JPS6314059B2 - - Google Patents

Info

Publication number
JPS6314059B2
JPS6314059B2 JP14396779A JP14396779A JPS6314059B2 JP S6314059 B2 JPS6314059 B2 JP S6314059B2 JP 14396779 A JP14396779 A JP 14396779A JP 14396779 A JP14396779 A JP 14396779A JP S6314059 B2 JPS6314059 B2 JP S6314059B2
Authority
JP
Japan
Prior art keywords
sec
aluminum alloy
strength
solidification rate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14396779A
Other languages
Japanese (ja)
Other versions
JPS5669348A (en
Inventor
Tsunehisa Sekiguchi
Kozo Tabata
Ryota Mitamura
Takayuki Kato
Yoshinori Shinka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP14396779A priority Critical patent/JPS5669348A/en
Priority to GB8035525A priority patent/GB2065516B/en
Priority to AU64105/80A priority patent/AU576472B2/en
Priority to DE19803041942 priority patent/DE3041942A1/en
Priority to CA000364222A priority patent/CA1177679A/en
Priority to FR8024172A priority patent/FR2472618B1/en
Publication of JPS5669348A publication Critical patent/JPS5669348A/en
Priority to CA000442518A priority patent/CA1209825A/en
Priority to CA000442519A priority patent/CA1209826A/en
Publication of JPS6314059B2 publication Critical patent/JPS6314059B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高強度、高耐衝撃特性および高疲労
強度を有する加工用アルミニウム合金およびその
製造方法に関し、特に鍛造加工性に優れた
JIS2000番系のアルミニウム合金素材およびその
製造方法に関するものである。 周知の如くアルミニウム合金の鍛造材は単位重
量当りの強度すなわち比強度が高く、かつ耐衝撃
特性が高いとともに疲労強度も高いため、自動車
部品や航空機部品、その他各種機械装置類に広く
使用されるようになつている。この種の鍛造材を
得るための鍛造法は、自由鍛造と型鍛造とに大別
されるが、主として大型の鍛造材を得るための自
由鍛造の場合には通常は連続鋳造もしくは半連続
鋳造によつて得られた150mmφ〜300mmφ程度のビ
レツトが使用されている。このように大型鍛造用
の自由鍛造の素材として使用されている従来の大
径のビレツトは、その鋳造組織が横断面内で大き
くばらつき、特にビレツトの外皮近傍の位置と中
心部附近とでは大幅に異なり、そのため機械的特
性も横断面の部位によつて異なるとともに、ピン
ホールや偏析、ミクロシユリンケージやミクロ割
れ等の欠陥が存在するおそれがあり、したがつて
満足すべき機械的特性を有する鍛造品を得るため
には、鍛造素材のビレツトを充分に検査して良品
を選別する必要があることはもちろん、鍛造時に
おいては前記欠陥や不均質な鋳造組織を消失させ
るために鍛練を何回も繰返す必要があり、そのた
め鍛造に相当な時間と手間とを要する問題があつ
た。 一方、小型の鍛造品を得るためには通常型鍛造
が採用されているが、その素材として使用されて
いる5mmφ〜70mmφ程度の細径素材は、従来は連
続鋳造によつて150mmφ〜300mmφ程度のビレツト
を鋳造し、そのビレツトに450℃〜600℃程度の温
度で2〜20時間程度の均質化熱処理を施し、しか
る後に350〜500℃程度の熱間にて押出加工するこ
とにより得るのが通常であつた。このように従来
の細径鍛造素材は押出加工を要するため、製造コ
ストが高いのみならず、次のような各種の問題が
あつた。すなわち、 (1) JIS2000番系のAl−Cu基合金は一般に押出時
の変形抵抗が大きくかつ変形能が小さいから、
押出速度等の押出条件の設定が難かしく、押出
条件が不適切であれば押出材の表面附近に粗大
な再結晶粒が発生して、その再結晶粒界から微
小割れが発生するおそれがあり、このような押
出材を鍛造すれば前記粗大な再結晶粒やその粒
界割れから破断等が生じるおそれがある。 (2) 前述のように押出時の変形抵抗が大きいた
め、押出時のダイスと材料の加工発熱により1
回の押出工程の後期ほど高温で押出加工がなさ
れることになり、その結果押出材の特性がその
長手方向で変化し、鍛造後の特性もばらつきを
生じて製品の特性が不均一となる。 (3) 押出加工においては材料の変形量が外皮附近
と中心部附近とで相異するため、押出加工によ
り形成される加工組織が前記両部分で相異し、
特にJIS2000番系のAl−Cu基合金では、押出材
の外皮附近では変形量が大きいため微細な加工
組織を呈するのに対し押出材の中心附近では変
形量が小さいため粗大な加工組織を呈する。こ
のような不均一な加工組織に逆らつて鍛造すれ
ば、鍛造時に生じる繊維組織が寸断されて疲労
強度や衝撃値等の動的特性が劣化するおそれが
ある。 (4) 押出加工においてはビレツト中の金属間化合
物等の晶出物や結晶粒が押出方向に伸ばされる
から、押出材は特定の方向性を有する集合組織
を持ち、したがつて鍛造素材としては等方性の
均質なものではないため、鍛造加工時には押出
方向を考慮して鍛造を行なわなければならない
のであるが、製品の形状によつては必ずしも全
ての部分において最適な方向性で鍛造を行うこ
とが困難な場合が多く、その場合には割れが発
生したり局部的に機械的強度が低下して疲労強
度も低下するおそれがある。 上述のように、押出加工によつて得られた細径
鍛造素材には、押出加工に基づく不可避的な問
題、特に異方性で不均質である問題が存在し、そ
のため満足な機械的特性特に疲労強度や衝撃強度
が得られるとは限らないのが実情であつた。な
お、細径鍛造素材として、連続鋳造もしくは半連
続鋳造で得られる細径棒を使用することも考えら
れるが、その場合前述の大径ビレツトと同様に鋳
造組織の不均質や欠陥の問題があることはもちろ
ん、それらの問題以前に、実際に工業的な規模で
100mmφ程度以下の細径棒を連続鋳造することは
困難であるとされていたのが実情である。 以上のような事情から、この発明の発明者等
は、前述の如く熱間押出加工等、特性に悪影響を
与えるおそれのある二次塑性加工を行なわずに、
連続鋳造塊そのものもしくは連続鋳造塊に熱処理
を加えただけの状態で鍛造等の加工に供し得るよ
うな、均質で欠陥が少なくかつ機械的特性に優れ
た加工用合金の開発、特にJIS2000番系のアルミ
ニウム合金の開発につき鋭意研究を重ねたとこ
ろ、組成と組織因子とを適切に組合せることによ
り上述のような要求を満足し得ることおよび適切
な条件で鋳造することにより前記適切な組織因子
を有する合金を製造し得ることを見出し、この発
明をなすに至つたのである。 すなわちこの出願の第1発明は、特定の成分組
成と、鋳塊における特定の組織条件、殊に2次デ
ンドライトアーム間隔(以下DASと略記)、結晶
粒径、および金属間化合物からなる第2相粒子の
大きさの各条件との組合せを特徴とするものであ
り、具体的には、Cu2.0〜9.0%,Mg0.2〜1.2%,
Si0.2〜1.2%,Mn0.2〜0.8%Ti、もしくはTiおよ
びBを総量で0.005〜0.15%、残部実質的にAlお
よび不可避的不純物からなり、かつDASが15μm
を越えず、結晶粒径が80μm以下であつてさらに
金属間化合物からなる第2相粒子が10μm以下で
あることを特徴とする高強度、高衝撃特性、高疲
労強度を有する加工用アルミニウム合金である。 またこの出願の第2発明は、特定の成分組成
と、特定の組織条件、殊に結晶粒界および粒内に
おける溶質成分(固溶成分)の分布の均一性に関
する条件との組合せを特徴とするものであり、具
体的には、前記第1発明の成分組成と同様な成分
組成を有し、かつ結晶粒子内のマトリツクスにお
ける溶質成分の濃度aと粒界における溶質成分濃
度bとの比a/bが0.70以上であることを特徴と
する加工用アルミニウム合金である。 さらにこの出願の第3発明は、前記第1発明の
アルミニウム合金を製造するための条件を持徴と
するものであつた、具体的には、前記組成の合金
溶湯を溶製し、その溶湯を25℃/sec以上の凝固
速度で連続鋳造して、結晶粒径が80μm以下であ
るとともに二次デンドライトアーム間隔が15μm
以上でありかつ金属間化合物からなる第2相粒子
が10μm以下である、高強度、高衝撃特性、高疲
労強度を有する加工用アルミニウム合金を製造す
る方法を提供するものである。 なおここで“加工”とは、必ずしも鍛造加工と
は限らず、圧延加工、引抜・伸線加工、押出加工
等の他の塑性加工も含み、さらには切削加工等の
機械加工を含むものとする。したがつてこの発明
の加工用アルミニウム合金は各種の塑性加工、お
よび機械加工に使用可能なものである。またここ
で“連続鋳造”とは、いわゆる完全連続鋳造のみ
ならず、ある一定の長さだけ連続的に鋳造するい
わゆる半連続鋳造も含むことは勿論である。 以下にこの出願の各発明につきより具体的に説
明する。 まず各発明に共通する成分組成の限定理由につ
いて説明すると、Cuは2.0%未満では充分な機械
的強度が得られず、9.0%を越えれば、鋳塊に溶
体化処理を施してもCuが充分に固溶されずに金
属間化合物として晶出してしまい、その結果強
度・伸び・衝撃値等の機械的特性が低下して鋳造
割れ等が発生し、素材の製造が困難となる。ここ
で従来はCuを6.0%以上含有すれば鋳造割れによ
り連続鋳造が困難となるとされていたが、鋳塊の
横断面方向のいずれの位置においても25℃/sec
以上の凝固速度となるように連続鋳造することに
よつて、Cuの含有量が最大9.0%のものまで鋳造
可能となつたのである。このように連続鋳造可能
なCu含有量の上限が拡大されたのは、鋳塊の横
断面内において均一な高い凝固速度で凝固させる
ことにより横断面内の偏析が少なくなつて理想的
な一方内凝固に近い状態で鋳造されるようになつ
たためであると思われる。 またMgは0.2%未満では充分に高い強度が得ら
れず、一方Mgが1.2%を越えればSiとの金属間化
合物を形成して伸びが低下するとともに靭性も低
下し、その結果、目的とする高疲労強度、高衝撃
強度が得られない。さらにSiは0.2%未満では熱
処理効果が得られず、1.2%を越えれば靭性が低
下し、高衝撃強度が得られない。そしてまたMn
は0.2%未満では高強度、高衝撃値を得る効果が
奏されず、0.8%を越えれば粗大粒が生じ、後述
する組織条件を満足できなくなるとともに、強度
低下の一因となる。なお、上述のCu,Mg,Si,
Mnのほか、Ti、またはTiおよびBを総量で
0.005%〜0.15%添加する。このようにTiまたは
Ti/Bを添加すれば結晶粒がさらに微細化され
てより良好な機械的特性を得ることができる。 この出願の第1発明による加工用アルミニウム
合金は、上述のような成分組成を有し、かつそれ
に前述の如く組織条件、殊に組織微細化の条件、
すなわち鋳造組織としての結晶粒径が80μm以下
でありかつDASが15μm以下でさらに金属間化合
物からなる第2相粒子が10μm以下であることを
必要とする。ここで金属間化合物からなる第2相
粒子としては、Al−Cu,Mg−Si,Al−Mn−
Fe,Al−Fe−Si等が考えられる。上述のように
組織条件を規定したのは、結晶粒径、DASおよ
び第2相粒子の各サイズが前記範囲を越えれば、
たとえ合金組成が前述の組成範囲内であつたとし
ても目的とする高強度、高疲労強度、高衝撃強度
が得られず、また前記各サイズが前記範囲を越え
た場合、組織の等方性を失うとともに不均質化す
る傾向を呈し、その結果鍛造加工や機械加工等の
加工性を損ない、この発明の基本的な目的を達成
し得なくなるからである。 上述のような組織条件を有する第1発明の加工
用アルミニウム合金鋳塊を連続鋳造によつて得る
ためには、鋳塊の横断面内のいずれの位置におい
ても凝固速度が25℃/secとなるように冷却条件
を設定して連続鋳造すれば良い。すなわちこのよ
うな製造法がこの出願の第3発明である。 上述の製造法において、凝固速度を25℃/sec
以上と規定したのは、凝固速度を25℃/secより
も充分に低い速度から順次上昇させて行つた場
合、25℃/sec附近において急激に結晶粒径、
DASおよび第2相粒子が微細化されて前述の条
件を満足するようになること、換言すれば25℃/
secを臨界凝固速度として前記第1発明で目的と
する諸特性が満足すべき値となるからである。な
おここで凝固速度とは、連続鋳造用鋳型内の固相
−液相境界面の温度下降速度を意味し、またその
値は、実験的には例えば熱電対を鋳型上方から液
相内に挿入して固相に接触した位置の温度変化を
測定することによつて検出される。なおまた、上
述のように連続鋳造するための具体的な鋳造方式
としては従来一般に行なわれているフロート式連
続鋳造法を採用しても良いが、特に5mmφ〜70mm
φ程度の細径素材を鋳造するためには先に特開昭
53−15222号及び特開昭54−128431号において提
案されている気体加圧ホツトトツプ連続鋳造法を
採用することが望ましく、またその気体加圧ホツ
トトツプ連続鋳造法をこの発明の製造法に適用す
ることによつてこの発明の効果を最も良好に発揮
することができるのである。 上述のようにして得られた連続鋳造塊はこれを
そのまま加工用素材として塑性加工や機械加工に
供しても良いし、あるいは均質化熱処理を施して
から各種加工に供しても良いし、さらにはT6
理等の熱処理を施してから各種の加工に供しても
良い。 ここで前述のように凝固速度が25℃/sec附近
で鋳造組織が急激に微細化されることについて添
付の金属断面写真に基づいて説明すると、第1図
は凝固速度25℃/secで連続鋳造したCu4.5%−
Mg0.6%−Si0.6%−Mn0.4%−Ti0.01%−残部Al
なる組成のアルミニウム合金の組織を示し、また
第2図は凝固速度0.5℃/secの凝固速度で連続鋳
造した前記同様な組成のアルミニウム合金の組織
を示すものであつて、第1図の素材にあつては全
面的に均一な粒状晶が表われ、またDASは15μm
以下となつており、さらに金属間化合物からなる
第2相粒子はいずれも10μm以下となつているこ
とが明らかであり、これに対し第2図の素材にあ
つてはDASが15μmを上まわり、しかも金属間化
合物からなる第2相粒子も相当に粗大となつてい
ることが明らかである。 次にこの出願の第2発明による加工用アルミニ
ウム合金について説明すると、この合金は前記同
様な組成範囲の条件に加え、組織条件として鋳塊
の結晶粒子の粒内におけるCu,Mg,Si,Mn等
の溶質成分の濃度aと結晶粒界におけるCu,
