JPS63136545A - Laser-trimming device - Google Patents

Laser-trimming device

Info

Publication number
JPS63136545A
JPS63136545A JP28331886A JP28331886A JPS63136545A JP S63136545 A JPS63136545 A JP S63136545A JP 28331886 A JP28331886 A JP 28331886A JP 28331886 A JP28331886 A JP 28331886A JP S63136545 A JPS63136545 A JP S63136545A
Authority
JP
Japan
Prior art keywords
laser
wavelength
fuse
laser beams
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28331886A
Other languages
Japanese (ja)
Other versions
JPH0654791B2 (en
Inventor
Hiroshi Nozue
野末 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61283318A priority Critical patent/JPH0654791B2/en
Publication of JPS63136545A publication Critical patent/JPS63136545A/en
Publication of JPH0654791B2 publication Critical patent/JPH0654791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To melt a fuse positively by simultaneously irradiating the same position in one part of a circuit with two kinds of laser beams having different wavelengths and imparting a melting function. CONSTITUTION:A YAG;Nd laser 104 and a YAG;Nd laser 114 are used in order to acquire two kinds of laser beams having a 1.064mum wavelength and a 0.532mum wavelength. The wavelength of laser beams output from the YAG;Nd laser 104 are converted into 0.532mum from 1.064mum by an SHG 105, the laser beams are condensed by an optical system 106, and the direction of the condensed laser beams is changed so as to be directed to a section just under a mirror 107 by the mirror 107 and the laser beams are projected to a fuse to be trimmed for a wafer 103. Laser beams oscillated from the laser 104 and the laser 114 are controlled by a control circuit 108 in order to simultaneously reach the wafer 103.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路などの内部のヒユーズ、配線、
抵抗などをトリミングするレーザートリミング装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to internal fuses, wiring,
This invention relates to a laser trimming device for trimming resistors and the like.

〔従来の技術〕[Conventional technology]

近年、半導体集積回路の製造に駅いて、この半導体集積
回路装置の歩留まりを上げ、より低価格で生産するため
、冗長ビットを仔する回路が考え出されている。これは
所望のメモリービット数よりピット数の多い回路H11
を製作しておき、本来のビットが不良の時、予め用意し
ておいたヒユーズを溶断してこの冗長ビットを生かす方
法である。
In recent years, in the production of semiconductor integrated circuits, circuits with redundant bits have been devised in order to increase the yield of semiconductor integrated circuit devices and produce them at lower costs. This is a circuit H11 with a larger number of pits than the desired number of memory bits.
This is a method of making a redundant bit in advance, and when the original bit is defective, a fuse prepared in advance is blown to make use of this redundant bit.

第4図は従来のレーザートリミング装置の一例の膜式図
である。
FIG. 4 is a membrane diagram of an example of a conventional laser trimming device.

レーザートリミングHfZのステージ401の上に設置
されているウェハ一台402の上に;・リミングを必要
とするウェハー403を截置する。YAG;Ndレーザ
ー4o11から出力される波Lc 1.08μmをもつ
レーザー光405は光学系406で集光し、集光された
レーザー光はミラー1107で真下に向かうように方向
を変えられ、ウェハー403のトリミングするFuse
に入射する。ウェハー内のチップ位置はX−Y方向に移
動するステージ401を移動させることによって行なう
A wafer 403 that requires trimming is placed on a single wafer 402 placed on a stage 401 of the laser trimming HfZ. A laser beam 405 with a wave Lc of 1.08 μm outputted from a YAG; Fuse to trim
incident on . The chip position within the wafer is determined by moving a stage 401 that moves in the X-Y directions.

この例の装置とは異なり、YAGレーザ−404の内部
、あるい;まYAGレーザ−404と光学系406との
間あるいは光学系406内部に波長変換素子SHGを配
置し、波長を1.064μmから0.532 !シmに
変換し、0.532μmを有するレーザー光によってト
リミングを行なう装置もある。
Unlike the device of this example, a wavelength conversion element SHG is arranged inside the YAG laser 404, between the YAG laser 404 and the optical system 406, or inside the optical system 406, and the wavelength is changed from 1.064 μm to 0.532! There is also an apparatus that converts the shim into a shim and performs trimming using a laser beam having a wavelength of 0.532 μm.

