988-03-18 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6312488A JPH01238082A (en) 1988-03-18 1988-03-18 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01238082A true JPH01238082A (en) 1989-09-22

Family

ID=13220212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6312488A Pending JPH01238082A (en) 1988-03-18 1988-03-18 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01238082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806684A1 (en) * 1996-05-09 1997-11-12 Robert Bosch Gmbh Optical transmitting and receiving module
WO2003034114A3 (en) * 2001-10-16 2003-07-24 Denselight Semiconductors Pte Planar waveguide facet profiling
WO2019111804A1 (en) * 2017-12-05 2019-06-13 浜松ホトニクス株式会社 Optical semiconductor element driving method, and optical semiconductor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806684A1 (en) * 1996-05-09 1997-11-12 Robert Bosch Gmbh Optical transmitting and receiving module
WO2003034114A3 (en) * 2001-10-16 2003-07-24 Denselight Semiconductors Pte Planar waveguide facet profiling
WO2019111804A1 (en) * 2017-12-05 2019-06-13 浜松ホトニクス株式会社 Optical semiconductor element driving method, and optical semiconductor element
JPWO2019111804A1 (en) * 2017-12-05 2020-11-26 浜松ホトニクス株式会社 How to drive optical semiconductor devices and optical semiconductor devices

Similar Documents

Publication Publication Date Title
US6459840B1 (en) Optical transmission device
US4719634A (en) Semiconductor laser array with fault tolerant coupling
US5159604A (en) Antiguided semiconductor laser array with edge reflectors
JP2000269600A (en) High-power broad-band optical source and optical amplifier device
JP3061169B2 (en) Semiconductor laser
US4773077A (en) Internal reflection interferometric semiconductor laser apparatus
JPS60124887A (en) Distributed feedback type semiconductor laser
JPH01238082A (en) Semiconductor laser
JP2950302B2 (en) Semiconductor laser
JPS63116489A (en) Optical integrated circuit
US4380075A (en) Mode stable injection laser diode
US5727016A (en) Spatially coherent diode laser with lenslike media and feedback from straight-toothed gratings
US4771433A (en) Semiconductor laser device
CN114930657A (en) Single-mode DFB laser
CN115280609A (en) Optical device
US4764937A (en) Semiconductor laser array device
WO2021148121A1 (en) Dfb laser with angled central waveguide section
JP3393634B2 (en) Super luminescent diode
GB2298958A (en) Optical integrated semiconductor laser and waveguide
JPH0470794B2 (en)
JPS59165481A (en) Distributed feedback type semiconductor laser
KR100364772B1 (en) Semiconductor laser
JPH0337876B2 (en)
WO2023227189A1 (en) Tilted semiconductor laser
JPH04302481A (en) Semiconductor optical element