Mg,Si,Mn等の溶質成分の濃度bとの比a/
bが0.70以上となるように規定されたものであ
る。このように粒内と粒界における溶質濃度分布
を均一化することによつて、前記第1発明の合金
に近い特性が得られる。すなわち、100mmφ程度
以上の比較的大径の連続鋳造塊(ビレツト)を得
る場合、凝固速度を前記第3発明に規定する如く
25℃/sec以上に設定しても、鋳塊組織の結晶粒
径、DASおよび第2相粒子の各サイズは第1発
明に規定しているほど微細化することが困難とな
ることがあるが、25℃/sec以上の凝固速度で得
られた鋳塊に適切な均質化熱処理を施して前述の
如く溶質濃度分布を前記比a/bが0.70以上とな
るように調整することによつて、組織を第1発明
の如く微細化した場合に近い効果が得られるので
ある。 この均質化熱処理は、最終的に前記比a/bが
0.70以上となるよう、450℃〜530℃の温度で0.5
時間〜20時間熱処理すれば良い。 なお、前述の第1発明の加工用アルミニウム合
金においても、理想的には結晶粒径、DASおよ
び第2相粒子の各サイズを前述の如く設定するの
みならず、前記比a/bを0.70以上に設定するこ
とが望ましく、斯くすることによつてより一層各
種特性が向上する。 次にこの出願の発明の実施例および比較例を記
すとともに、その特性向上効果につき添付のグラ
フを参照して詳細に説明する。 実施例 1 4.7%Cu−0.7%Si−0.6%Mn−0.5%Mg−0.012
%Ti−0.003%B残部Alからなるアルミニウム合
金溶湯を溶製し、これを気体加圧ホツトトツプ連
続鋳造法にて25℃/secの凝固速度で53mmφの丸
棒に鋳造した。 比較例 1 凝固速度を0.15℃/secとし、他の条件は実施
例1と同様にして鋳造した。 比較例 2 凝固速度を3℃/secとし、他の条件は実施例
1と同様にして鋳造した。 上記実施例1および比較例1,2により得られ
た丸棒からそれぞれその外周位置からの距離を変
えて軸方向に沿つた試験片を切出し、その各試験
片を505℃において6時間加熱した後温水冷却し、
しかる後170℃×8時間の時効処理を施していわ
ゆるT6材とし、その引張強さと押びとを常温に
おいて測定した。その結果を第3図に示す。なお
第3図において×印は実施例1(25℃/sec)によ
り得られた試験片、●印は比較例1(0.15℃/
sec)により得られた試験片、〇印は比較例2(3
℃/sec)により得られた試験片のそれぞれの試
験結果を示す。第3図から明らかなように、凝固
速度が0.15℃/sec,3℃/secの場合には引張強
さおよび伸びがともに外周部、中心部において相
当な差が生じているのに対し、凝固速度が25℃/
secでは引張強さ、伸びがともにほとんどばらつ
かず、外周部から中心部までほぼ均質となつてい
ることが理解される。また、実施例1および比較
例1,2により得られた鋳塊丸棒のDAS、第2
相粒子の大きさ、および粒内・粒界の溶質濃度比
a/bを測定した結果を第1表に示す。
The present invention relates to an aluminum alloy for processing that has high strength, high impact resistance, and high fatigue strength, and a method for producing the same.
This article relates to JIS2000 series aluminum alloy materials and their manufacturing methods. As is well known, forged aluminum alloy materials have high strength per unit weight, that is, specific strength, high impact resistance, and high fatigue strength, so they are widely used in automobile parts, aircraft parts, and various other mechanical devices. It's getting old. Forging methods for obtaining this type of forged material are broadly classified into free forging and die forging, but in the case of free forging, which is mainly used to obtain large forged materials, continuous casting or semi-continuous casting is usually used. The resulting billet with a diameter of about 150 mm to 300 mm is used. In this way, conventional large-diameter billets used as free forging materials for large forgings have a casting structure that varies widely within the cross section, and in particular, there is a large variation in the position near the outer skin of the billet and near the center. Therefore, the mechanical properties may vary depending on the cross-sectional area, and there is a risk that defects such as pinholes, segregation, micro-syringes, and micro-cracks may exist. In order to obtain a good product, it is of course necessary to thoroughly inspect the billet of the forged material to select good products, and during forging, it is necessary to forge many times to eliminate the defects and non-uniform casting structure. There was a problem in that the forging process required a considerable amount of time and labor because it had to be repeated. On the other hand, die forging is normally used to obtain small forged products, but the small diameter material used for this is about 5 mmφ to 70 mmφ. It is usually obtained by casting a billet, subjecting the billet to homogenization heat treatment at a temperature of about 450°C to 600°C for about 2 to 20 hours, and then extruding it at a temperature of about 350 to 500°C. It was hot. As described above, since conventional small diameter forged materials require extrusion processing, they not only have high manufacturing costs but also have various problems as described below. In other words, (1) JIS2000 series Al-Cu-based alloys generally have high deformation resistance and low deformability during extrusion;
It is difficult to set extrusion conditions such as extrusion speed, and if the extrusion conditions are inappropriate, coarse recrystallized grains may occur near the surface of the extruded material, and microcracks may occur from the recrystallized grain boundaries. If such an extruded material is forged, there is a risk that breakage may occur due to the coarse recrystallized grains or their intergranular cracks. (2) As mentioned above, since the deformation resistance during extrusion is large, the processing heat generated by the die and material during extrusion causes
The later in the extrusion process, the extrusion process is performed at a higher temperature, and as a result, the properties of the extruded material change in the longitudinal direction, and the properties after forging also vary, resulting in non-uniform product properties. (3) In extrusion processing, the amount of deformation of the material is different between the outer skin and the center, so the processed structure formed by extrusion is different between the two parts,
In particular, with JIS 2000 series Al-Cu-based alloys, the amount of deformation is large near the outer skin of the extruded material, resulting in a fine processed structure, whereas the amount of deformation is small near the center of the extruded material, resulting in a coarse processed structure. If forging is performed against such a non-uniform working structure, the fiber structure produced during forging may be fragmented, leading to deterioration of dynamic properties such as fatigue strength and impact value. (4) In extrusion processing, crystallized substances and crystal grains such as intermetallic compounds in the billet are elongated in the extrusion direction, so the extruded material has a texture with a specific direction, and therefore is suitable for use as a forging material. Since it is not isotropic and homogeneous, the extrusion direction must be considered during forging, but depending on the shape of the product, it may not be necessary to forge in the optimal direction for all parts. In many cases, it is difficult to do so, and in that case, there is a risk that cracks may occur or the mechanical strength may locally decrease, leading to a decrease in fatigue strength. As mentioned above, small-diameter forged materials obtained by extrusion have unavoidable problems due to extrusion, especially anisotropy and inhomogeneity, which makes it difficult to have satisfactory mechanical properties, especially The reality is that fatigue strength and impact strength cannot always be obtained. It is also possible to use a small diameter rod obtained by continuous casting or semi-continuous casting as the small diameter forged material, but in that case, there are the same problems of heterogeneity and defects in the casting structure as with the large diameter billet mentioned above. Of course, before these problems were actually solved on an industrial scale,