どちらの場合もヒユーズ(F u s e)としては多
結晶シリコン、ポリサイド、シリサイドあるいはA1な
どが゛用いられている。
In either case, polycrystalline silicon, polycide, silicide, A1, or the like is used as the fuse.

〔発明が解決しようとする間習点〕[Learning points while trying to solve the invention]

上述した従来の波長1.064μmのレーザー光により
トリミングを行なうレーザー・トリミング装置では、そ
の波長が長いため、波長1.064μmに対するヒユー
ズ(F u s e)材料のエネルギー吸収係数が小さ
く、Fuseを切断するためにはFuseにJ Q寸す
るレーザー光のエネルギーを大きくする必要かある。通
常、YAGレーザーではレーザーエネルギーを増大させ
ると、パルス間のエネルギーのバラツキもまた太き(な
り、トリミング時あるFuseは確実に切断されたもの
の、他のFuseではFuSeの下地までも破壊し、集
積回路装置そのものを破壊してしまうことがある。この
ため、YAGレーザーの出力はあまり大きくできないと
いう欠点がある。
In the above-mentioned conventional laser trimming device that performs trimming using a laser beam with a wavelength of 1.064 μm, because the wavelength is long, the energy absorption coefficient of the fuse material for the wavelength of 1.064 μm is small, and it is difficult to cut the fuse. In order to do this, it is necessary to increase the energy of the laser beam to the fuse. Normally, when the laser energy is increased with a YAG laser, the variation in energy between pulses also becomes wide (becomes large), and although some fuses were definitely cut during trimming, other fuses destroyed even the base of the FuSe, causing accumulation. The circuit device itself may be destroyed.For this reason, the output of the YAG laser cannot be increased very much, which is a drawback.

これに対し、従来の波長0.532μmを任すレーザー
光によりトリミングを行なうHlでは、波長0.5’3
2μmでのFuse材料のエネルギー吸収係数が犬きく
、Fuseを切断するために、波長1.064μmの場
合よりも小さなレーザーエネルギーで良い。しかしなが
ら、FuSe切断時、通常FuSe上には集積回路装=
保護のための保3型が被管されており、この保護膜の膜
厚は正確に制御するのは刃かしく、0゜1μm(呈度の
笈厚二差を存している。F u S eにレーザー光を
照射した時、Fuse材料及び保護膜からのレーザー光
の反射及び干渉によって、0.1μm程度の膜厚誤差が
存在すると、Fuse部での吸収可能なエネルギーは大
きく変化する。これはレーザー光の波長が短い程影響は
大きく、波長a 532μmを存するレーザー光による
トリミング時、あるFuseは完全に切断されたものの
、他のpuseでは完全に切断されず、一部溶融しただ
けで、切断部がつながってしまっているということがあ
り、救済すべき集積回路装置が救済されないという欠点
がある。
On the other hand, in conventional Hl, which performs trimming using a laser beam with a wavelength of 0.532 μm, the wavelength is 0.5'3
Since the energy absorption coefficient of the fuse material at 2 μm is high, lower laser energy is required to cut the fuse than in the case of a wavelength of 1.064 μm. However, when FuSe is cut, there is usually an integrated circuit device on the FuSe.
A protective film is encased in the tube, and it is difficult to accurately control the thickness of this protective film, which is 0.1 μm (there is a difference in the thickness of the protective film).FuS When e is irradiated with laser light, if there is a film thickness error of about 0.1 μm due to reflection and interference of the laser light from the fuse material and protective film, the energy that can be absorbed by the fuse part will change greatly. The shorter the wavelength of the laser beam, the greater the effect; when trimming with a laser beam with a wavelength of 532 μm, some fuses were completely cut, but other fuses were not completely cut and only partially melted. There is a problem that the cut portions may be connected, and the integrated circuit device that should be repaired cannot be repaired.