The reality is that it is difficult to continuously cast small diameter rods of approximately 100 mmφ or less. Due to the above circumstances, the inventors of the present invention, as mentioned above, did not perform secondary plastic processing such as hot extrusion processing, which may adversely affect the properties.
Development of processing alloys that are homogeneous, have few defects, and have excellent mechanical properties, so that they can be subjected to processing such as forging with the continuous casting ingot itself or only after heat treatment. After extensive research into the development of aluminum alloys, we have found that the above requirements can be met by appropriately combining the composition and microstructure factors, and that by casting under appropriate conditions, aluminum alloys can have the appropriate microstructure factors. They discovered that it was possible to produce an alloy and came up with this invention. In other words, the first invention of this application is based on a specific component composition, specific structural conditions in an ingot, especially secondary dendrite arm spacing (hereinafter abbreviated as DAS), crystal grain size, and a second phase consisting of an intermetallic compound. It is characterized by the combination of particle size and various conditions, specifically Cu2.0-9.0%, Mg0.2-1.2%,
Si0.2-1.2%, Mn0.2-0.8%Ti, or Ti and B in total amount 0.005-0.15%, the remainder substantially consisting of Al and unavoidable impurities, and DAS is 15μm
An aluminum alloy for processing that has high strength, high impact properties, and high fatigue strength, and has a crystal grain size of 80 μm or less, and a second phase particle consisting of an intermetallic compound of 10 μm or less. be. Further, the second invention of this application is characterized by a combination of a specific component composition and specific structural conditions, particularly conditions regarding the uniformity of distribution of solute components (solid solution components) at grain boundaries and within grains. Specifically, it has the same component composition as the component composition of the first invention, and the ratio a/ This is an aluminum alloy for processing, characterized in that b is 0.70 or more. Further, the third invention of this application is characterized by the conditions for producing the aluminum alloy of the first invention. Specifically, a molten alloy having the above composition is melted, and the molten metal is Continuously cast at a solidification rate of 25℃/sec or higher, with a crystal grain size of 80μm or less and a secondary dendrite arm spacing of 15μm.
The present invention provides a method for producing an aluminum alloy for processing having high strength, high impact properties, and high fatigue strength, in which the second phase particles made of intermetallic compounds are 10 μm or less. Note that "processing" herein does not necessarily mean forging, but also includes other plastic working such as rolling, drawing/wire drawing, and extrusion, and further includes machining such as cutting. Therefore, the aluminum alloy for processing according to the present invention can be used in various plastic working and machining processes. It goes without saying that "continuous casting" here includes not only so-called completely continuous casting, but also so-called semi-continuous casting, in which a certain length is continuously cast. Each invention of this application will be explained in more detail below. First, to explain the reason for limiting the composition common to each invention, if Cu is less than 2.0%, sufficient mechanical strength cannot be obtained, and if it exceeds 9.0%, Cu is insufficient even if the ingot is subjected to solution treatment. As a result, mechanical properties such as strength, elongation, and impact value deteriorate, causing casting cracks and the like, making it difficult to manufacture the material. Conventionally, it was thought that if Cu content exceeds 6.0%, continuous casting would be difficult due to casting cracks, but at any position in the cross-sectional direction of the ingot, 25°C/sec
By continuous casting at the above solidification rate, it became possible to cast materials with a Cu content of up to 9.0%. The reason why the upper limit of the Cu content that can be continuously cast has been expanded is that by solidifying at a uniform high solidification rate within the cross section of the ingot, segregation within the cross section is reduced, making it possible to achieve an ideal internal Cu content. This is thought to be due to the fact that it is now cast in a state close to solidification. Furthermore, if Mg is less than 0.2%, sufficiently high strength cannot be obtained, while if Mg exceeds 1.2%, it forms an intermetallic compound with Si, reducing elongation and toughness. High fatigue strength and high impact strength cannot be obtained. Furthermore, if Si is less than 0.2%, no heat treatment effect will be obtained, and if it exceeds 1.2%, toughness will decrease and high impact strength will not be obtained. And also Mn
If it is less than 0.2%, the effect of obtaining high strength and high impact value will not be achieved, and if it exceeds 0.8%, coarse grains will be formed, which will not be able to satisfy the microstructure conditions described below and will also be a cause of a decrease in strength. In addition, the above-mentioned Cu, Mg, Si,
In addition to Mn, the total amount of Ti or Ti and B
Add 0.005% to 0.15%. Like this Ti or
By adding Ti/B, the crystal grains can be further refined and better mechanical properties can be obtained. The aluminum alloy for processing according to the first invention of this application has the above-mentioned composition, and also has the above-mentioned structural conditions, particularly the microstructure conditions,
That is, it is necessary that the crystal grain size as a cast structure is 80 μm or less, the DAS is 15 μm or less, and the second phase particles consisting of an intermetallic compound are 10 μm or less. Here, the second phase particles consisting of intermetallic compounds include Al-Cu, Mg-Si, Al-Mn-
Fe, Al-Fe-Si, etc. can be considered. The reason for specifying the microstructure conditions as described above is that if the crystal grain size, DAS, and second phase particle size exceed the above ranges,
Even if the alloy composition is within the above-mentioned composition range, the desired high strength, high fatigue strength, and high impact strength cannot be obtained, and if the above-mentioned sizes exceed the above-mentioned ranges, the isotropy of the structure may be affected. This is because it tends to become inhomogeneous as it loses its properties, and as a result, the workability of forging, machining, etc. is impaired, making it impossible to achieve the basic purpose of the present invention. In order to obtain the working aluminum alloy ingot of the first invention having the above-mentioned structural conditions by continuous casting, the solidification rate is 25°C/sec at any position within the cross section of the ingot. Continuous casting can be carried out by setting the cooling conditions as follows. That is, such a manufacturing method is the third invention of this application. In the above manufacturing method, the solidification rate was set at 25℃/sec.
The reason for the above stipulation is that if the solidification rate is gradually increased from a rate sufficiently lower than 25℃/sec, the grain size will suddenly change around 25℃/sec.
DAS and second phase particles are refined to meet the above conditions, in other words, at 25℃/
This is because, assuming that sec is the critical solidification rate, the various properties aimed at in the first invention are satisfied. The solidification rate here means the rate of temperature decrease at the solid-liquid interface in a continuous casting mold, and its value has been determined experimentally by inserting a thermocouple into the liquid phase from above the mold. It is detected by measuring the temperature change at the position where the solid phase contacts the solid phase. Furthermore, as a specific casting method for continuous casting as mentioned above, the commonly used float continuous casting method may be adopted, but especially for castings of 5 mmφ to 70 mm.
In order to cast materials with a diameter as small as φ, we first developed the
It is desirable to adopt the gas pressurized hot top continuous casting method proposed in No. 53-15222 and JP 54-128431, and to apply the gas pressurized hot top continuous casting method to the manufacturing method of the present invention. This allows the effects of the present invention to be best exhibited. The continuous casting ingot obtained as described above may be directly used as a working material for plastic working or machining, or may be subjected to homogenization heat treatment and then subjected to various processing, or It may be subjected to various processing after being subjected to heat treatment such as T 6 treatment. Here, as mentioned above, the casting structure rapidly becomes finer when the solidification rate is around 25℃/sec. To explain this, based on the attached metal cross-sectional photograph, Figure 1 shows continuous casting at a solidification rate of 25℃/sec. Cu4.5%−
Mg0.6% - Si0.6% - Mn0.4% - Ti0.01% - balance Al
Fig. 2 shows the structure of an aluminum alloy having the same composition as above, which was continuously cast at a solidification rate of 0.5°C/sec. At first, uniform granular crystals appear on the entire surface, and the DAS is 15 μm.
It is clear that the second phase particles consisting of intermetallic compounds are all 10 μm or less, whereas in the case of the material shown in Figure 2, the DAS exceeds 15 μm. Moreover, it is clear that the second phase particles made of intermetallic compounds also have become considerably coarse. Next, to explain the aluminum alloy for processing according to the second invention of this application, in addition to the above-mentioned composition range conditions, this alloy has microstructural conditions such as Cu, Mg, Si, Mn, etc. in the crystal grains of the ingot. The concentration a of the solute component and Cu at the grain boundary,
Ratio a/ to concentration b of solute components such as Mg, Si, Mn, etc.
b is specified to be 0.70 or more. By making the solute concentration distribution within the grains and at the grain boundaries uniform in this way, properties close to those of the alloy of the first invention can be obtained. That is, when obtaining a continuous casting ingot (billet) with a relatively large diameter of about 100 mmφ or more, the solidification rate should be as specified in the third invention.
Even if the temperature is set at 25°C/sec or more, it may be difficult to make the crystal grain size of the ingot structure, DAS, and second phase particle sizes as fine as specified in the first invention. , by applying appropriate homogenization heat treatment to the ingot obtained at a solidification rate of 25 ° C / sec or more and adjusting the solute concentration distribution so that the ratio a / b is 0.70 or more as described above, Effects similar to those obtained when the structure is made finer as in the first invention can be obtained. This homogenization heat treatment finally changes the ratio a/b to
0.5 at a temperature of 450℃ to 530℃ so that it is 0.70 or higher.
Heat treatment may be performed for ~20 hours. In addition, in the above-mentioned aluminum alloy for processing of the first invention, it is ideal not only to set the crystal grain size, DAS, and second phase particle size as described above, but also to set the ratio a/b to 0.70 or more. It is desirable to set it to , and by doing so, various characteristics are further improved. Next, Examples and Comparative Examples of the invention of this application will be described, and their characteristic improvement effects will be explained in detail with reference to the attached graphs. Example 1 4.7%Cu-0.7%Si-0.6%Mn-0.5%Mg-0.012
A molten aluminum alloy consisting of %Ti-0.003%B with the balance Al was produced and cast into a 53 mm diameter round bar by gas pressure hot-top continuous casting at a solidification rate of 25°C/sec. Comparative Example 1 Casting was carried out in the same manner as in Example 1 except that the solidification rate was 0.15° C./sec. Comparative Example 2 Casting was carried out in the same manner as in Example 1 except that the solidification rate was 3° C./sec. Test pieces along the axial direction were cut from the round bars obtained in Example 1 and Comparative Examples 1 and 2 at different distances from the outer periphery, and each test piece was heated at 505°C for 6 hours. hot water cooling
Thereafter, it was subjected to an aging treatment at 170°C for 8 hours to obtain a so-called T6 material, and its tensile strength and push strength were measured at room temperature. The results are shown in FIG. In Fig. 3, the x mark indicates the test piece obtained in Example 1 (25℃/sec), and the ● mark indicates the test piece obtained in Comparative Example 1 (0.15℃/sec).
sec), the ○ mark is the test piece obtained by Comparative Example 2 (
℃/sec) are shown. As is clear from Figure 3, when the solidification rate is 0.15°C/sec and 3°C/sec, there is a considerable difference in tensile strength and elongation at the outer periphery and center, whereas Speed is 25℃/
sec, it can be seen that there is almost no variation in both tensile strength and elongation, and that they are almost uniform from the outer periphery to the center. In addition, the DAS of the ingot round bars obtained in Example 1 and Comparative Examples 1 and 2,
Table 1 shows the results of measuring the size of the phase particles and the solute concentration ratio a/b within the grains and at the grain boundaries.