上述した従来の単一波長1.064μmあるいは0.5
32μmををすレーザー光によってトリミングを行なう
レーザートリミングHeに対し、本発明はたがいに波長
の異なる2皿のレーザー光、たとえば波長1.064μ
m及び波長0.532μmを存すレーザー光を同時にヒ
ユーズ(Fuse)に照射し、Fuseに効果的にエネ
ルギーを加え、また、Fuse上の集積回路装置保護膜
の膜厚のバラツキの影響を受けずFuseを確実に切断
できるという独創的内容を有する。
The conventional single wavelength 1.064μm or 0.5μm mentioned above
In contrast to laser trimming (He) in which trimming is performed using a laser beam with a wavelength of 32 μm, the present invention uses two laser beams with different wavelengths, for example, a wavelength of 1.064 μm.
Simultaneously irradiates the fuse with a laser beam having a wavelength of 0.532 μm and a wavelength of 0.532 μm, effectively adding energy to the fuse, and not being affected by variations in the thickness of the integrated circuit device protective film on the fuse. It has the original content of being able to cut the fuse reliably.

〔間1点を解決するための手段〕 本発明のレーザートリミング装置はレーザー光により所
定の回路の一部を切断するレーザートリミングHHに於
いて、たとえば波長1.064μm及び波長0.532
μmの異なる波長を育する2種のレーザー光を同時に該
回路の一部の同位置に照射し、切断する機能8存するこ
とにより溝成される。
[Means for solving the problem] The laser trimming device of the present invention performs laser trimming HH for cutting a part of a predetermined circuit with a laser beam, for example, at a wavelength of 1.064 μm and a wavelength of 0.532 μm.
Grooves are formed by simultaneously irradiating two types of laser beams emitting different wavelengths of μm to the same position on a part of the circuit and cutting the circuit.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の詳細な説明するための模式図である。FIG. 1 is a schematic diagram for explaining the present invention in detail.

防震台100上にX −Y 2方回に移動可能なステー
ジ101を設置する。ステージ101の上にトリミング
を必要とするウェハー103を載せるためのウェハ一台
102を設置し、さらにウェハーアライメントのための
光f系110.ミラー127.テレビモニター用カメラ
109を設置する。波長1.064μm及び波長0.5
32μmの2皿項のレーザー光を得るため、YAG:N
dレーザー104及びYAG ; ?、J dレーザー
114が用いられている。YAG;Ndレーザー104
から出力されたレーザー光は5HG105によって、波
長が1.064μmから0.532μmへと変換され、
光学系106で集光し、集光されたレーザー光はミラー
107で真下に向かうように方向を変えられウェハー1
03のトリミングすべきFuseに入射する。また、Y
AG:Ndレーザー114から出力されたレーザー光は
光学系116で集光し、集光されたレーザー光はミラー
117で真下に向かうように方向を変えられつ、IC/
1103のトリミングすべきFuseに入射される。ミ
ラー117は0.532μm波長レーザー光を透過すべ
く適切なものか選択され、ミラー127は、1.06 
/1μm及び0.532μm波長レーザー光を透過すべ
く適切なものか選択されている。レーザー104及びレ
ーザー1111から発振したレーザー光は同時にウェハ
ー103に到達すべ(、制御回路108によって制御さ
れている。
A stage 101 movable in two directions of X-Y is installed on a seismic stand 100. A wafer 102 for placing a wafer 103 that requires trimming is placed on a stage 101, and an optical f system 110 for wafer alignment is installed. Mirror 127. A television monitor camera 109 is installed. Wavelength 1.064μm and wavelength 0.5
In order to obtain a 32 μm two-plate laser beam, YAG:N
d laser 104 and YAG;? , Jd laser 114 are used. YAG; Nd laser 104
The wavelength of the laser beam output from the 5HG105 is converted from 1.064 μm to 0.532 μm,
The optical system 106 focuses the focused laser beam, and the mirror 107 changes the direction of the focused laser beam so that it goes directly below, and the wafer 1
03 enters the fuse to be trimmed. Also, Y
The laser beam output from the AG:Nd laser 114 is focused by an optical system 116, and the direction of the focused laser beam is changed by a mirror 117 so that it goes directly below, and then the IC/
The signal is input to the fuse 1103 to be trimmed. Mirror 117 is selected to be suitable for transmitting 0.532 μm wavelength laser light, and mirror 127 is selected to transmit 0.532 μm wavelength laser light.
An appropriate material is selected to transmit laser light with wavelengths of /1 μm and 0.532 μm. The laser beams emitted from the laser 104 and the laser 1111 should reach the wafer 103 at the same time (they are controlled by a control circuit 108).

第2図は多結晶シリコンFuse上に保護膜としてPS
G膜を彼看した場合の多結晶シリコンのレーザー光に対
する吸収率をpsGIU厚の関係で示したものであり、
曲線aはレーザー光波長が0.532μmの場合、曲i
bはレーザー光波長が1.084μmの場合である。例
えばPSG膜厚か0.1 a mに変化した時1.06
4 tt m波長の場合の方が0.532μm波長の場
合に比べて吸収率変化が小さくおさえられることがわか
る。
Figure 2 shows PS as a protective film on polycrystalline silicon fuse.
The absorption rate of polycrystalline silicon for laser light when looking at the G film is shown in relation to the psGIU thickness.
Curve a is curve i when the laser beam wavelength is 0.532 μm.
b is a case where the laser beam wavelength is 1.084 μm. For example, when the PSG film thickness changes to 0.1 am, it is 1.06
It can be seen that the change in absorbance is suppressed smaller in the case of the 4 tt m wavelength than in the case of the 0.532 μm wavelength.

多結晶シリコンの1.0 G 4μm波長レーザー光及
び0.532μm波長レーザー光に対するエネルギーの
吸収係数は0.532μm波暴シーし−光に対する場合
の方が1.064μmの場合よりも大きく、出力が同[
1度で、これらのレーザー光がFuse部に照射さnた
場合、0.532μm波長光の方がFuseに効率よ(
吸収され、Fuseが切断されやすい。
The energy absorption coefficient of polycrystalline silicon for 1.0 G 4 μm wavelength laser light and 0.532 μm wavelength laser light is 0.532 μm wave absorption coefficient, which is larger for 0.532 μm wavelength laser light than for 1.064 μm wavelength laser light, and the output is same[
When these laser beams are irradiated to the fuse part at once, the 0.532 μm wavelength light is more efficient for the fuse (
It is easily absorbed and the fuse is cut off.

故に、本発明のレーザートリミングH置は従来の単一波
長光によって、トリミングを行なう装二と異なり、波長
の異なるレーザー光が互いの欠点を補ない、即ちFus
e上の力l〈−膜厚のバラツキに対しては1.064μ
mレーザー光がその影うを受けず、また、0.532μ
mレーザー光がF u S eに対して効率的にエネル
ギーを加えるため、Fuseを確実に切断することがで
きる。ここで、レーザー、SHG及びレーザー光学系の
配匠は本実施例のみに限定されるものでなく、要するに
1.064μm及び0.532μmの2種類のレーザー
光が得られれば良いのであって、ミラーの存無などは本
実施例の本質に影響を与えるものではない。また、1.
064μm及び0.532μmレーザー光の強度はFu
se材質やFuse上の保護膜などζこ合わせて適当に
選択される。
Therefore, the laser trimming device of the present invention is different from the conventional device which performs trimming using a single wavelength light.
Force l on e<-1.064μ for film thickness variation
m laser beam is not affected by it, and 0.532μ
Since the m laser beam efficiently adds energy to the Fuse, the Fuse can be reliably cut. Here, the design of the laser, SHG, and laser optical system is not limited to this example.In short, it is sufficient to obtain two types of laser beams of 1.064 μm and 0.532 μm, and the mirror The presence or absence of this does not affect the essence of this embodiment. Also, 1.
The intensity of the 0.064 μm and 0.532 μm laser beams is Fu
The se material, the protective film on the fuse, etc. are appropriately selected.