【表】 第1表から明らかなように凝固速度が25℃/
secの場合にはDASおよび第2相粒子がいずれも
微細となつており、しかも溶質濃度比a/bが大
きくなつているのに対し、凝固速度が0.15℃/
sec,3℃/secではDASおよび第2相粒子が格
段に粗くなつているとともに溶質濃度比a/bも
小さくなつており、これらの結果と第3図の試験
結果とを参照すれば、これらの組織因子が引張強
度・伸びに大きな影響を与えていることが明らか
である。 実施例 2 4.5%Cu−0.6%Si−0.6%Mg−0.8%Mn−0.015
%Ti−残部Alなる組成の合金溶湯を溶製し、こ
れを気体加圧ホツトトツプ連続鋳造法にて、凝固
速度を5℃/secから80℃/secまで種々変化させ
て78mmφの丸棒に鋳造した。得られた丸棒鋳塊に
505℃×8時間の均質化処理を行なつて供試材と
した。 前記各凝固速度の供試材から第4図に示す如き
ウエツジ(Wedge)試験片を切出し、そのウエ
ツジ試験片に300℃,400℃,450℃の各温度にて
熱間鍛造を施して、鍛造割れを発生限界加工率を
測定した。その結果を第5図に示す。なお第5図
において各折線の上方の斜線領域が割れ発生領域
を表わすことになる。第5図から明らかなように
鍛造温度が上昇するに伴つて鍛造割れ発生限界加
工率が上昇する。またいずれの鍛造温度において
も凝固速度が上昇するに伴つて鍛造割れ発生限界
加工率が上昇して割れが発生し難くなり、特に凝
固速度25℃/sec附近で割れ発生限界加工率が顕
著に上昇していることが明らかである。この事実
は、前述の如く25℃/sec附近の凝固速度で組織
が顕著に変化することと対応している。さらに前
記各凝固速度の供試材につき、熱間捩り法(例え
ば「軽金属」第20巻第5号、堀内他に記載)によ
り一般的な熱間加工性を試験して、変形抵抗およ
び変形能を測定した。その結果を第6図に示す。
第6図から明らかなように変形抵抗は凝固速度25
℃/sec附近で明確に低下し、また変形能も凝固
速度25℃/sec附近で顕著に上昇している。これ
らの結果から、この発明による合金は加工性が著
しく良好となつていることが明らかである。 実施例 3 2.3%Au−0.3%Mg−0.3%Si−0.2%Mn−0.02
%Ti−残部Alなる組成の合金(A合金と記す)
と、4.5%Cu−0.6%Mg−0.7%Si−0.6%Mn−
0.01%Ti−残部Alなる組成の合金(B合金と記
す)と、8.7%Cu−1.0%Mg−1.0%Si−0.7%Mn
−0.012%Ti−0.003%B−残部Alなる組成の合金
(C合金と記す)とのそれぞれの溶湯を溶製し、
これらを気体加圧ホツトトツプ連続鋳造法にて、
凝固速度を6℃/sec附近から80℃/sec附近まで
種々変化させて62mmφの丸棒に鋳造した。なおC
合金におけるTiおよびBの添加はAl−5%Ti−
0.7%Bなる組成の母合金で行つた。 上記実施例3で得られた各丸棒鋳塊につき
DASを測定したところ、第7図に示す結果が得
られた。 第7図から明らかなように、DASはA,B,
C各合金ともに凝固速度が25℃/sec程度となる
まで凝固速度の上昇に伴つて急激に小さくなり、
25℃/secを臨界凝固速度としてそれ以上の凝固
速度ではほぼ一定の6μm程度となることが確認さ
れた。このことからこの発明の組成のアルミニウ
ム合金では25℃/secの凝固速度が組織的に重要
な意味を持つこと、すなわち組織微細化のための
臨界凝固速度となつていることが明らかである。
さらに前述の各合金の代表としてB合金の各凝固
速度の丸棒鋳塊について引張強さおよび伸びを測
定した結果を第8図に示す。第8図から明らかな
ように引張強さと伸びはともに第7図のDAS測
定結果に対応して上昇することが確認された。特
に伸びの向上は顕著に表われていることが判る。
さらにまたB合金の各凝固速度の丸棒鋳塊につい
て衝撃試験および絞り試験を行つた結果を第9図
に示す。これらの場合にも前記同様に凝固速度25
℃/secで顕著に衝撃値および絞り率(断面減少
率)が向上していることが確認された。 以上の各実施例の試験結果から、この発明の合
金素材は25℃/secの凝固速度でDASが15μm以
下となり、またその凝固速度およびDASにおい
て強度、伸び、衝撃値、絞り率がいずれも顕著に
向上し、それ以上凝固速度を上昇させても著しい
変化は認められず、したがつて25℃/secの凝固
速度が臨界点となつていることが明らかである。 実施例 4 4.0%Cu−0.2%Si−0.6%Mg−0.6%Mn−0.01
%Ti−残部Alなる組成のアルミニウム合金溶湯
を溶製し、これを気体加圧ホツトトツプ連続鋳造
法にて30℃/secの凝固速度で35mmφの丸棒に鋳
造した。その丸棒鋳塊を通常の熱間鍛造によりコ
ンロツドに鍛造し、505℃×2時間熱処理後水冷
して溶体化処理を行ない、室温にて2日間時効処
理(T4処理)を行つた後、疲労試験を前記コン
ロツド形状のまま実施した。 比較例 3 上述の実施例4と同一の組成の合金溶湯を通常
のダイレクトチル鋳造により鋳造し、押出比40に
て熱間押出加工を行ない、35mmφの押出棒を得
た。この押出棒につき実施例4と同一条件で熱間
鍛造、溶体化処理、およびT4処理を行ない、疲
労試験を実施した。 実施例4および比較例3による疲労試験結果を
第10図に示す。なおコンロツドはその面内で応
力値が変化するから、第10図において縦軸は試
験荷重で示した。第10図から明らかなように実
施例4により得られた鍛造材はその疲労強度が比
較例3により得られたものと比較し格段に優れて
いることが確認された。これは、比較例3におい
ては押出材を鍛造素材としているため、押出時に
生ずる繊維状集合組織が鍛造時に分断され、鍛造
により正常な繊維状組織が形成されないのに対
し、実施例4では内部組織が均一で等方性を有す
る鋳塊が鍛造素材となつているため、鍛造方向に
かかわらず正常な繊維状組織が得られているため
であると思われる。 以上の説明および各実施例から明らかなように
この発明の加工用アルミニウム合金は、その中心
部から表面まで均質かつ等方性を有するものであ
つて、高い強度と高い衝撃特性および高い疲労強
度を有し、しかも加工性に優れているから、押出
加工等の予備加工を施すことなく直接的に鍛造加
工等の塑性加工や切削加工等の機械加工に供する
ことができ、したがつて各種アルミニウム合金部
品の製造コストが低廉となり、しかも押出加工等
の予備加工による悪影響を受けることなく、鍛造
加工等の各種の加工により優れた特性を発揮する
ことができるものである。そしてまたこの発明の
加工用アルミニウム合金の製造方法によれば、前
述のように優れた特性を有する合金を簡単かつ容
易に得ることができる等の効果が得られる。
[Table] As is clear from Table 1, the solidification rate is 25℃/
In the case of sec, both DAS and second phase particles are fine and the solute concentration ratio a/b is large, but the solidification rate is 0.15℃/
sec, 3℃/sec, the DAS and second phase particles become much coarser and the solute concentration ratio a/b also decreases.If you refer to these results and the test results in Figure 3, these It is clear that the microstructural factors have a large influence on tensile strength and elongation. Example 2 4.5%Cu-0.6%Si-0.6%Mg-0.8%Mn-0.015
A molten alloy with a composition of %Ti and balance Al is produced and cast into a 78mmφ round bar using a gas pressure hot-top continuous casting method, varying the solidification rate from 5℃/sec to 80℃/sec. did. The obtained round bar ingot
A test material was prepared by homogenizing at 505°C for 8 hours. Wedge test pieces as shown in Fig. 4 were cut out from the test materials of each solidification rate, and the wedge test pieces were hot forged at temperatures of 300°C, 400°C, and 450°C. The critical machining rate at which cracking occurred was measured. The results are shown in FIG. In FIG. 5, the shaded area above each broken line represents the area where cracks occur. As is clear from FIG. 5, as the forging temperature increases, the critical working rate for forging crack occurrence increases. In addition, as the solidification rate increases at any forging temperature, the critical machining rate for forging cracking increases, making it difficult for cracks to occur, and the critical machining rate for cracking increases markedly especially when the solidification rate is around 25°C/sec. It is clear that This fact corresponds to the fact that the structure changes significantly at a solidification rate of around 25° C./sec as described above. Furthermore, the test materials of each of the above-mentioned solidification rates were tested for general hot workability by the hot torsion method (for example, described in "Light Metal" Vol. 20, No. 5, Horiuchi et al.), and were tested for deformation resistance and deformability. was measured. The results are shown in FIG.
As is clear from Figure 6, the deformation resistance is the solidification rate of 25
It clearly decreases when the solidification rate is around 25°C/sec, and the deformability also increases markedly when the solidification rate is around 25°C/sec. From these results, it is clear that the alloy according to the present invention has extremely good workability. Example 3 2.3%Au-0.3%Mg-0.3%Si-0.2%Mn-0.02
Alloy with a composition of %Ti-balance Al (denoted as A alloy)
and 4.5%Cu−0.6%Mg−0.7%Si−0.6%Mn−
An alloy with a composition of 0.01% Ti - balance Al (referred to as B alloy) and 8.7% Cu - 1.0% Mg - 1.0% Si - 0.7% Mn.
- 0.012% Ti - 0.003% B - The balance is Al (referred to as C alloy).
These are made using gas pressurized hot-top continuous casting method.
The solidification rate was varied from around 6°C/sec to around 80°C/sec and cast into a round bar with a diameter of 62 mm. Furthermore, C
The addition of Ti and B in the alloy is Al-5%Ti-
A master alloy with a composition of 0.7% B was used. For each round bar ingot obtained in Example 3 above