第3図は本発明の実施例2を説明するための模式図であ
る。防震台300上にX−Y2方向に移動可能なステー
ジ301を設置する。ステージ301の上にトリミング
を必要とするウェハー303を截せるためのウェハ一台
302を設置し、さらにウェハーアライメントのための
光学系309.Eチー30フ、テレビモニター用カメラ
308を設置する。Y A G : N dレーザー3
04から発振したレーザー光310はSHG 305に
よって波長が1.064 a mから0゜532μmへ
と変換される。ただし、波長1.064μmのレーザー
光が100%0.532μmへと変換されるわけではな
く S HG 305通過後のレーザー光311は波長
1.064μmのレーザー光と波長0.532μmのレ
ーザー光とが混在している。これらのレーザー光311
は光学系306で集光し、集光されたレーザー光はウェ
ハー303のトリミングすべきFuseに入射する。光
学系306は波長1.064μm及び0.532μmの
レーザー光を集光できるよう工夫されている。この実施
例では1台のレーザ−から、2種類の波長のレーザー光
を得て、同時にウェハー上のFuseに照射できるため
、Fuseに効果的にエネルギーを加え、かつFuse
上の集積回路装置保護膜の膜厚のバラツキによる影響を
受けず、Fuseを確実に切断できるという利点がある
。ここで5HG305は、レーザー304と光学系30
Gの間ばかりでなく、レーザー304内あるいは、光学
系306内にあっても良い。また、1.064 u m
及び0.532μmのレーザー光の強度比はFusC材
質やFuse上の保護膜などにより適当な比率が選択さ
れる。
FIG. 3 is a schematic diagram for explaining Example 2 of the present invention. A stage 301 movable in two X-Y directions is installed on a seismic stand 300. A wafer 302 for cutting a wafer 303 that requires trimming is installed on a stage 301, and an optical system 309 for wafer alignment is installed. E-Chief 30 and TV monitor camera 308 are installed. YAG: Nd laser 3
The wavelength of the laser beam 310 emitted from the laser beam 310 is converted from 1.064 am to 0°532 μm by the SHG 305. However, the laser beam with a wavelength of 1.064 μm is not 100% converted to 0.532 μm, and the laser beam 311 after passing through SHG 305 is a laser beam with a wavelength of 1.064 μm and a laser beam with a wavelength of 0.532 μm. It's mixed. These laser beams 311
is focused by an optical system 306, and the focused laser light is incident on the fuse of the wafer 303 to be trimmed. The optical system 306 is designed to be able to focus laser beams with wavelengths of 1.064 μm and 0.532 μm. In this example, laser beams of two different wavelengths can be obtained from one laser and irradiated to the fuse on the wafer at the same time, so energy can be effectively added to the fuse and the fuse can be
There is an advantage that the fuse can be reliably cut without being affected by variations in the thickness of the upper integrated circuit device protective film. Here, 5HG305 includes a laser 304 and an optical system 30.
It may be located not only between G but also within the laser 304 or the optical system 306. Also, 1.064 um
An appropriate ratio of the intensity of the laser beams of 0.532 μm and 0.532 μm is selected depending on the FusC material, the protective film on the fuse, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は1.064μm及び0.
532μm波長の2@頚のレーザー光を同時にFuse
に照射することにより、Fuseに効果的にエネルギー
を加え、かつ、Fuse上の集積回路上2保護膜の膜厚
変動に影響を受けることなく、Fuseを確実に切断す
ることができ、これにより集積回路装置の製造に於いて
歩留まりを上げ低価格で提供できるという効果がある。
As explained above, the present invention is applicable to 1.064 μm and 0.06 μm.
Fuse two laser beams of 532μm wavelength at the same time
By irradiating with This has the effect of increasing the yield in manufacturing circuit devices and providing them at low prices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す模式図、第2図は
多結晶シリコンFuse上に集積回路装置保護”G= 
P S Gが被着されている場合のPSG膜厚と吸収率
の関係を示す図、第3図は本発明の第2の実施例を示す
ための模式図、第4図は従来のレーザートリミング装置
の一例の模式図である。 +00・−・防震台、300・・・防震台、4旧・・・
ステージ。 101・−・ステージ、301・・・ステージ。 402・・・ウェハ一台、102・・・ウェハ一台。 302・・・ウェハ一台、403・・・ウェハー。 103・・・ウェハー、 303・・・ウェハー。 ↓04・・・YAG;Ndレーザー。 104、114・・・Y A G : N dレーザー
。 304・・・Y A G ; N dレーザー。 ↓05・°°レーザー光J105・・・S HG 、 
305・・・S HG 。 406・・・レーザー光学系。 106、116・・・レーザー光学系。 306・・・レーザー光学系、↓07・・・ミラー。 107、  117.  127 ・・・ ミ  ラ 
− 、  307・・・ ミ  ラ − 。 108・・・制御回路。 308・・・テレビモニター用カメラ。 109・・・テレビモニター用刀メラ。 309・・・アライメント光学系。 110・・・アライメント光学系。 310、311・・・レーザー光。 芋 / 図 瞥   プ   順ヤ 第3図
FIG. 1 is a schematic diagram showing the first embodiment of the present invention, and FIG. 2 is an integrated circuit device protection device on polycrystalline silicon fuse.
A diagram showing the relationship between PSG film thickness and absorption rate when PSG is deposited. Figure 3 is a schematic diagram showing the second embodiment of the present invention. Figure 4 is a diagram showing conventional laser trimming. It is a schematic diagram of an example of a device. +00...Earthquake prevention stand, 300...Earthquake prevention stand, 4 old...
stage. 101... stage, 301... stage. 402...One wafer, 102...One wafer. 302...One wafer, 403...Wafer. 103...Wafer, 303...Wafer. ↓04...YAG; Nd laser. 104, 114...YAG: Nd laser. 304...YAG; Nd laser. ↓05・°°laser beam J105...S HG,
305...SHG. 406...Laser optical system. 106, 116... Laser optical system. 306... Laser optical system, ↓07... Mirror. 107, 117. 127... Mira
-, 307... Mira -. 108...Control circuit. 308...TV monitor camera. 109... Katamera for TV monitor. 309... Alignment optical system. 110... Alignment optical system. 310, 311...Laser light. Potato / Zubetsu Pu Junya Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)レーザー光により所定の回路の一部を切断するレ
ーザー・トリミング装置に於いて、異なる波長を有する
2種のレーザー光を同時に、該回路の一部の同位置に照
射し、切断する機能を有することを特徴とするレーザー
・トリミング装置。
(1) In a laser trimming device that cuts a part of a predetermined circuit with laser light, the function of cutting the part of the circuit by simultaneously irradiating two types of laser light with different wavelengths to the same position A laser trimming device characterized by having:
(2)2種のレーザ光の波長はそれぞれ1.064μm
および0.532μmであることを特徴とする特許請求
の範囲第(1)項記載のレーザー・トリミング装置。
(2) The wavelength of each of the two types of laser light is 1.064 μm
and 0.532 μm, the laser trimming device according to claim 1.
JP61283318A 1986-11-27 1986-11-27 Laser trimming device Expired - Lifetime JPH0654791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61283318A JPH0654791B2 (en) 1986-11-27 1986-11-27 Laser trimming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283318A JPH0654791B2 (en) 1986-11-27 1986-11-27 Laser trimming device