When DAS was measured, the results shown in FIG. 7 were obtained. As is clear from Figure 7, the DAS is A, B,
C For each alloy, the solidification rate decreases rapidly as the solidification rate increases until it reaches about 25°C/sec.
It was confirmed that the critical solidification rate is set at 25°C/sec, and that the solidification rate remains approximately constant at about 6 μm at higher solidification rates. From this, it is clear that in the aluminum alloy having the composition of the present invention, the solidification rate of 25°C/sec has an important meaning in terms of structure, that is, it is the critical solidification rate for microstructural refinement.
Furthermore, FIG. 8 shows the results of measuring the tensile strength and elongation of round bar ingots of alloy B at various solidification rates as representative of the above-mentioned alloys. As is clear from FIG. 8, it was confirmed that both the tensile strength and elongation increased in accordance with the DAS measurement results shown in FIG. In particular, it can be seen that the improvement in elongation is remarkable.
Furthermore, FIG. 9 shows the results of an impact test and a drawing test performed on round bar ingots of alloy B at various solidification speeds. In these cases as well, the solidification rate is 25
It was confirmed that the impact value and reduction rate (reduction rate of area) were significantly improved at °C/sec. From the test results of the above examples, the alloy material of the present invention has a DAS of 15 μm or less at a solidification rate of 25°C/sec, and the strength, elongation, impact value, and reduction rate are all remarkable at the solidification rate and DAS. No significant change was observed even if the solidification rate was further increased, and it is therefore clear that the solidification rate of 25°C/sec is the critical point. Example 4 4.0%Cu-0.2%Si-0.6%Mg-0.6%Mn-0.01
A molten aluminum alloy having a composition of %Ti and balance Al was produced and cast into a round bar of 35 mmφ at a solidification rate of 30° C./sec using a gas-pressure hot-top continuous casting method. The round bar ingot was forged into a conrod using normal hot forging, heat treated at 505℃ for 2 hours, water cooled and solution treated, and aged at room temperature for 2 days (T 4 treatment). A fatigue test was conducted with the above-mentioned conrod shape. Comparative Example 3 A molten alloy having the same composition as in Example 4 was cast by ordinary direct chill casting, and hot extrusion was performed at an extrusion ratio of 40 to obtain an extruded rod of 35 mmφ. This extruded rod was subjected to hot forging, solution treatment, and T4 treatment under the same conditions as in Example 4, and a fatigue test was conducted. The fatigue test results of Example 4 and Comparative Example 3 are shown in FIG. In addition, since the stress value of the connecting rod changes within its plane, the vertical axis in FIG. 10 is indicated by the test load. As is clear from FIG. 10, it was confirmed that the fatigue strength of the forged material obtained in Example 4 was significantly superior to that obtained in Comparative Example 3. This is because in Comparative Example 3, the extruded material is used as the forging material, so the fibrous texture generated during extrusion is divided during forging, and a normal fibrous structure is not formed by forging, whereas in Example 4, the internal structure This is thought to be because the forging material is an ingot with uniform and isotropic properties, so a normal fibrous structure is obtained regardless of the forging direction. As is clear from the above description and each example, the aluminum alloy for processing of the present invention is homogeneous and isotropic from the center to the surface, and has high strength, high impact properties, and high fatigue strength. Moreover, because it has excellent workability, it can be directly subjected to plastic working such as forging and machining such as cutting without performing preliminary processing such as extrusion. The manufacturing cost of the parts is low, and excellent properties can be exhibited through various processing such as forging without being adversely affected by preliminary processing such as extrusion. Furthermore, according to the method for producing an aluminum alloy for processing according to the present invention, effects such as being able to simply and easily obtain an alloy having excellent properties as described above can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の合金の金属組織断面写真、
第2図は比較材の金属組織断面写真、第3図は実
施例1および比較例1,2による試験片の引張強
さおよび伸びを示すグラフ、第4図はウエツジ試
験片の形状を示す斜視図、第5図は実施例2の供
試材を用いてウエツジ試験片による鍛造割れ発生
限界加工率を測定した結果を示すグラフ、第6図
は同じく実施例2の供試材を用いて変形抵抗およ
び変形能を測定した結果を示すグラフ、第7図は
実施例3による各合金鋳塊のDASの測定結果を
示すグラフ、第8図は同じく実施例3のB合金鋳
塊から得られた試片の引張強さおよび伸びを示す
グラフ、第9図は同じくB合金鋳塊から得られた
試片の衝撃値および絞り率を示すグラフ、第10
図は実施例4および比較例3により得られた鍛造
材の疲労強度特性を示すグラフである。
Figure 1 is a cross-sectional photograph of the metallographic structure of the alloy of this invention.
Fig. 2 is a cross-sectional photograph of the metallographic structure of the comparative material, Fig. 3 is a graph showing the tensile strength and elongation of the test pieces according to Example 1 and Comparative Examples 1 and 2, and Fig. 4 is a perspective view showing the shape of the wedge test piece. Figure 5 is a graph showing the results of measuring the critical machining rate for forging crack occurrence using a wedge test piece using the sample material of Example 2. A graph showing the results of measuring resistance and deformability, Fig. 7 is a graph showing the DAS measurement results of each alloy ingot according to Example 3, and Fig. 8 is a graph showing the results of measuring DAS of each alloy ingot according to Example 3. Figure 9 is a graph showing the tensile strength and elongation of the specimen, and Figure 10 is a graph showing the impact value and reduction ratio of the specimen obtained from the B alloy ingot.
The figure is a graph showing the fatigue strength characteristics of the forged materials obtained in Example 4 and Comparative Example 3.