Publications (2)

Publication Number Publication Date
JPS63136545A true JPS63136545A (en) 1988-06-08
JPH0654791B2 JPH0654791B2 (en) 1994-07-20

Family

ID=17663909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283318A Expired - Lifetime JPH0654791B2 (en) 1986-11-27 1986-11-27 Laser trimming device

Country Status (1)

Country Link
JP (1) JPH0654791B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069307A1 (en) * 2006-12-08 2008-06-12 Cyber Laser Inc. Method and apparatus for modifying integrated circuit by laser
US7425471B2 (en) 2004-06-18 2008-09-16 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis with cross-axis offset
US7435927B2 (en) 2004-06-18 2008-10-14 Electron Scientific Industries, Inc. Semiconductor link processing using multiple laterally spaced laser beam spots with on-axis offset
US7629234B2 (en) 2004-06-18 2009-12-08 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots with joint velocity profiling
US7633034B2 (en) 2004-06-18 2009-12-15 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots overlapping lengthwise on a structure
US7687740B2 (en) 2004-06-18 2010-03-30 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots delivering multiple blows
US7935941B2 (en) 2004-06-18 2011-05-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis on non-adjacent structures
US8148211B2 (en) 2004-06-18 2012-04-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis delivered simultaneously
US8193468B2 (en) 2001-03-29 2012-06-05 Gsi Group Corporation Methods and systems for precisely relatively positioning a waist of a pulsed laser beam and method and system for controlling energy delivered to a target structure
US8383982B2 (en) 2004-06-18 2013-02-26 Electro Scientific Industries, Inc. Methods and systems for semiconductor structure processing using multiple laser beam spots
JP2016171305A (en) * 2015-03-12 2016-09-23 エスアイアイ・セミコンダクタ株式会社 Semiconductor device and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224088A (en) * 1982-06-22 1983-12-26 Nec Corp Laser processing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224088A (en) * 1982-06-22 1983-12-26 Nec Corp Laser processing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193468B2 (en) 2001-03-29 2012-06-05 Gsi Group Corporation Methods and systems for precisely relatively positioning a waist of a pulsed laser beam and method and system for controlling energy delivered to a target structure
US7687740B2 (en) 2004-06-18 2010-03-30 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots delivering multiple blows
US7425471B2 (en) 2004-06-18 2008-09-16 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis with cross-axis offset
US7435927B2 (en) 2004-06-18 2008-10-14 Electron Scientific Industries, Inc. Semiconductor link processing using multiple laterally spaced laser beam spots with on-axis offset
US7629234B2 (en) 2004-06-18 2009-12-08 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots with joint velocity profiling
US7633034B2 (en) 2004-06-18 2009-12-15 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots overlapping lengthwise on a structure
US7923306B2 (en) 2004-06-18 2011-04-12 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots
US7935941B2 (en) 2004-06-18 2011-05-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis on non-adjacent structures
US8148211B2 (en) 2004-06-18 2012-04-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis delivered simultaneously
US8383982B2 (en) 2004-06-18 2013-02-26 Electro Scientific Industries, Inc. Methods and systems for semiconductor structure processing using multiple laser beam spots
WO2008069307A1 (en) * 2006-12-08 2008-06-12 Cyber Laser Inc. Method and apparatus for modifying integrated circuit by laser
JP2008147406A (en) * 2006-12-08 2008-06-26 Cyber Laser Kk Method and device for correcting integrated circuit by laser
JP2016171305A (en) * 2015-03-12 2016-09-23 エスアイアイ・セミコンダクタ株式会社 Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0654791B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JP5033296B2 (en) UV laser system and method for single pulse for IC fuse cutting
US4581628A (en) Circuit programming by use of an electrically conductive light shield
JPS63136545A (en) Laser-trimming device
JPH0428145B2 (en)
KR20050072813A (en) Laser scanning apparatus and methods for thermal processing
JPS58219748A (en) Semiconductor device
JPH02137682A (en) Laser repair device for semiconductor integrated circuit
JPH051113B2 (en)
JPH0821623B2 (en) Laser processing method
US5768022A (en) Laser diode having in-situ fabricated lens element
JPH07124764A (en) Laser beam machining device
JPH11245060A (en) Laser processing device
JPH0289586A (en) Laser trimming device
JPH1190659A (en) Laser repairing device
US4383165A (en) Method for aligning laser beam with fuses in integrated circuit
JPS61269992A (en) Method and apparatus for laser beam processing
KR100408418B1 (en) Laser link structure capable protecting upper crack and broadening energy window of laser beam and fuse box using the same
Cohen et al. Laser beam processing and wafer-scale integration
US7041514B1 (en) Integrated circuit repair using multiple-photon absorption of laser light
JP3566520B2 (en) Semiconductor storage device, hybrid semiconductor device, semiconductor device, and method of manufacturing semiconductor storage device
Chapman Laser applications to IC defect correction
JPH0467654A (en) Repair device provided with parallel processing function
JPH1187521A (en) Semiconductor device and its manufacture
JPS5940548A (en) Semiconductor ic circuit and laser processing thereof
JPS63230284A (en) Laser trimming device