Claims (1)

【特許請求の範囲】 1 Cu2.0〜9.0%(重量%、以下同じ)、Mg0.2
〜1.2%,Si0.2〜1.2%,Mn0.2〜0.8%,Tiもしく
はTiおよびBを総量で0.005〜0.15%、残部実質
的にAlおよび不可避的不純物からなる組成を有
し、かつ結晶粒径が80μm以下であるとともに二
次デントライトアーム間隔が15μm以下であり、
さらに金属間化合物からなる第2相粒子が10μm
以下であることを特徴とする高強度、高衝撃特性
および高疲労強度を有する加工用アルミニウム合
金。 2 Cu2.0〜9.0%,Mg0.2〜1.2%,Si0.2〜1.2%,
Mn0.2〜0.8%,TiもしくはTiおよびBを総量で
0.005〜0.15%、残部実質的にAlおよび不可避的
不純物からなる組成を有し、かつ結晶粒内の溶質
濃度aと結晶粒界の溶質濃度bとの比a/bが
0.70以上であることを特徴すとる高強度、高衝撃
特性および高疲労強度を有する加工用アルミニウ
ム合金。 3 Cu2.0〜9.0%,Mg0.2〜1.2%,Si0.2〜1.2%,
Mn0.2〜0.8%,TiもしくはTiおよびBを総量で
0.005〜0.15%、残部実質的にAlおよび不可避的
不純物からなる組成のアルミニウム合金溶湯を溶
製し、その溶湯を25℃/sec以上の凝固速度で連
続鋳造して、結晶粒径が80μm以下であるととも
に二次デントライトアーム間隔が15μm以下であ
り、かつ金属間化合物からなる第2相粒子が
10μm以下であるアルミニウム合金を得ることを
特徴とする高強度、高衝撃特性および高疲労強度
を有する加工用アルミニウム合金の製造方法。
[Claims] 1 Cu2.0-9.0% (weight%, the same applies hereinafter), Mg0.2
~1.2%, Si0.2~1.2%, Mn0.2~0.8%, Ti or Ti and B in a total amount of 0.005~0.15%, the remainder substantially consisting of Al and unavoidable impurities, and crystal grains The diameter is 80 μm or less, and the secondary dentrite arm interval is 15 μm or less,
In addition, the second phase particles consisting of intermetallic compounds are 10 μm thick.
An aluminum alloy for processing having high strength, high impact properties and high fatigue strength, characterized by: 2 Cu2.0~9.0%, Mg0.2~1.2%, Si0.2~1.2%,
Mn0.2-0.8%, Ti or Ti and B in total amount
0.005 to 0.15%, the remainder substantially consisting of Al and unavoidable impurities, and the ratio a/b of the solute concentration a within the grain to the solute concentration b at the grain boundary is
An aluminum alloy for processing having high strength, high impact properties, and high fatigue strength, characterized by a coefficient of 0.70 or more. 3 Cu2.0~9.0%, Mg0.2~1.2%, Si0.2~1.2%,
Mn0.2-0.8%, Ti or Ti and B in total amount
A molten aluminum alloy with a composition of 0.005 to 0.15%, the balance substantially consisting of Al and unavoidable impurities is produced, and the molten metal is continuously cast at a solidification rate of 25°C/sec or more to produce a crystal grain size of 80 μm or less. In addition, the secondary dentrite arm spacing is 15 μm or less, and the second phase particles consisting of intermetallic compounds are
A method for producing an aluminum alloy for processing having high strength, high impact properties, and high fatigue strength, characterized by obtaining an aluminum alloy having a diameter of 10 μm or less.
JP14396779A 1979-11-07 1979-11-07 Aluminum alloy for working and its manufacture Granted JPS5669348A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14396779A JPS5669348A (en) 1979-11-07 1979-11-07 Aluminum alloy for working and its manufacture
GB8035525A GB2065516B (en) 1979-11-07 1980-10-05 Cast bar of an alumium alloy for wrought products having mechanical properties and workability
AU64105/80A AU576472B2 (en) 1979-11-07 1980-11-05 Cast aluminum alloy
DE19803041942 DE3041942A1 (en) 1979-11-07 1980-11-06 CAST STRING MADE OF ALUMINUM NETWORK HIGH TENSILE STRENGTH ETC. AND METHOD FOR THE PRODUCTION THEREOF
CA000364222A CA1177679A (en) 1979-11-07 1980-11-07 Cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability, as well as process for producing the same
FR8024172A FR2472618B1 (en) 1979-11-07 1980-11-07 ALUMINUM ALLOY CAST BAR FOR WORK PRODUCTS HAVING IMPROVED MECHANICAL PROPERTIES AND "WORKABILITY", AND MANUFACTURING METHOD
CA000442518A CA1209825A (en) 1979-11-07 1983-12-02 Cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability, as well as process for producing the same
CA000442519A CA1209826A (en) 1979-11-07 1983-12-02 Cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability, as well as process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14396779A JPS5669348A (en) 1979-11-07 1979-11-07 Aluminum alloy for working and its manufacture

Publications (2)

Publication Number Publication Date
JPS5669348A JPS5669348A (en) 1981-06-10
JPS6314059B2 true JPS6314059B2 (en) 1988-03-29

Family

ID=15351214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14396779A Granted JPS5669348A (en) 1979-11-07 1979-11-07 Aluminum alloy for working and its manufacture

Country Status (1)

Country Link
JP (1) JPS5669348A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994555A (en) * 1982-11-22 1984-05-31 Showa Alum Ind Kk Cast ingot of aluminum or aluminum alloy to be worked to irregular section
JPH0713276B2 (en) * 1985-04-24 1995-02-15 スカイアルミニウム株式会社 Heat treatment type aluminum alloy rolled plate Soft material
JPS6247464A (en) * 1985-08-27 1987-03-02 Furukawa Alum Co Ltd Manufacture of high strength aluminum alloy
JPS6479353A (en) * 1987-09-18 1989-03-24 Showa Aluminum Corp Manufacture of aluminum alloy having many refined intermetallic compounds and excellent in strength and ductility
JP4940687B2 (en) * 2006-02-17 2012-05-30 パナソニック株式会社 Vacuum cleaner suction tool and vacuum cleaner

Also Published As

Publication number Publication date
JPS5669348A (en) 1981-06-10

Similar Documents

Publication Publication Date Title
US9279173B2 (en) Aluminum alloy forged material for automotive vehicles and production method for the material
EP3124633B1 (en) An automotive suspension part and method for producing same
JP5872443B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
US3989548A (en) Aluminum alloy products and methods of preparation
EP2811042B1 (en) ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
CA2418079C (en) High strength aluminium-based alloy and the article made thereof
EP1809779B1 (en) High-strength aluminium alloy products and method for the production thereof
EP2274454B1 (en) Alloy composition and preparation thereof
EP3842561B1 (en) Method of manufacturing an aluminium alloy rolled product
EP1902149A2 (en) Aluminium foil alloy
CA1280626C (en) Powder metallurgy process and product
CA1177679A (en) Cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability, as well as process for producing the same
Guner et al. Microstructural and mechanical evolution of semisolid 7075 Al alloy produced by SIMA process at various heat treatment parameters
JPS63282232A (en) High-strength magnesium alloy for plastic working and its production
JP5209955B2 (en) Aluminum alloy forging material
WO2018088351A1 (en) Aluminum alloy extruded material
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
JPS6314058B2 (en)
JPS6314059B2 (en)
CN113249621A (en) 6-series aluminum alloy section bar applied to energy absorption box and preparation method thereof
GB2130941A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
JPS61259828A (en) Production of high-strength aluminum alloy extrudate
Hoseinifar et al. Effect of twin-roll casting parameters on microstructure and mechanical properties of AA5083-H321 sheet
WO2017126413A1 (en) Machine component, method for producing same, and extruded material
Demirpolat et al. The effect of homogenization and chemical compositions of 6005 and 6082 aluminium alloys on the cold forming process